

Data Mining
Practical Machine Learning

Tools and Techniques
Fourth Edition

Ian H. Witten
University of Waikato, Hamilton, New Zealand

Eibe Frank
University of Waikato, Hamilton, New Zealand

Mark A. Hall
University of Waikato, Hamilton, New Zealand

Christopher J. Pal
Polytechnique Montréal, and the Université de Montréal,

Montreal, QC, Canada

Morgan Kaufmann is an imprint of Elsevier

50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-804291-5

For Information on all Morgan Kaufmann publications

visit our website at https://www.elsevier.com

Copyright © 2017, 2011, 2005, 2000 Elsevier Inc.

Contents
List of Figures..xv

List of Tables..xxi

Preface ... xxiii

PART I INTRODUCTION TO DATA MINING

CHAPTER 1 What’s it all about? ..3
1.1 Data Mining and Machine Learning..4

Describing Structural Patterns ... 6

Machine Learning.. 7

Data Mining ... 9

1.2 Simple Examples: The Weather Problem and Others...................9

The Weather Problem.. 10

Contact Lenses: An Idealized Problem....................................... 12

Irises: A Classic Numeric Dataset .. 14

CPU Performance: Introducing Numeric Prediction 16

Labor Negotiations: A More Realistic Example......................... 16

Soybean Classification: A Classic Machine Learning

Success ...19

1.3 Fielded Applications ..21

Web Mining ... 21

Decisions Involving Judgment .. 22

Screening Images... 23

Load Forecasting ... 24

Diagnosis.. 25

Marketing and Sales .. 26

Other Applications... 27

1.4 The Data Mining Process...28

1.5 Machine Learning and Statistics..30

1.6 Generalization as Search..31

Enumerating the Concept Space ... 32

Bias .. 33

1.7 Data Mining and Ethics ...35

Reidentification.. 36

Using Personal Information... 37

Wider Issues... 38

1.8 Further Reading and Bibliographic Notes38

CHAPTER 2 Input: concepts, instances, attributes......................... 43
2.1 What’s a Concept? ...44

2.2 What’s in an Example?..46

Relations .. 47

Other Example Types .. 51

2.3 What’s in an Attribute?..53

2.4 Preparing the Input...56

Gathering the Data Together ... 56

ARFF Format ... 57

Sparse Data .. 60

Attribute Types .. 61

Missing Values .. 62

Inaccurate Values... 63

Unbalanced Data.. 64

Getting to Know Your Data .. 65

2.5 Further Reading and Bibliographic Notes65

CHAPTER 3 Output: knowledge representation 67

3.1 Tables ...68

3.2 Linear Models ..68

3.3 Trees ...70

3.4 Rules ...75

Classification Rules ... 75

Association Rules .. 79

Rules With Exceptions .. 80

More Expressive Rules.. 82

3.5 Instance-Based Representation ..84

3.6 Clusters ...87

3.7 Further Reading and Bibliographic Notes88

CHAPTER 4 Algorithms: the basic methods 91
4.1 Inferring Rudimentary Rules ...93

Missing Values and Numeric Attributes 94

4.2 Simple Probabilistic Modeling ..96

Missing Values and Numeric Attributes 100

Naı̈ve Bayes for Document Classification 103

Remarks ... 105

4.3 Divide-and-Conquer: Constructing Decision Trees105

Calculating Information... 108

Highly Branching Attributes ... 110

4.4 Covering Algorithms: Constructing Rules113

Rules Versus Trees .. 114

A Simple Covering Algorithm .. 115

Rules Versus Decision Lists.. 119

4.5 Mining Association Rules..120

Item Sets .. 120

Association Rules .. 122

Generating Rules Efficiently ... 124

4.6 Linear Models ..128

Numeric Prediction: Linear Regression 128

Linear Classification: Logistic Regression 129

Linear Classification Using the Perceptron 131

Linear Classification Using Winnow 133

4.7 Instance-Based Learning..135

The Distance Function... 135

Finding Nearest Neighbors Efficiently 136

Remarks ... 141

4.8 Clustering ...141

Iterative Distance-Based Clustering .. 142

Faster Distance Calculations ... 144

Choosing the Number of Clusters ... 146

Hierarchical Clustering.. 147

Example of Hierarchical Clustering.. 148

Incremental Clustering... 150

Category Utility ... 154

Remarks ... 156

4.9 Multi-instance Learning...156

Aggregating the Input.. 157

Aggregating the Output ... 157

4.10 Further Reading and Bibliographic Notes...............................158

4.11 WEKA Implementations..160

CHAPTER 5 Credibility: evaluating what’s been learned............. 161
5.1 Training and Testing ..163

5.2 Predicting Performance..165

5.3 Cross-Validation...167

5.4 Other Estimates ..169

Leave-One-Out .. 169

The Bootstrap... 169

5.5 Hyperparameter Selection..171

5.6 Comparing Data Mining Schemes...172

5.7 Predicting Probabilities..176

Quadratic Loss Function.. 177

Informational Loss Function ... 178

Remarks ... 179

5.8 Counting the Cost ..179

Cost-Sensitive Classification ... 182

Cost-Sensitive Learning... 183

Lift Charts .. 183

ROC Curves ... 186

Recall-Precision Curves... 190

Remarks ... 190

Cost Curves.. 192

5.9 Evaluating Numeric Prediction ...194

5.10 The MDL Principle..197

5.11 Applying the MDL Principle to Clustering.............................200

5.12 Using a Validation Set for Model Selection201

5.13 Further Reading and Bibliographic Notes...............................202

PART II MORE ADVANCED MACHINE LEARNING SCHEMES

CHAPTER 6 Trees and rules ... 209
6.1 Decision Trees..210

Numeric Attributes .. 210

Missing Values .. 212

Pruning ... 213

Estimating Error Rates .. 215

Complexity of Decision Tree Induction.................................... 217

From Trees to Rules .. 219

C4.5: Choices and Options.. 219

Cost-Complexity Pruning .. 220

Discussion .. 221

6.2 Classification Rules..221

Criteria for Choosing Tests ... 222

Missing Values, Numeric Attributes ... 223

Generating Good Rules ... 224

Using Global Optimization.. 226

Obtaining Rules From Partial Decision Trees 227

Rules With Exceptions .. 231

Discussion .. 233

6.3 Association Rules...234

Building a Frequent Pattern Tree .. 235

Finding Large Item Sets .. 240

Discussion .. 241

6.4 WEKA Implementations..242

CHAPTER 7 Extending instance-based and linear models 243

7.1 Instance-Based Learning..244

Reducing the Number of Exemplars ... 245

Pruning Noisy Exemplars.. 245

Weighting Attributes ... 246

Generalizing Exemplars... 247

Distance Functions for Generalized Exemplars........................ 248

Generalized Distance Functions .. 250

Discussion .. 250

7.2 Extending Linear Models...252

The Maximum Margin Hyperplane... 253

Nonlinear Class Boundaries .. 254

Support Vector Regression.. 256

Kernel Ridge Regression ... 258

The Kernel Perceptron... 260

Multilayer Perceptrons... 261

Radial Basis Function Networks ... 270

Stochastic Gradient Descent.. 270

Discussion .. 272

7.3 Numeric Prediction With Local Linear Models........................273

Model Trees ... 274

Building the Tree ... 275

Pruning the Tree .. 275

Nominal Attributes .. 276

Missing Values .. 276

Pseudocode for Model Tree Induction...................................... 277

Rules From Model Trees... 281

Locally Weighted Linear Regression.. 281

Discussion .. 283

7.4 WEKA Implementations..284

CHAPTER 8 Data transformations .. 285
8.1 Attribute Selection ...288

Scheme-Independent Selection.. 289

Searching the Attribute Space ... 292

Scheme-Specific Selection .. 293

8.2 Discretizing Numeric Attributes ..296

Unsupervised Discretization.. 297

Entropy-Based Discretization.. 298

Other Discretization Methods.. 301

Entropy-Based Versus Error-Based Discretization................... 302

Converting Discrete to Numeric Attributes 303

8.3 Projections ..304

Principal Component Analysis .. 305

Random Projections... 307

Partial Least Squares Regression .. 307

Independent Component Analysis... 309

Linear Discriminant Analysis.. 310

Quadratic Discriminant Analysis .. 310

Fisher’s Linear Discriminant Analysis...................................... 311

Text to Attribute Vectors... 313

Time Series .. 314

8.4 Sampling...315

Reservoir Sampling ... 315

8.5 Cleansing ..316

Improving Decision Trees ... 316

Robust Regression ... 317

Detecting Anomalies ... 318

One-Class Learning ... 319

Outlier Detection ... 320

Generating Artificial Data ... 321

8.6 Transforming Multiple Classes to Binary Ones322

Simple Methods ... 323

Error-Correcting Output Codes ... 324

Ensembles of Nested Dichotomies.. 326

8.7 Calibrating Class Probabilities...328

8.8 Further Reading and Bibliographic Notes331

8.9 WEKA Implementations..334

CHAPTER 9 Probabilistic methods .. 335
9.1 Foundations ..336

Maximum Likelihood Estimation ... 338

Maximum a Posteriori Parameter Estimation 339

9.2 Bayesian Networks...339

Making Predictions .. 340

Learning Bayesian Networks .. 344

Specific Algorithms ... 347

Data Structures for Fast Learning ... 349

9.3 Clustering and Probability Density Estimation352

The Expectation Maximization Algorithm for a Mixture

of Gaussians ...353

Extending the Mixture Model ... 356

Clustering Using Prior Distributions... 358

Clustering With Correlated Attributes 359

Kernel Density Estimation .. 361

Comparing Parametric, Semiparametric and Nonparametric

Density Models for Classification362

9.4 Hidden Variable Models ..363

Expected Log-Likelihoods and Expected Gradients................. 364

The Expectation Maximization Algorithm 365

Applying the Expectation Maximization Algorithm

to Bayesian Networks ..366

9.5 Bayesian Estimation and Prediction ..367

Probabilistic Inference Methods.. 368

9.6 Graphical Models and Factor Graphs..370

Graphical Models and Plate Notation 371

Probabilistic Principal Component Analysis............................. 372

Latent Semantic Analysis .. 376

Using Principal Component Analysis for Dimensionality

Reduction ...377

Probabilistic LSA... 378

Latent Dirichlet Allocation.. 379

Factor Graphs... 382

Markov Random Fields ... 385

Computing Using the Sum-Product and Max-Product

Algorithms ...386

9.7 Conditional Probability Models...392

Linear and Polynomial Regression as Probability

Models..392

Using Priors on Parameters ... 393

Multiclass Logistic Regression.. 396

Gradient Descent and Second-Order Methods.......................... 400

Generalized Linear Models ... 400

Making Predictions for Ordered Classes................................... 402

Conditional Probabilistic Models Using Kernels...................... 402

9.8 Sequential and Temporal Models ..403

Markov Models and N-gram Methods 403

Hidden Markov Models... 404

Conditional Random Fields ... 406

9.9 Further Reading and Bibliographic Notes...............................410

Software Packages and Implementations................................ 414

9.10 WEKA Implementations..416

CHAPTER 10 Deep learning .. 417
10.1 Deep Feedforward Networks ...420

The MNIST Evaluation ... 421

Losses and Regularization... 422

Deep Layered Network Architecture 423

Activation Functions.. 424

Backpropagation Revisited.. 426

Computation Graphs and Complex Network Structures 429

Checking Backpropagation Implementations 430

10.2 Training and Evaluating Deep Networks431

Early Stopping ... 431

Validation, Cross-Validation, and Hyperparameter Tuning ... 432

Mini-Batch-Based Stochastic Gradient Descent 433

Pseudocode for Mini-Batch Based Stochastic Gradient

Descent...434

Learning Rates and Schedules... 434

Regularization With Priors on Parameters.............................. 435

Dropout .. 436

Batch Normalization.. 436

Parameter Initialization.. 436

Unsupervised Pretraining... 437

Data Augmentation and Synthetic Transformations............... 437

10.3 Convolutional Neural Networks ..437

The ImageNet Evaluation and Very Deep Convolutional

Networks ..438

From Image Filtering to Learnable Convolutional Layers..... 439

Convolutional Layers and Gradients....................................... 443

Pooling and Subsampling Layers and Gradients 444

Implementation .. 445

10.4 Autoencoders..445

Pretraining Deep Autoencoders With RBMs.......................... 448

Denoising Autoencoders and Layerwise Training.................. 448

Combining Reconstructive and Discriminative Learning....... 449

10.5 Stochastic Deep Networks ...449

Boltzmann Machines ... 449

Restricted Boltzmann Machines.. 451

Contrastive Divergence ... 452

Categorical and Continuous Variables.................................... 452

Deep Boltzmann Machines.. 453

Deep Belief Networks ... 455

10.6 Recurrent Neural Networks ...456

Exploding and Vanishing Gradients 457

Other Recurrent Network Architectures 459

10.7 Further Reading and Bibliographic Notes...............................461

10.8 Deep Learning Software and Network Implementations........464

Theano.. 464

Tensor Flow ... 464

Torch .. 465

Computational Network Toolkit.. 465

Caffe... 465

Deeplearning4j... 465

Other Packages: Lasagne, Keras, and cuDNN........................ 465

10.9 WEKA Implementations..466

CHAPTER 11 Beyond supervised and unsupervised learning 467

11.1 Semisupervised Learning...468

Clustering for Classification.. 468

Cotraining .. 470

EM and Cotraining .. 471

Neural Network Approaches ... 471

11.2 Multi-instance Learning...472

Converting to Single-Instance Learning 472

Upgrading Learning Algorithms ... 475

Dedicated Multi-instance Methods.. 475

11.3 Further Reading and Bibliographic Notes...............................477

11.4 WEKA Implementations..478

CHAPTER 12 Ensemble learning.. 479
12.1 Combining Multiple Models..480

12.2 Bagging ..481

Bias�Variance Decomposition ... 482

Bagging With Costs... 483

12.3 Randomization ...484

Randomization Versus Bagging .. 485

Rotation Forests ... 486

12.4 Boosting ...486

AdaBoost.. 487

The Power of Boosting.. 489

12.5 Additive Regression...490

Numeric Prediction .. 491

Additive Logistic Regression .. 492

12.6 Interpretable Ensembles...493

Option Trees .. 494

Logistic Model Trees... 496

12.7 Stacking..497

12.8 Further Reading and Bibliographic Notes...............................499

12.9 WEKA Implementations..501

CHAPTER 13 Moving on: applications and beyond..................... 503
13.1 Applying Machine Learning..504

13.2 Learning From Massive Datasets ..506

13.3 Data Stream Learning..509

13.4 Incorporating Domain Knowledge ..512

13.5 Text Mining ...515

Document Classification and Clustering............................... 516

Information Extraction... 517

Natural Language Processing .. 518

13.6 Web Mining ...519

Wrapper Induction ... 519

Page Rank .. 520

13.7 Images and Speech ..522

Images .. 523

Speech .. 524

13.8 Adversarial Situations..524

13.9 Ubiquitous Data Mining ..527

13.10 Further Reading and Bibliographic Notes529

13.11 WEKA Implementations ...532

Appendix A: Theoretical foundations...533

Appendix B: The WEKA workbench ...553

References..573

Index ..601

Figure 1.1 Rules for the contact lens data. 13

Figure 1.2 Decision tree for the contact lens data. 14

Figure 1.3 Decision trees for the labor negotiations data. 18

Figure 1.4 Life cycle of a data mining project. 29

Figure 2.1 A family tree and two ways of expressing the sister-of

relation.

48

Figure 2.2 ARFF file for the weather data. 58

Figure 2.3 Multi-instance ARFF file for the weather data. 60

Figure 3.1 A linear regression function for the CPU performance

data.

69

Figure 3.2 A linear decision boundary separating Iris setosas from

Iris versicolors.

70

Figure 3.3 Constructing a decision tree interactively: (A) creating a

rectangular test involving petallength and petalwidth;

(B) the resulting (unfinished) decision tree.

73

Figure 3.4 Models for the CPU performance data: (A) linear

regression; (B) regression tree; (C) model tree.

74

Figure 3.5 Decision tree for a simple disjunction. 76

Figure 3.6 The exclusive-or problem. 77

Figure 3.7 Decision tree with a replicated subtree. 77

Figure 3.8 Rules for the iris data. 81

Figure 3.9 The shapes problem. 82

Figure 3.10 Different ways of partitioning the instance space. 86

Figure 3.11 Different ways of representing clusters. 88

Figure 4.1 Pseudocode for 1R. 93

Figure 4.2 Tree stumps for the weather data. 106

Figure 4.3 Expanded tree stumps for the weather data. 108

Figure 4.4 Decision tree for the weather data. 109

Figure 4.5 Tree stump for the ID code attribute. 111

Figure 4.6 Covering algorithm: (A) covering the instances;

(B) decision tree for the same problem.

113

Figure 4.7 The instance space during operation of a covering

algorithm.

115

Figure 4.8 Pseudocode for a basic rule learner. 118

Figures

Figure 4.9 (A) Finding all item sets with sufficient coverage;

(B) finding all sufficiently accurate association rules

for a k-item set.

127

Figure 4.10 Logistic regression: (A) the logit transform; (B) example

logistic regression function.

130

Figure 4.11 The perceptron: (A) learning rule; (B) representation as

a neural network.

132

Figure 4.12 The Winnow algorithm: (A) unbalanced version;

(B) balanced version.

134

Figure 4.13 A kD-tree for four training instances: (A) the tree;

(B) instances and splits.

137

Figure 4.14 Using a kD-tree to find the nearest neighbor of the star. 137

Figure 4.15 Ball tree for 16 training instances: (A) instances and

balls; (B) the tree.

139

Figure 4.16 Ruling out an entire ball (gray) based on a target point

(star) and its current nearest neighbor.

140

Figure 4.17 Iterative distance-based clustering. 143

Figure 4.18 A ball tree: (A) two cluster centers and their dividing

line; (B) corresponding tree.

145

Figure 4.19 Hierarchical clustering displays. 149

Figure 4.20 Clustering the weather data. 151

Figure 4.21 Hierarchical clusterings of the iris data. 153

Figure 5.1 A hypothetical lift chart. 185

Figure 5.2 Analyzing the expected benefit of a mailing campaign

when the cost of mailing is (A) $0.50 and (B) $0.80.

187

Figure 5.3 A sample ROC curve. 188

Figure 5.4 ROC curves for two learning schemes. 189

Figure 5.5 Effect of varying the probability threshold: (A) error

curve; (B) cost curve.

193

Figure 6.1 Example of subtree raising, where node C is “raised”

to subsume node B.

214

Figure 6.2 Pruning the labor negotiations decision tree. 216

Figure 6.3 Algorithm for forming rules by incremental reduced-

error pruning.

226

Figure 6.4 RIPPER: (A) algorithm for rule learning; (B) meaning

of symbols.

228

Figure 6.5 Algorithm for expanding examples into a partial tree. 229

Figure 6.6 Example of building a partial tree. 230

Figure 6.7 Rules with exceptions for the iris data. 232

Figure 6.8 Extended prefix trees for the weather data: (A) the full

data; (B) the data conditional on temperature5mild;

(C) the data conditional on humidity5 normal.

238

Figure 7.1 A boundary between two rectangular classes. 249

Figure 7.2 A maximum margin hyperplane. 253

Figure 7.3 Support vector regression: (A) ε5 1; (B) ε5 2; (C) ε5 0.5. 257

Figure 7.4 Example data sets and corresponding perceptrons. 262

Figure 7.5 Step vs sigmoid: (A) step function; (B) sigmoid function. 264

Figure 7.6 Gradient descent using the error function w21 1. 265

Figure 7.7 Multilayer perceptron with a hidden layer

(omitting bias inputs).

267

Figure 7.8 Hinge, squared and 0�1 loss functions. 271

Figure 7.9 Pseudocode for model tree induction. 278

Figure 7.10 Model tree for a data set with nominal attributes. 279

Figure 8.1 Attribute space for the weather dataset. 292

Figure 8.2 Discretizing the temperature attribute using the entropy

method.

299

Figure 8.3 The result of discretizing the temperature attribute. 299

Figure 8.4 Class distribution for a two-class, two-attribute

problem.

302

Figure 8.5 Principal component transform of a dataset: (A) variance

of each component; (B) variance plot.

306

Figure 8.6 Comparing principal component analysis and Fisher’s

linear discriminant analysis.

312

Figure 8.7 Number of international phone calls from Belgium,

1950�1973.

318

Figure 8.8 Overoptimistic probability estimation for a two-class

problem.

329

Figure 9.1 A simple Bayesian network for the weather data. 341

Figure 9.2 Another Bayesian network for the weather data. 342

Figure 9.3 The Markov blanket for variable x6 in a 10-variable

Bayesian network.

348

Figure 9.4 The weather data: (A) reduced version; (B)

corresponding AD tree.

350

Figure 9.5 A two-class mixture model. 354

Figure 9.6 DensiTree showing possible hierarchical clusterings of a

given data set.

360

Figure 9.7 Probability contours for three types of model, all based

on Gaussians.

362

Figure 9.8 (A) Bayesian network for a mixture model; (B) multiple

copies of the Bayesian network, one for each

observation; (C) plate notation version of (B).

371

Figure 9.9 (A) Bayesian network for probabilistic PCA; (B) equal-

probability contour for a Gaussian distribution along

with its covariance matrix’s principal eigenvector.

372

Figure 9.10 The singular value decomposition of a t by d matrix. 377

Figure 9.11 Graphical models for (A) pLSA, (B) LDAb, and (C)

smoothed LDAb.

379

Figure 9.12 (A) Bayesian network and (B) corresponding factor

graph.

382

Figure 9.13 The Markov blanket for variable x6 in a 10-variable

factor graph.

383

Figure 9.14 (A) and (B) Bayesian network and corresponding factor

graph; (C) and (D) Naı̈ve Bayes model and

corresponding factor graph.

384

Figure 9.15 (A) Bayesian network representing the joint distribution

of y and its parents; (B) factor graph for a logistic

regression for the conditional distribution of y given its

parents.

384

Figure 9.16 (A) Undirected graph representing a Markov random

field structure; (B) corresponding factor graph.

385

Figure 9.17 Message sequence in an example factor graph. 389

Figure 9.18 (A) and (B) First- and second-order Markov models for a

sequence of variables; (C) Hidden Markov model; (D)

Markov random field.

404

Figure 9.19 Mining emails for meeting details. 406

Figure 9.20 (A) Dynamic Bayesian network representation of a

hidden Markov model; (B) similarly structured Markov

random field; (C) factor graph for (A); and (D) factor

graph for a linear chain conditional random field.

407

Figure 10.1 A feedforward neural network. 424

Figure 10.2 Computation graph showing forward propagation in a

deep network.

426

Figure 10.3 Backpropagation in a deep network (the forward

computation is shown with gray arrows).

429

Figure 10.4 Parameter updates that follow the forward and backward

propagation steps (shown with gray arrows).

430

Figure 10.5 Typical learning curves for the training and

validation sets.

431

Figure 10.6 Pseudocode for mini-batch based stochastic gradient

descent.

435

Figure 10.7 Typical convolutional neural network architecture. 439

Figure 10.8 Original image; filtered with the two Sobel operators;

magnitude of the result.

441

Figure 10.9 Examples of what random neurons detect in different

layers of a convolutional neural network using the

visualization approach of Zeiler and Fergus (2013).

Underlying imagery kindly provided by Matthew Zeiler.

442

Figure 10.10 Example of the convolution, pooling, and decimation

operations used in convolutional neural networks.

443

Figure 10.11 A simple autoencoder. 445

Figure 10.12 A deep autoencoder with multiple layers of

transformation.

447

Figure 10.13 Low-dimensional principal component space (left)

compared with one learned by a deep autoencoder

(right).

447

Figure 10.14 Boltzmann machines: (A) fully connected; (B) restricted;

(C) more general form of (B).

450

Figure 10.15 (A) Deep Boltzmann machine and (B) deep belief

network.

453

Figure 10.16 (A) Feedforward network transformed into a recurrent

network; (B) hidden Markov model; and (C) recurrent

network obtained by unwrapping (A).

456

Figure 10.17 Structure of a “long short-term memory” unit. 459

Figure 10.18 Recurrent neural networks: (A) bidirectional,

(B) encoder-decoder.

460

Figure 10.19 A deep encoder-decoder recurrent network. 460

Figure 12.1 Algorithm for bagging. 483

Figure 12.2 Algorithm for boosting. 488

Figure 12.3 Algorithm for additive logistic regression. 493

Figure 12.4 Simple option tree for the weather data. 494

Figure 12.5 Alternating decision tree for the weather data. 495

Figure 13.1 A tangled web. 521

Table 1.1 The Contact Lens Data 7

Table 1.2 The Weather Data 11

Table 1.3 Weather Data With Some Numeric Attributes 12

Table 1.4 The Iris Data 15

Table 1.5 The CPU Performance Data 16

Table 1.6 The Labor Negotiations Data 17

Table 1.7 The Soybean Data 20

Table 2.1 Iris Data as a Clustering Problem 46

Table 2.2 Weather Data With a Numeric Class 47

Table 2.3 Family Tree 48

Table 2.4 The Sister-of Relation 49

Table 2.5 Another Relation 52

Table 3.1 A New Iris Flower 80

Table 3.2 Training Data for the Shapes Problem 83

Table 4.1 Evaluating the Attributes in the Weather Data 94

Table 4.2 The Weather Data, With Counts and Probabilities 97

Table 4.3 A New Day 98

Table 4.4 The Numeric Weather Data With Summary Statistics 101

Table 4.5 Another New Day 102

Table 4.6 The Weather Data with Identification Codes 111

Table 4.7 Gain Ratio Calculations for the Tree Stumps of Fig. 4.2 112

Table 4.8 Part of the Contact Lens Data for which Astigmatism5 Yes 116

Table 4.9 Part of the Contact Lens Data for Which

Astigmatism5 Yes and Tear Production Rate5Normal

117

Table 4.10 Item Sets for the Weather Data With Coverage 2

or Greater

121

Table 4.11 Association Rules for the Weather Data 123

Table 5.1 Confidence Limits for the Normal Distribution 166

Table 5.2 Confidence Limits for Student’s Distribution With

9 Degrees of Freedom

174

Table 5.3 Different Outcomes of a Two-Class Prediction 180

Table 5.4 Different Outcomes of a Three-Class Prediction:

(A) Actual; (B) Expected

181

Table 5.5 Default Cost Matrixes: (A) Two-Class Case;

(B) Three-Class Case

182

Tables

Table 5.6 Data for a Lift Chart 184

Table 5.7 Different Measures Used to Evaluate the False Positive

Versus False Negative Tradeoff

191

Table 5.8 Performance Measures for Numeric Prediction 195

Table 5.9 Performance Measures for Four Numeric Prediction

Models

197

Table 6.1 Preparing the Weather Data for Insertion Into an FP-tree:

(A) The Original Data; (B) Frequency Ordering of Items

With Frequent Item Sets in Bold; (C) The Data With Each

Instance Sorted Into Frequency Order; (D) The Two

Multiple-Item Frequent Item Sets

236

Table 7.1 Linear Models in the Model Tree 280

Table 8.1 The First Five Instances From the CPU Performance Data;

(A) Original Values; (B) The First Partial Least Squares

Direction; (C) Residuals From the First Direction

308

Table 8.2 Transforming a Multiclass Problem Into a Two-Class One:

(A) Standard Method; (B) Error-Correcting Code

324

Table 8.3 A Nested Dichotomy in the Form of a Code Matrix 327

Table 9.1 Highest Probability Words and User Tags From a Sample

of Topics Extracted From a Collection of Scientific

Articles

381

Table 9.2 Link Functions, Mean Functions, and Distributions Used in

Generalized Linear Models

401

Table 10.1 Summary of Performance on the MNIST Evaluation 421

Table 10.2 Loss Functions, Corresponding Distributions, and

Activation Functions

423

Table 10.3 Activation Functions and Their Derivatives 425

Table 10.4 Convolutional Neural Network Performance on the

ImageNet Challenge

439

Table 10.5 Components of a “Long Short-Term Memory” Recurrent

Neural Network

459

Table 13.1 The Top 10 Algorithms in Data Mining, According to a

2006 Poll

504

Preface
The convergence of computing and communication has produced a society that

feeds on information. Yet most of the information is in its raw form: data. If data

is characterized as recorded facts, then information is the set of patterns, or expec-

tations, that underlie the data. There is a huge amount of information locked up in

databases—information that is potentially important but has not yet been discov-

ered or articulated. Our mission is to bring it forth.

Data mining is the extraction of implicit, previously unknown, and potentially

useful information from data. The idea is to build computer programs that sift

through databases automatically, seeking regularities or patterns. Strong patterns,

if found, will likely generalize to make accurate predictions on future data. Of

course, there will be problems. Many patterns will be banal and uninteresting.

Others will be spurious, contingent on accidental coincidences in the particular

dataset used. And real data is imperfect: some parts will be garbled, some miss-

ing. Anything that is discovered will be inexact: there will be exceptions to every

rule and cases not covered by any rule. Algorithms need to be robust enough to

cope with imperfect data and to extract regularities that are inexact but useful.

Machine learning provides the technical basis of data mining. It is used to

extract information from the raw data in databases—information i.e., ideally,

expressed in a comprehensible form and can be used for a variety of purposes.

The process is one of abstraction: taking the data, warts and all, and inferring

whatever structure underlies it. This book is about the tools and techniques of

machine learning that are used in practical data mining for finding, and if possible

describing, structural patterns in data.

As with any burgeoning new technology that enjoys intense commercial atten-

tion, the use of machine learning is surrounded by a great deal of hype in the

technical—and sometimes the popular—press. Exaggerated reports appear of the

secrets that can be uncovered by setting learning algorithms loose on oceans of

data. But there is no magic in machine learning, no hidden power, no alchemy.

Instead there is an identifiable body of simple and practical techniques that can

often extract useful information from raw data. This book describes these techni-

ques and shows how they work.

In many applications machine learning enables the acquisition of structural

descriptions from examples. The kind of descriptions that are found can be used

for prediction, explanation, and understanding. Some data mining applications

focus on prediction: forecasting what will happen in new situations from data that

describe what happened in the past, often by guessing the classification of new

examples. But we are equally—perhaps more—interested in applications where

the result of “learning” is an actual description of a structure that can be used to

classify examples. This structural description supports explanation and under-

standing as well as prediction. In our experience, insights gained by the user are

of most interest in the majority of practical data mining applications; indeed, this

is one of machine learning’s major advantages over classical statistical modeling.

The book explains a wide variety of machine learning methods. Some are ped-

agogically motivated: simple schemes that are designed to explain clearly how

the basic ideas work. Others are practical: real systems that are used in applica-

tions today. Many are contemporary and have been developed only in the last

few years.

A comprehensive software resource has been created to illustrate the ideas in

the book. Called the Waikato Environment for Knowledge Analysis, or WEKA1

for short, it is available as Java source code at www.cs.waikato.ac.nz/ml/weka.

It is a full, industrial-strength implementation of most of the techniques that are

covered in this book. It includes illustrative code and working implementations of

machine learning methods. It offers clean, spare implementations of the simplest

techniques, designed to aid understanding of the mechanisms involved. It also

provides a workbench that includes full, working, state-of-the-art implementations

of many popular learning schemes that can be used for practical data mining or

for research. Finally, it contains a framework, in the form of a Java class library,

that supports applications that use embedded machine learning and even the

implementation of new learning schemes.

The objective of this book is to introduce the tools and techniques for machine

learning that are used in data mining. After reading it, you will understand

what these techniques are and appreciate their strengths and applicability. If you

wish to experiment with your own data, you will be able to do this easily with

the WEKA software. But WEKA is by no means the only choice. For example,

the freely available statistical computing environment R includes many machine

learning algorithms. Devotees of the Python programming language might look

at a popular library called scikit-learn. Modern “big data” frameworks for distrib-

uted computing, such as Apache Spark, include support for machine learning.

There is a plethora of options for deploying machine learning in practice.

This book discusses fundamental learning algorithms without delving into

software-specific implementation details. When appropriate, we point out where

the algorithms we discuss can be found in the WEKA software. We also briefly

introduce other machine learning software for so-called “deep learning” from

high-dimensional data. However, most software-specific information is relegated

to appendices.

The book spans the gulf between the intensely practical approach taken by

trade books that provide case studies on data mining and the more theoretical,

principle-driven exposition found in current textbooks on machine learning.

(A brief description of these books appears in the Further reading section at the

end of chapter: What’s it all about?) This gulf is rather wide. To apply machine

learning techniques productively, you need to understand something about how

1Found only on the islands of New Zealand, the weka (pronounced to rhyme with “Mecca”) is a

flightless bird with an inquisitive nature.

http://www.cs.waikato.ac.nz/ml/weka

they work; this is not a technology that you can apply blindly and expect to get

good results. Different problems yield to different techniques, but it is rarely obvi-

ous which techniques are suitable for a given situation: you need to know some-

thing about the range of possible solutions. And we cover an extremely wide

range of techniques. We can do this because, unlike many trade books, this vol-

ume does not promote any particular commercial software or approach. We

include a large number of examples, but they use illustrative datasets that are

small enough to allow you to follow what is going on. Real datasets are far too

large to show this (and in any case are usually company confidential). Our data-

sets are chosen not to illustrate actual large-scale practical problems, but to help

you understand what the different techniques do, how they work, and what their

range of application is.

The book is aimed at the technically aware general reader who is interested in

the principles and ideas underlying the current practice of machine learning.

It will also be of interest to information professionals who need to become

acquainted with this new technology, and to all those who wish to gain a detailed

technical understanding of what machine learning involves. It is written for an

eclectic audience of information systems practitioners, programmers, consultants,

developers, data scientists, information technology managers, specification wri-

ters, patent examiners, curious lay people—as well as students and professors—

who need an easy-to-read book with lots of illustrations that describes what

the major machine learning techniques are, what they do, how they are used, and

how they work. It is practically oriented, with a strong “how to” flavor, and

includes algorithms, and often pseudo-code. All those involved in practical data

mining will benefit directly from the techniques described. The book is aimed at

people who want to cut through to the reality that underlies the hype about

machine learning and who seek a practical, nonacademic, unpretentious approach.

In most of the book we have avoided requiring any specific theoretical or mathe-

matical knowledge. However, recognizing the growing complexity of the subject

as it matures, we have included substantial theoretical material in Chapter 9,

Probabilistic methods, and Chapter 10, Deep learning, because this is necessary

for a full appreciation of recent practical techniques, in particular deep learning.

The book is organized in layers that make the ideas accessible to readers who

are interested in grasping the basics, as well as to those who would like more

depth of treatment, along with full details on the techniques covered. We believe

that consumers of machine learning need to have some idea of how the algorithms

they use work. It is often observed that data models are only as good as the

person who interprets them, and that person needs to know something about

how the models are produced to appreciate the strengths, and limitations, of the

technology. However, it is not necessary for all users to have a deep understand-

ing of the finer details of the algorithms.

We address this situation by describing machine learning methods at succes-

sive levels of detail. The book is divided into two parts. Part I is an introduction

to machine learning for data mining. The reader will learn the basic ideas, the

topmost level, by reading the first three chapters. Chapter 1, What’s it all about?,

describes, through examples, what machine learning is, where it can be used; it

also provides actual practical applications. Chapter 2, Input: concepts, instances,

attributes, and Chapter 3, Output: knowledge representation, cover the different

kinds of input and output—or knowledge representation—that are involved.

Different kinds of output dictate different styles of algorithm, and Chapter 4,

Algorithms: the basic methods, describes the basic methods of machine learning,

simplified to make them easy to comprehend. Here the principles involved are

conveyed in a variety of algorithms without getting involved in intricate details or

tricky implementation issues. To make progress in the application of machine

learning techniques to particular data mining problems, it is essential to be able to

measure how well you are doing. Chapter 5, Credibility: evaluating what’s been

learned, which can be read out of sequence, equips the reader to evaluate the

results that are obtained from machine learning, addressing the sometimes com-

plex issues involved in performance evaluation.

Part II introduces advanced techniques of machine learning for data mining.

At the lowest and most detailed level, Chapter 6, Trees and rules, and Chapter 7,

Extending instance-based and linear models, expose in naked detail the nitty-

gritty issues of implementing a spectrum of machine learning algorithms,

including the complexities that are necessary for them to work well in practice

(but omitting the heavy mathematical machinery that is required for a few of the

algorithms). Although many readers may want to ignore such detailed informa-

tion, it is at this level that full working implementations of machine learning

schemes are written. Chapter 8, Data transformations, describes practical topics

involved with engineering the input and output to machine learning—e.g., select-

ing and discretizing attributes. Chapter 9, Probabilistic methods, and Chapter 10,

Deep learning, provide a rigorous account of probabilistic methods for machine

learning and deep learning respectively. Chapter 11, Beyond supervised and unsu-

pervised learning, looks at semisupervised and multi-instance learning, while

Chapter 12, Ensemble learning, covers techniques of “ensemble learning,” which

combine the output from different learning techniques. Chapter 13, Moving on:

applications and beyond, looks to the future.

The book describes most methods used in practical machine learning.

However, it does not cover reinforcement learning because it is rarely applied in

practical data mining; nor genetic algorithm approaches because these are really

just optimization techniques that are not specific to machine learning; nor rela-

tional learning and inductive logic programming because they are not very com-

monly used in mainstream data mining applications.

An Appendix covers some mathematical background needed to follow the

material in Chapter 9, Probabilistic methods, and Chapter 10, Deep learning.

Another Appendix introduces the WEKA data mining workbench, which provides

implementations of most of the ideas described in Parts I and II. We have done

this in order to clearly separate conceptual material from the practical aspects of

how to use it. At the end of each chapter in Parts I and II are pointers to related

WEKA algorithms. You can ignore these, or look at them as you go along, or

skip directly to the WEKA material if you are in a hurry to get on with analyzing

your data and don’t want to be bothered with the technical details of how the

algorithms work.

UPDATED AND REVISED CONTENT
We finished writing the first edition of this book in 1999, the second and third in

2005 and 2011 respectively, and now, in May 2016, are just polishing this fourth

edition. How things have changed over the past couple of decades! While the

basic core of material remains the same, we have made the most of opportunities

to update it and add new material, and as a result the book has doubled in size to

reflect the changes that have taken place. Of course, there have also been errors

to fix, errors that we had accumulated in our publicly available errata file (avail-

able through the book’s home page at http://www.cs.waikato.ac.nz/ml/weka/book.

html).

SECOND EDITION

The major change in the second edition of the book was a separate part at the end

of the book that included all the material on the WEKA machine learning work-

bench. This allowed the main part of the book to stand alone, independent of the

workbench. At that time WEKA, a widely used and popular feature of the first

edition, had just acquired a radical new look in the form of an interactive graphi-

cal user interface—or rather, three separate interactive interfaces—which made it

far easier to use. The primary one is the “Explorer,” which gives access to all of

WEKA’s facilities using menu selection and form filling. The others are the

Knowledge Flow interface, which allows you to design configurations for

streamed data processing, and the Experimenter, with which you set up automated

experiments that run selected machine learning algorithms with different parame-

ter settings on a corpus of datasets, collect performance statistics, and perform

significance tests on the results. These interfaces lower the bar for becoming a

practitioner of machine learning, and the second edition included a full descrip-

tion of how to use them.

It also contained much new material that we briefly mention here. We

extended the sections on rule learning and cost-sensitive evaluation. Bowing to

popular demand, we added information on neural networks: the perceptron and

the closely related Winnow algorithm; the multilayer perceptron and backpropa-

gation algorithm. Logistic regression was also included. We described how to

implement nonlinear decision boundaries using both the kernel perceptron and

http://www.cs.waikato.ac.nz/ml/weka/book.html
http://www.cs.waikato.ac.nz/ml/weka/book.html

radial basis function networks, and also included support vector machines for

regression. We incorporated a new section on Bayesian networks, again in

response to readers’ requests and WEKA’s new capabilities in this regard, with a

description of how to learn classifiers based on these networks, and how to imple-

ment them efficiently using AD trees.

The previous 5 years (1999�2004) had seen great interest in data mining for

text, and this was reflected in the introduction of string attributes in WEKA, mul-

tinomial Bayes for document classification, and text transformations. We also

described efficient data structures for searching the instance space: kD-trees and

ball trees for finding nearest neighbors efficiently, and for accelerating distance-

based clustering. We described new attribute selection schemes such as race

search and the use of support vector machines; new methods for combining mod-

els such as additive regression, additive logistic regression, logistic model trees,

and option trees. We also covered recent developments in using unlabeled data to

improve classification, including the cotraining and co-EM methods.

THIRD EDITION

For the third edition, we thoroughly edited the second edition and brought it up to

date, including a great many new methods and algorithms. WEKA and the book

were closely linked together—pretty well everything in WEKA was covered in

the book. We also included far more references to the literature, practically tri-

pling the number of references that were in the first edition.

As well as becoming far easier to use, WEKA had grown beyond recognition

over the previous decade, and matured enormously in its data mining capabilities.

It incorporates an unparalleled range of machine learning algorithms and related

techniques. The growth has been partly stimulated by recent developments in the

field, and is partly user-led and demand-driven. This puts us in a position where

we know a lot about what actual users of data mining want, and we have capital-

ized on this experience when deciding what to include in this book.

Here are a few of the highlights of the material that was added in the third edi-

tion. A section on web mining was included, and, under ethics, a discussion of

how individuals can often be “reidentified” from supposedly anonymized data.

Other additions included techniques for multi-instance learning, new material on

interactive cost-benefit analysis, cost-complexity pruning, advanced association

rule algorithms that use extended prefix trees to store a compressed version of the

dataset in main memory, kernel ridge regression, stochastic gradient descent, and

hierarchical clustering methods. We added new data transformations: partial least

squares regression, reservoir sampling, one-class learning, decomposing multi-

class classification problems into ensembles of nested dichotomies, and calibrat-

ing class probabilities. We added new information on ensemble learning

techniques: randomization vs. bagging, and rotation forests. New sections on data

stream learning and web mining were added as well.

FOURTH EDITION

One of the main drivers behind this fourth edition was a desire to add comprehen-

sive material on the topic of deep learning, a new development that is essentially

enabled by the emergence of truly vast data resources in domains like image and

speech processing, and the availability of truly vast computational resources,

including server farms and graphics processing units. However, deep learning

techniques are heavily based on a potent mix of theory and practice. And we had

also received other requests asking us to include more, and more rigorous, theo-

retical material.

This forced us to rethink the role of theory in the book. We bit the bullet and

added two new theoretically oriented chapters. Chapter 10, Deep learning, covers

deep learning itself, and its predecessor, Chapter 9, Probabilistic methods, gives a

principled theoretical development of probabilistic methods that is necessary to

understand a host of other new algorithms. We recognize that many of our readers

will not want to stomach all this theory, and we assure them that the remainder of

the book has intentionally been left at a far simpler mathematical level. But this

additional theoretical base puts some key material in the hands of readers who

aspire to understand rapidly advancing techniques from the research world.

Developments in WEKA have proceeded apace. It now provides ways of

reaching out and incorporating other languages and systems, such as the popular

R statistical computing language, the Spark and Hadoop frameworks for distrib-

uted computing, the Python and Groovy languages for scripting, and the MOA

system for stream-oriented learning—to name but a few. Recognizing that it is

not possible, and perhaps not desirable, to document such a comprehensive and

fast-evolving system in a printed book, we have created a series of open online

courses, Data Mining with Weka, More Data Mining with Weka, and Advanced

Data Mining with Weka, to accompany the book (at https://weka.waikato.ac.nz).

The fourth edition contains numerous other updates and additions, and far

more references to the literature. But enough of this: dive in and see for yourself.

https://weka.waikato.ac.nz

I
Introduction to
data mining

1What’s it all about?

CHAPTER OUTLINE

1.1 Data Mining and Machine Learning ...4

Describing Structural Patterns ...6

Machine Learning...7

Data Mining ...9

1.2 Simple Examples: The Weather Problem and Others ...9

The Weather Problem..10

Contact Lenses: An Idealized Problem..12

Irises: A Classic Numeric Dataset ..14

CPU Performance: Introducing Numeric Prediction16

Labor Negotiations: A More Realistic Example ..16

Soybean Classification: A Classic Machine Learning Success19

1.3 Fielded Applications...21

Web Mining ...21

Decisions Involving Judgment..22

Screening Images...23

Load Forecasting ..24

Diagnosis...25

Marketing and Sales ...26

Other Applications..27

1.4 The Data Mining Process..28

1.5 Machine Learning and Statistics ...30

1.6 Generalization as Search..31

Enumerating the Concept Space ..32

Bias ..33

1.7 Data Mining and Ethics...35

Reidentification ...36

Using Personal Information ...37

Wider Issues ..38

1.8 Further Reading and Bibliographic Notes ...38

Human in vitro fertilization involves collecting several eggs from a woman’s

ovaries, which, after fertilization with partner or donor sperm, produce several

embryos. Some of these are selected and transferred to the woman’s uterus.

The problem is to select the “best” embryos to use—the ones that are most likely

to survive. Selection is based on around 60 recorded features of the embryos—

characterizing their morphology, oocyte, follicle, and sperm sample. The number

of features is sufficiently large that it is difficult for an embryologist to assess

them all simultaneously and correlate historical data with the crucial outcome

of whether that embryo did or did not result in a live child. In a research

project in England, machine learning has been investigated as a technique for

making the selection, using historical records of embryos and their outcome as

training data.

Every year, dairy farmers in New Zealand have to make a tough business

decision: which cows to retain in their herd and which to sell off to an abattoir.

Typically, one-fifth of the cows in a dairy herd are culled each year near the end

of the milking season as feed reserves dwindle. Each cow’s breeding and milk

production history influences this decision. Other factors include age (a cow is

nearing the end of its productive life at 8 years), health problems, history of

difficult calving, undesirable temperament traits (kicking or jumping fences),

and not being in calf for the following season. About 700 attributes for each of

several million cows have been recorded over the years. Machine learning has

been investigated as a way of ascertaining what factors are taken into account

by successful farmers—not to automate the decision but to propagate their skills

and experience to others.

Life and death. From Europe to the antipodes. Family and business.

Machine learning is a burgeoning new technology for mining knowledge from

data, a technology that a lot of people are starting to take seriously.

1.1 DATA MINING AND MACHINE LEARNING
We are overwhelmed with data. The amount of data in the world, in our lives,

seems ever-increasing—and there’s no end in sight. Omnipresent computers make

it too easy to save things that previously we would have trashed. Inexpensive

disks and online storage make it too easy to postpone decisions about what to do

with all this stuff—we simply get more memory and keep it all. Ubiquitous elec-

tronics record our decisions, our choices in the supermarket, our financial habits,

our comings and goings. We swipe our way through the world, every swipe a

record in a database. The World Wide Web overwhelms us with information;

meanwhile, every choice we make is recorded. And all these are just personal

choices: they have countless counterparts in the world of commerce and industry.

We would all testify to the growing gap between the generation of data and

4 CHAPTER 1 What’s it all about?

the benefit we get from it. Large corporations have seized the opportunity, but the

tools needed to unlock this potential—the tools we describe in this book—are

available to everyone. Lying hidden in all this data is information, potentially

useful information, that we rarely make explicit or take advantage of.

This book is about looking for patterns in data. There is nothing new about

this. People have been seeking patterns in data ever since human life began.

Hunters seek patterns in animal migration behavior, farmers seek patterns in crop

growth, politicians seek patterns in voter opinion, and lovers seek patterns in their

partners’ responses. A scientist’s job (like a baby’s) is to make sense of data, to

discover the patterns that govern how the physical world works, and encapsulate

them in theories that can be used for predicting what will happen in new situa-

tions. The entrepreneur’s job is to identify opportunities, that is, patterns in

behavior that can be turned into a profitable business, and exploit them.

In data mining, the data is stored electronically and the search is automated—or

at least augmented—by computer. Even this is not particularly new. Economists,

statisticians, forecasters, and communication engineers have long worked with

the idea that patterns in data can be sought automatically, identified, validated,

and used for prediction. What is new is the staggering increase in opportunities

for finding patterns in data. The unbridled growth of databases in recent years,

databases on such everyday activities as customer choices, brings data mining to

the forefront of new business technologies. It has been estimated that the

amount of data stored in the world’s databases doubles every 20 months, and

although it would surely be difficult to justify this figure in any quantitative

sense, we can all relate to the pace of growth qualitatively. As the flood of data

swells and machines that can undertake the searching become commonplace,

the opportunities for data mining increase. As the world grows in complexity,

overwhelming us with the data it generates, data mining becomes our only

hope for elucidating hidden patterns. Intelligently analyzed data is a valuable

resource. It can lead to new insights, better decision making, and, in commercial

settings, competitive advantages.

Data mining is about solving problems by analyzing data already present

in databases. Suppose, to take a well-worn example, the problem is fickle

customer loyalty in a highly competitive marketplace. A database of customer

choices, along with customer profiles, holds the key to this problem. Patterns of

behavior of former customers can be analyzed to identify distinguishing charac-

teristics of those likely to switch products and those likely to remain loyal.

Once such characteristics are found, they can be put to work to identify present

customers who are likely to jump ship. This group can be targeted for special

treatment, treatment too costly to apply to the customer base as a whole. More

positively, the same techniques can be used to identify customers who might be

attracted to another service the enterprise provides, one they are not presently

enjoying, to target them for special offers that promote this service. In today’s

highly competitive, customer-centered, service-oriented economy, data is the raw

material that fuels business growth.

51.1 Data Mining and Machine Learning

Data mining is defined as the process of discovering patterns in data.

The process must be automatic or (more usually) semiautomatic. The patterns

discovered must be meaningful in that they lead to some advantage—e.g., an

economic advantage. The data is invariably present in substantial quantities.

And how are the patterns expressed? Useful patterns allow us to make nontrivial

predictions on new data. There are two extremes for the expression of a pattern:

as a black box whose innards are effectively incomprehensible and as a transparent

box whose construction reveals the structure of the pattern. Both, we are assum-

ing, make good predictions. The difference is whether or not the patterns that

are mined are represented in terms of a structure that can be examined, reasoned

about, and used to inform future decisions. Such patterns we call structural

because they capture the decision structure in an explicit way. In other words,

they help to explain something about the data.

Most of this book is about techniques for finding and describing structural

patterns in data, but there are applications where black-box methods are more

appropriate because they yield greater predictive accuracy, and we also cover

those. Many of the techniques that we cover have developed within a field known

as machine learning.

DESCRIBING STRUCTURAL PATTERNS

What is meant by structural patterns? How do you describe them? And what

form does the input take? We will answer these questions by way of illustration

rather than by attempting formal, and ultimately sterile, definitions. There will be

plenty of examples later in this chapter, but let’s examine one right now to get a

feeling for what we’re talking about.

Look at the contact lens data in Table 1.1. This gives the conditions under

which an optician might want to prescribe soft contact lenses, hard contact lenses,

or no contact lenses at all; we will say more about what the individual features

mean later. Each line of the table is one of the examples. Part of a structural

description of this information might be as follows:

If tear production rate5reduced then recommendation5none
Otherwise, if age5young and astigmatic5no then recommendation5soft

Structural descriptions need not necessarily be couched as rules such as

these. Decision trees, which specify the sequences of decisions that need to

be made along with the resulting recommendation, are another popular means

of expression.

This example is a very simplistic one. For a start, all combinations of possible

values are represented in the table. There are 24 rows, representing 3 possible values

of age and 2 values each for spectacle prescription, astigmatism, and tear production

rate (33 23 23 25 24). The rules do not really generalize from the data; they

merely summarize it. In most learning situations, the set of examples given as input

is far from complete, and part of the job is to generalize to other, new examples.

6 CHAPTER 1 What’s it all about?

You can imagine omitting some of the rows in the table for which tear production

rate is reduced and still coming up with the rule.

If tear production rate5reduced then recommendation5none

which would generalize to the missing rows and fill them in correctly. Second, values

are specified for all the features in all the examples. Real-life datasets often contain

examples in which the values of some features, for some reason or other, are

unknown—e.g., measurements were not taken or were lost. Third, the preceding rules

classify the examples correctly, whereas often, because of errors or noise in the data,

misclassifications occur even on the data that is used to create the classifier.

MACHINE LEARNING

Now that we have some idea of the inputs and outputs, let’s turn to machine

learning. What is learning, anyway? What is machine learning? These are

philosophical questions, and we will not be much concerned with philosophy in

Table 1.1 The Contact Lens Data

Age
Spectacle
Prescription Astigmatism

Tear Production
Rate

Recommended
Lenses

Young Myope No Reduced None
Young Myope No Normal Soft
Young Myope Yes Reduced None
Young Myope Yes Normal Hard
Young Hypermetrope No Reduced None
Young Hypermetrope No Normal Soft
Young Hypermetrope Yes Reduced None
Young Hypermetrope Yes Normal Hard
Prepresbyopic Myope No Reduced None
Prepresbyopic Myope No Normal Soft
Prepresbyopic Myope Yes Reduced None
Prepresbyopic Myope Yes Normal Hard
Prepresbyopic Hypermetrope No Reduced None
Prepresbyopic Hypermetrope No Normal Soft
Prepresbyopic Hypermetrope Yes Reduced None
Prepresbyopic Hypermetrope Yes Normal None
Presbyopic Myope No Reduced None
Presbyopic Myope No Normal None
Presbyopic Myope Yes Reduced None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope No Reduced None
Presbyopic Hypermetrope No Normal Soft
Presbyopic Hypermetrope Yes Reduced None
Presbyopic Hypermetrope Yes Normal None

71.1 Data Mining and Machine Learning

this book; our emphasis is firmly on the practical. However, it is worth spending

a few moments at the outset on fundamental issues, just to see how tricky they

are, before rolling up our sleeves and looking at machine learning in practice.

Our dictionary defines “to learn” as

to get knowledge of by study, experience, or being taught;

to become aware by information or from observation;

to commit to memory;

to be informed of, ascertain;

to receive instruction.

These meanings have some shortcomings when it comes to talking about

computers. For the first two, it is virtually impossible to test whether learning has

been achieved or not. How do you know whether a machine has “got knowledge

of” something? You probably can’t just ask it questions; even if you could,

you wouldn’t be testing its ability to learn but its ability to answer questions.

How do you know whether it has “become aware” of something? The whole ques-

tion of whether computers can be aware, or conscious, is a burning philosophical

issue. As for the last three meanings, although we can see what they denote in

human terms, merely “committing to memory” and “receiving instruction” seem to

fall far short of what we might mean by machine learning. They are too passive,

and we know that computers find these tasks trivial. Instead, we are interested in

improvements in performance, or at least in the potential for performance, in new

situations. You can “commit something to memory” or “be informed of something”

by rote learning without being able to apply the new knowledge to new situations.

You can receive instruction without benefiting from it at all.

Earlier we defined data mining operationally, as the process of discovering

patterns, automatically or semiautomatically, in large quantities of data—and the

patterns must be useful. An operational definition can be formulated in the same

way for learning. How about things learnt when they change their behavior in a

way that makes them perform better in the future.

This ties learning to performance rather than knowledge. You can test learning

by observing the behavior and comparing it with past behavior. This is a much

more objective kind of definition and appears to be far more satisfactory.

But still there’s a problem. Learning is a rather slippery concept. Lots of

things change their behavior in ways that make them perform better in the future,

yet we wouldn’t want to say that they have actually learned. A good example is

a comfortable slipper. Has it learned the shape of your foot? It has certainly

changed its behavior to make it perform better as a slipper! Yet we would hardly

want to call this learning. In everyday language, we often use the word “training”

to denote a mindless kind of learning. We train animals and even plants, although

it would be stretching the word a bit to talk of training objects such as slippers

that are not in any sense alive. But learning is different. Learning implies think-

ing. Learning implies purpose. Something that learns has to do so intentionally.

That is why we wouldn’t say that a vine has learned to grow round a trellis in

a vineyard—we’d say it has been trained. Learning without purpose is merely

8 CHAPTER 1 What’s it all about?

training. Or, more to the point, in learning the purpose is the learner’s, whereas in

training it is the teacher’s.

Thus on closer examination the second definition of learning, in operational,

performance-oriented terms, has its own problems when it comes to talking about

computers. To decide whether something has actually learned, you need to see

whether it intended to, whether there was any purpose involved. That makes

the concept moot when applied to machines because whether artifacts can behave

purposefully is unclear. Philosophical discussions of what is really meant by

“learning,” like discussions of what is really meant by “intention” or “purpose,” are

fraught with difficulty. Even courts of law find intention hard to grapple with.

DATA MINING

Fortunately the kind of learning techniques explained in this book do not present

these conceptual problems—they are called “machine learning” without really

presupposing any particular philosophical stance about what learning actually is.

Data mining is a practical topic and involves learning in a practical, not a theoret-

ical, sense. We are interested in techniques for finding patterns in data, patterns

that provide insight or enable fast and accurate decision making. The data will

take the form of a set of examples—examples of customers who have switched

loyalties, for instance, or situations in which certain kinds of contact lenses can

be prescribed. The output takes the form of predictions on new examples—a

prediction of whether a particular customer will switch or a prediction of what

kind of lens will be prescribed under given circumstances.

Many learning techniques look for structural descriptions of what is learned,

descriptions that can become fairly complex and are typically expressed as sets of

rules such as the ones described previously or the decision trees described later in this

chapter. Because they can be understood by people, these descriptions serve to explain

what has been learned, in other words, to explain the basis for new predictions.

Experience shows that in many applications of machine learning to data mining, the

explicit knowledge structures that are acquired, the structural descriptions, are at least

as important as the ability to perform well on new examples. People frequently

use data mining to gain knowledge, not just predictions. Gaining knowledge from

data certainly sounds like a good idea if you can do it. To find out how, read on!

1.2 SIMPLE EXAMPLES: THE WEATHER PROBLEM
AND OTHERS

We will be using a lot of examples in this book, which seems particularly appro-

priate considering that the book is all about learning from examples! There are

several standard datasets that we will come back to repeatedly. Different datasets

tend to expose new issues and challenges, and it is interesting and instructive to

have in mind a variety of problems when considering learning methods. In fact,

91.2 Simple Examples: The Weather Problem and Others

the need to work with different datasets is so important that a corpus containing

more than 100 example problems has been gathered together so that different

algorithms can be tested and compared on the same set of problems.

The illustrations in this section are all unrealistically simple. Serious applica-

tion of machine learning involve thousands, hundreds of thousands, or even

millions of individual cases. But when explaining what algorithms do and how

they work, we need simple examples that enable us to capture the essence of

the problem yet small enough to be comprehensible in every detail. We will be

working with the illustrations in this section throughout the book, and they are

intended to be “academic” in the sense that they will help us to understand what

is going on. Some actual fielded applications of learning techniques are discussed

in Section 1.3, and many more are covered in the books mentioned in the Further

Reading section at the end of the chapter.

Another problem with actual real-life datasets is that they are often proprietary.

No one is going to share their customer and product choice database with you so that

you can understand the details of their data mining application and how it works.

Corporate data is a valuable asset, one whose value has increased enormously with

the development of machine learning techniques such as those described in this

book. Yet we are concerned here with understanding how these methods work,

understanding their details so that we can trace their operation on actual data. That is

why our illustrations are simple ones. But they are not simplistic: they exhibit the

features of real datasets.

THE WEATHER PROBLEM

The weather problem is a tiny dataset that we will use repeatedly to illustrate

machine learning methods. Entirely fictitious, it supposedly concerns the condi-

tions that are suitable for playing some unspecified game. In general, examples in

a dataset are characterized by the values of features, or attributes, that measure

different aspects of the example. In this case there are four attributes: outlook,

temperature, humidity, and windy. The outcome is whether to play or not.

In its simplest form, shown in Table 1.2, all four attributes have values that

are symbolic categories rather than numbers. Outlook can be sunny, overcast,

or rainy; temperature can be hot, mild, or cool; humidity can be high or normal;

and windy can be true or false. This creates 36 possible combinations

(33 33 23 25 36), of which 14 are present in the set of input examples.

A set of rules learned from this information—not necessarily a very good

one—might look like this:

If outlook5sunny and humidity5high then play5no
If outlook5rainy and windy5true then play5no
If outlook5overcast then play5yes
If humidity5normal then play5yes
If none of the above then play5yes

10 CHAPTER 1 What’s it all about?

These rules are meant to be interpreted in order: the first one; then, if it

doesn’t apply, the second; and so on. A set of rules that are intended to be

interpreted in sequence is called a decision list. Interpreted as a decision list,

the rules correctly classify all of the examples in the table, whereas taken indi-

vidually, out of context, some of the rules are incorrect. For example, the rule

if humidity5 normal then play5 yes gets one of the examples wrong (check

which one). The meaning of a set of rules depends on how it is interpreted—

not surprisingly!

n the slightly more complex form shown in Table 1.3, two of the attri-

butes—temperature and humidity—have numeric values. This means that any

learning scheme must create inequalities involving these attributes, rather than

simple equality tests as in the former case. This is called a numeric-attribute

problem—in this case, a mixed-attribute problem because not all attributes are

numeric.

Now the first rule given earlier might take the form:

If outlook5sunny and humidity . 83 then play5no

A slightly more complex process is required to come up with rules that

involve numeric tests.

The rules we have seen so far are classification rules: they predict the

classification of the example in terms of whether to play or not. It is equally

possible to disregard the classification and just look for any rules that stron-

gly associate different attribute values. These are called association rules. Many

Table 1.2 The Weather Data

Outlook Temperature Humidity Windy Play

Sunny Hot High False No
Sunny Hot High True No
Overcast Hot High False Yes
Rainy Mild High False Yes
Rainy Cool Normal False Yes
Rainy Cool Normal True No
Overcast Cool Normal True Yes
Sunny Mild High False No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes
Overcast Mild High True Yes
Overcast Hot Normal False Yes
Rainy Mild High True No

111.2 Simple Examples: The Weather Problem and Others

association rules can be derived from the weather data in Table 1.2. Some good

ones are:

If temperature5cool then humidity5normal
If humidity5normal and windy5false then play5yes
If outlook5sunny and play5no then humidity5high
If windy5false and play5no then outlook5sunny

and humidity5high.

All these rules are 100% correct on the given data: they make no false

predictions. The first two apply to four examples in the dataset, the next to three

examples, and the fourth to two examples. And there are many other rules: in

fact, nearly 60 association rules can be found that apply to two or more examples

of the weather data and are completely correct on this data. And if you look for

rules that are less than 100% correct, then you will find many more. There are so

many because unlike classification rules, association rules can “predict” any of

the attributes, not just a specified class, and can even predict more than one thing.

For example, the fourth rule predicts both that outlook will be sunny and that

humidity will be high.

CONTACT LENSES: AN IDEALIZED PROBLEM

The contact lens data introduced earlier tells you the kind of contact lens to

prescribe, given certain information about a patient. Note that this example is

intended for illustration only: it grossly oversimplifies the problem and should

certainly not be used for diagnostic purposes!

Table 1.3 Weather Data With Some Numeric Attributes

Outlook Temperature Humidity Windy Play

Sunny 85 85 False No
Sunny 80 90 True No
Overcast 83 86 False Yes
Rainy 70 96 False Yes
Rainy 68 80 False Yes
Rainy 65 70 True No
Overcast 64 65 True Yes
Sunny 72 95 False No
Sunny 69 70 False Yes
Rainy 75 80 False Yes
Sunny 75 70 True Yes
Overcast 72 90 True Yes
Overcast 81 75 False Yes
Rainy 71 91 True No

12 CHAPTER 1 What’s it all about?

The first column of Table 1.1 gives the age of the patient. In case you’re

wondering, presbyopia is a form of long-sightedness that accompanies the onset

of middle age. The second gives the spectacle prescription: myope means short-

sighted and hypermetrope means longsighted. The third shows whether the

patient is astigmatic, while the fourth relates to the rate of tear production,

which is important in this context because tears lubricate contact lenses. The

final column shows which kind of lenses to prescribe, whether hard, soft, or

none. All possible combinations of the attribute values are represented in

Table 1.1.

A sample set of rules learned from this information is shown in Fig. 1.1.

This is a rather large set of rules, but they do correctly classify all the examples.

These rules are complete and deterministic: they give a unique prescription for

every conceivable example. Generally this is not the case. Sometimes there are

situations in which no rule applies; other times more than one rule may apply,

resulting in conflicting recommendations. Sometimes probabilities or weights

may be associated with the rules themselves to indicate that some are more

important, or more reliable, than others.

You might be wondering whether there is a smaller rule set that performs as

well. If so, would you be better off using the smaller rule set, and, if so, why?

These are exactly the kinds of questions that will occupy us in this book.

Because the examples form a complete set for the problem space, the rules do

no more than summarize all the information that is given, expressing it in a

different and more concise way. Even though it involves no generalization, this

is often a very useful thing to do! People frequently use machine learning

techniques to gain insight into the structure of their data rather than to make

predictions for new cases. In fact, a prominent and successful line of research

in machine learning began as an attempt to compress a huge database of possi-

ble chess endgames and their outcomes into a data structure of reasonable size.

If tear production rate = reduced then recommendation = none.
If age = young and astigmatic = no and tear production rate = normal

then recommendation = soft
If age = pre-presbyopic and astigmatic = no and tear production

rate = normal then recommendation = soft
If age = presbyopic and spectacle prescription = myope and

astigmatic = no then recommendation = none
If spectacle prescription = hypermetrope and astigmatic = no and

tear production rate = normal then recommendation = soft
If spectacle prescription = myope and astigmatic = yes and

tear production rate = normal then recommendation = hard
If age = young and astigmatic = yes and tear production rate = normal

then recommendation = hard
If age = pre-presbyopic and spectacle prescription = hypermetrope

and astigmatic = yes then recommendation = none
If age = presbyopic and spectacle prescription = hypermetrope

and astigmatic = yes then recommendation = none

FIGURE 1.1

Rules for the contact lens data.

131.2 Simple Examples: The Weather Problem and Others

The data structure chosen for this enterprise was not a set of rules but a deci-

sion tree.

Fig. 1.2 shows a structural description for the contact lens data in the form

of a decision tree, which for many purposes is a more concise and perspicuous

representation of the rules and has the advantage that it can be visualized more

easily. (However, this decision tree—in contrast to the rule set given in

Fig. 1.1—classifies two examples incorrectly.) The tree calls first for a test on

tear production rate, and the first two branches correspond to the two possible

outcomes. If tear production rate is reduced (the left branch), the outcome is

none. If it is normal (the right branch), a second test is made, this time on

astigmatism. Eventually, whatever the outcome of the tests, a leaf of the tree is

reached that dictates the contact lens recommendation for that case. The ques-

tion of what is the most natural and easily understood format for the output

from a machine learning scheme is one that we will return to in Chapter 3,

Output: knowledge representation.

IRISES: A CLASSIC NUMERIC DATASET

The iris dataset, which dates back to seminal work by the eminent statistician

R.A. Fisher in the mid-1930s and is arguably the most famous dataset used in

machine learning, contains 50 examples each of three types of plant: Iris setosa,

Iris versicolor, and Iris virginica. It is excerpted in Table 1.4. There are four

attributes: sepal length, sepal width, petal length, and petal width (all measured in

centimeters). Unlike previous datasets, all attributes have values that are numeric.

Tear production rate

None

Reduced

Astigmatism

Normal

Soft

No

Spectacle prescription

Yes

Hard

Myope

None

Hypermetrope

FIGURE 1.2

Decision tree for the contact lens data.

14 CHAPTER 1 What’s it all about?

The following set of rules might be learned from this dataset:

If petal-length , 2.45 then Iris-setosa
If sepal-width , 2.10 then Iris-versicolor
If sepal-width , 2.45 and petal-length , 4.55 then Iris-versicolor
If sepal-width , 2.95 and petal-width , 1.35 then Iris-versicolor
If petal-length $2.45 and petal-length , 4.45 then Iris-versicolor
If sepal-length $5.85 and petal-length , 4.75 then Iris-versicolor
If sepal-width , 2.55 and petal-length , 4.95 and petal-width , 1.55 then

Iris-versicolor
If petal-length $2.45 and petal-length,4.95 and petal-width,1.55 then

Iris-versicolor
If sepal-length $6.55 and petal-length , 5.05 then Iris-versicolor
If sepal-width , 2.75 and petal-width , 1.65 and sepal-length , 6.05

then Iris-versicolor
If sepal-length $5.85 and sepal-length , 5.95 and petal-length , 4.85

then Iris-versicolor
If petal-length $5.15 then Iris-virginica
If petal-width $1.85 then Iris-virginica
If petal-width $1.75 and sepal-width , 3.05 then Iris-virginica
If petal-length $4.95 and petal-width , 1.55 then Iris-virginica

These rules are very cumbersome, and we will see in Chapter 3, Output:

knowledge representation, how more compact rules can be expressed that convey

the same information.

Table 1.4 The Iris Data

Sepal Length Sepal Width Petal Length Petal Width Type

1 5.1 3.5 1.4 0.2 Iris setosa
2 4.9 3.0 1.4 0.2 I. setosa
3 4.7 3.2 1.3 0.2 I. setosa
4 4.6 3.1 1.5 0.2 I. setosa
5 5.0 3.6 1.4 0.2 I. setosa
. . .

51 7.0 3.2 4.7 1.4 Iris versicolor
52 6.4 3.2 4.5 1.5 I. versicolor
53 6.9 3.1 4.9 1.5 I. versicolor
54 5.5 2.3 4.0 1.3 I. versicolor
55 6.5 2.8 4.6 1.5 I. versicolor
. . .

101 6.3 3.3 6.0 2.5 Iris virginica
102 5.8 2.7 5.1 1.9 I. virginica
103 7.1 3.0 5.9 2.1 I. virginica
104 6.3 2.9 5.6 1.8 I. virginica
105 6.5 3.0 5.8 2.2 I. virginica
. . .

151.2 Simple Examples: The Weather Problem and Others

CPU PERFORMANCE: INTRODUCING NUMERIC PREDICTION

Although the iris dataset involves numeric attributes, the outcome—the type of

iris—is a category, not a numeric value. Table 1.5 shows some data for which both

the outcome and the attributes are numeric. It concerns the relative performance of

computer processing power on the basis of a number of relevant attributes: each

row represents 1 of 209 different computer configurations.

The classic way of dealing with continuous prediction is to write the outcome

as a linear sum of the attribute values with appropriate weights, e.g.,

PRP5 �55:91 0:0489 MYCT1 0:0153 MMIN1 0:0056 MMAX

1 0:6410 CACH� 0:2700 CHMIN1 1:480 CHMAX
:

(The abbreviated variable names are given in the second row of the table.) This

is called a linear regression equation, and the process of determining the weights is

called linear regression, a well-known procedure in statistics that we will review in

Chapter 4, Algorithms: the basic methods. The basic regression method is incapable

of discovering nonlinear relationships, but variants exist—we encounter them later

in this book. In Chapter 3, Output: knowledge representation, we will examine

other representations that can be used for predicting numeric quantities.

In the iris and central processing unit (CPU) performance data, all the attri-

butes have numeric values. Practical situations frequently present a mixture of

numeric and nonnumeric attributes.

LABOR NEGOTIATIONS: A MORE REALISTIC EXAMPLE

The labor negotiations dataset in Table 1.6 summarizes the outcome of

Canadian labor contract negotiations in 1987 and 1988. It includes all collective

Table 1.5 The CPU Performance Data

Cycle
Time (ns)

Main Memory
(Kb)

Cache
(KB) Channels

PerformanceMin Max Min Max

MYCT MMIN MMAX CACH CHMIN CHMAX PRP

1 125 256 6000 256 16 128 198
2 29 8000 32,000 32 8 32 269
3 29 8000 32,000 32 8 32 220
4 29 8000 32,000 32 8 32 172
5 29 8000 16,000 32 8 16 132
. . .

207 125 2000 8000 0 2 14 52
208 480 512 8000 32 0 0 67
209 480 1000 4000 0 0 0 45

16 CHAPTER 1 What’s it all about?

agreements reached in the business and personal services sector for organiza-

tions with at least 500 members (teachers, nurses, university staff, police, etc.).

Each case concerns one contract, and the outcome is whether the contract is

deemed acceptable or unacceptable. The acceptable contracts are ones in

which agreements were accepted by both labor and management. The unac-

ceptable ones are either known offers that fell through because one party

would not accept them or acceptable contracts that had been significantly per-

turbed to the extent that, in the view of experts, they would not have been

accepted.

There are 40 examples in the dataset (plus another 17 that are normally

reserved for test purposes). Unlike the other tables here, Table 1.6 presents the

examples as columns rather than as rows; otherwise, it would have to be stretched

over several pages. Many of the values are unknown or missing, as indicated by

question marks.

This is a much more realistic dataset than the others we have seen. It contains

many missing values, and it seems unlikely that an exact classification can be

obtained.

Fig. 1.3 shows two decision trees that represent the dataset. Fig. 1.3A is

simple and approximate: it doesn’t represent the data exactly. For example, it will

Table 1.6 The Labor Negotiations Data

Attribute Type 1 2 3 . . . 40

Duration (Number of years) 1 2 3 2
Wage increase 1st year Percentage 2% 4% 4.3% 4.5
Wage increase 2nd year Percentage ? 5% 4.4% 4.0
Wage increase 3rd year Percentage ? ? ? ?
Cost of living adjustment {None, tcf, tc} None Tcf ? None
Working hours per week (Number of hours) 28 35 38 40
Pension {None, ret-allw,

empl-cntr}
None ? ? ?

Standby pay Percentage ? 13% ? ?
Shift-work supplement Percentage ? 5% 4% 4
Education allowance {Yes, no} Yes ? ? ?
Statutory holidays (Number of days) 11 15 12 12
Vacation {Below-avg, avg, gen} Avg Gen Gen Avg
Long-term disability
assistance

{Yes, no} No ? ? Yes

Dental plan contribution {None, half, full} None ? Full Full
Bereavement assistance {Yes, no} No ? ? Yes
Health-plan contribution {None, half, full} None ? Full Half
Acceptability of contract {Good, bad} Bad Good Good Good

171.2 Simple Examples: The Weather Problem and Others

predict bad for some contracts that are actually marked good. But it does make

intuitive sense: a contract is bad (for the employee!) if the wage increase in the

first year is too small (less than 2.5%). If the first-year wage increase is larger

than this, it is good if there are lots of statutory holidays (more than 10 days).

Even if there are fewer statutory holidays, it is good if the first-year wage

increase is large enough (more than 4%).

Fig. 1.3B is a more complex decision tree that represents the same dataset.

Take a detailed look down the left branch. At first sight it doesn’t seem to make

sense intuitively that, if the working hours exceed 36, a contract is bad if there is

no health-plan contribution or a full health-plan contribution but is good if there

is a half health-plan contribution. It is certainly reasonable that the health-plan

contribution plays a role in the decision, but it seems anomalous that half is good

and both full and none are bad. However, on reflection this could make sense

after all, because “good” contracts are ones that have been accepted by both par-

ties: labor and management. Perhaps this structure reflects compromises that had

to be made to get agreement. This kind of detailed reasoning about what parts of

decision trees mean is a good way of getting to know your data and think about

the underlying problem.

In fact, Fig. 1.3B is a more accurate representation of the training dataset

than Fig. 1.3A. But it is not necessarily a more accurate representation of

the underlying concept of good versus bad contracts. Although it is more

accurate on the data that was used to train the classifier, it may perform less

well on an independent set of test data. It may be “overfitted” to the training

data—following it too slavishly. The tree in Fig. 1.3A is obtained from the one

in Fig. 1.3B by a process of pruning, which we will learn more about in

Chapter 6, Trees and rules.

Wage increase 1st year

Bad

≤2.5

Statutory holidays

>2.5

Good

>10

Wage increase 1st year

≤10

Bad

≤ 4

Good

>4

Wage increase 1st year

Bad

≤2.5

(A)

Statutory holidays

>2.5

Good

>10

Wage increase 1st year

≤10

Bad

≤ 4

Good

>4

Wage increase 1st year

Working hours per week

≤2.5

Statutory holidays

>2.5

Bad

≤36

Health plan contribution

>36

Good

>10

Wage increase 1st year

≤10

Bad

None

Good

Half

Bad

Full

Bad

≤=4

Good

>4

(B)

Wage increase 1st year

Working hours per week

≤2.5

Statutory holidays

>2.5

Bad

≤36

Health plan contribution

>36

Good

>10

Wage increase 1st year

≤10

Bad

None

Good

Half

Bad

Full

Bad

≤=4

Good

>4

FIGURE 1.3

Decision trees for the labor negotiations data.

18 CHAPTER 1 What’s it all about?

SOYBEAN CLASSIFICATION: A CLASSIC MACHINE
LEARNING SUCCESS

An often quoted early success story in the application of machine learning to

practical problems is the identification of rules for diagnosing soybean diseases.

The data is taken from questionnaires describing plant diseases. There are about

680 examples, each representing a diseased plant. Plants were measured on 35

attributes, each one having a small set of possible values. Examples are labeled

with the diagnosis of an expert in plant biology: there are 19 disease categories

altogether—horrible-sounding diseases such as diaporthe stem canker, rhizoctonia

root rot, and bacterial blight, to mention just a few.

Table 1.7 gives the attributes, the number of different values that each can

have, and a sample record for one particular plant. The attributes are placed into

different categories just to make them easier to read.

Here are two example rules, learned from this data:

If leaf condition5normal and
stem condition5abnormal and
stem cankers5below soil line and
canker lesion color5brown

then
diagnosis is rhizoctonia root rot

If leaf malformation5absent and
stem condition5abnormal and
stem cankers5below soil line and
canker lesion color5brown

then
diagnosis is rhizoctonia root rot

These rules nicely illustrate the potential role of prior knowledge—often

called domain knowledge—in machine learning, for in fact the only difference

between the two descriptions is leaf condition is normal versus leaf malformation

is absent. Now, in this domain, if the leaf condition is normal then leaf malforma-

tion is necessarily absent, so one of these conditions happens to be a special case

of the other. Thus if the first rule is true, the second is necessarily true as well.

The only time the second rule comes into play is when leaf malformation is

absent but leaf condition is not normal, i.e., when something other than malforma-

tion is wrong with the leaf. This is certainly not apparent from a casual reading

of the rules.

Research on this problem in the late 1970s found that these diagnostic rules

could be generated by a machine learning algorithm, along with rules for every

other disease category, from about 300 training examples. These training exam-

ples were carefully selected from the corpus of cases as being quite different

from one another—“far apart” in the example space. At the same time, the plant

pathologist who had produced the diagnoses was interviewed, and his expertise

191.2 Simple Examples: The Weather Problem and Others

Table 1.7 The Soybean Data

Attribute
Number
of Values

Sample
Value

Environment Time of occurrence 7 July
Precipitation 3 Above normal
Temperature 3 Normal
Cropping history 4 Same as last year
Hail damage 2 Yes
Damaged area 4 Scattered
Severity 3 Severe
Plant height 2 Normal
Plant growth 2 Abnormal
Seed treatment 3 Fungicide
Germination 3 Less than 80%

Seed Condition 2 Normal
Mold growth 2 Absent
Discoloration 2 Absent
Size 2 Normal
Shriveling 2 Absent

Fruit Condition of fruit pods 3 Normal
Fruit spots 5 �

Leaves Condition 2 Abnormal
Leaf spot size 3 �
Yellow leaf spot halo 3 Absent
Leaf spot margins 3 �
Shredding 2 Absent
Leaf malformation 2 Absent
Leaf mildew growth 3 Absent

Stem Condition 2 Abnormal
Stem lodging 2 Yes
Stem cankers 4 Above soil line
Canker lesion color 3 �
Fruiting bodies on stems 2 Present
External decay of stem 3 Firm and dry
Mycelium on stem 2 Absent
Internal discoloration 3 None
Sclerotia 2 Absent

Roots Condition 3 Normal
Diagnosis 19 Diaporthe stem

canker

20 CHAPTER 1 What’s it all about?

was translated into diagnostic rules. Surprisingly, the computer-generated rules

outperformed the expert-derived rules on the remaining test examples. They gave

the correct disease top ranking 97.5% of the time compared with only 72%

for the expert-derived rules. Furthermore, not only did the learning algorithm

find rules that outperformed those of the expert collaborator, but the same

expert was so impressed that he allegedly adopted the discovered rules in place of

his own!

1.3 FIELDED APPLICATIONS
The examples that we opened with are speculative research projects, not

production systems. And most of the illustrations above are toy problems: they

are deliberately chosen to be small so that we can use them to work through

algorithms later in the book. Where’s the beef? Here are some applications

of machine learning that have actually been put into use.

Being fielded applications, the illustrations that follow tend to stress the use

of learning in performance situations, in which the emphasis is on the ability

to perform well on new examples. This book also describes the use of learning

systems to gain knowledge from decision structures that are inferred from

the data. We believe that this is as important a use of the technology as making

high-performance predictions. Still, it will tend to be underrepresented in

fielded applications because when learning techniques are used to gain insight,

the result is not normally a system that is put to work as an application in

its own right. Nevertheless, in three of the examples below, the fact that the

decision structure is comprehensible is a key feature in the successful adoption

of the application.

WEB MINING

Mining information on the World Wide Web is a huge application area.

Search engine companies examine the hyperlinks in web pages to come up with

a measure of “prestige” for each web page and website. Dictionaries define

prestige as “high standing achieved through success or influence.” A metric called

PageRank, introduced by the founders of Google and used in various guises by

other search engine developers too, attempts to measure the standing of a

web page. The more pages that link to your website, the higher its prestige.

And prestige is greater if the pages that link in have high prestige themselves.

The definition sounds circular, but it can be made to work. Search engines use

PageRank (among other things) to sort web pages into order before displaying

the result of your search.

Another way in which search engines tackle the problem of how to rank

web pages is to use machine learning based on a training set of example

211.3 Fielded Applications

queries—documents that contain the terms in the query and human judgments

about how relevant the documents are to that query. Then a learning algorithm

analyzes this training data and comes up with a way to predict the relevance

judgment for any document and query. For each document a set of feature values

is calculated that depend on the query term—e.g., whether it occurs in the title

tag, whether it occurs in the document’s URL, how often it occurs in the docu-

ment itself, and how often it appears in the anchor text of hyperlinks that

point to this document. For multiterm queries, features include how often two

different terms appear close together in the document, and so on. There are many

possible features: typical algorithms for learning ranks use hundreds or thousands

of them.

Search engines mine the content of the Web. They also mine the content of

your queries—the terms you search for—to select advertisements that you might be

interested in. They have a strong incentive to do this accurately, because they only

get paid by advertisers when users click on their links. Search engine companies

mine your very clicks, because knowledge of which results you click on can be

used to improve the search next time. Online booksellers mine the purchasing data-

base to come up with recommendations such as “users who bought this book also

bought these ones”; again they have a strong incentive to present you with compel-

ling, personalized choices. Movie sites recommend movies based on your previous

choices and other people’s choices: they win if they make recommendations that

keep customers coming back to their website.

And then there are social networks and other personal data. We live in the

age of selfrevelation: people share their innermost thoughts in blogs and tweets,

their photographs, their music and movie tastes, their opinions of books, software,

gadgets, and hotels, their social life. They may believe they are doing this

anonymously, or pseudonymously, but often they are incorrect (see Section 1.6).

There is huge commercial interest in making money by mining the Web.

DECISIONS INVOLVING JUDGMENT

When you apply for a loan, you have to fill out a questionnaire asking for

relevant financial and personal information. This information is used by the loan

company as the basis for its decision as to whether to lend you money. Such

decisions are often made in two stages: first, statistical methods are used to

determine clear “accept” and “reject” cases. The remaining borderline cases are

more difficult and call for human judgment. For example, one loan company

uses a statistical decision procedure to calculate a numeric parameter based on

the information supplied in the questionnaire. Applicants are accepted if this

parameter exceeds a preset threshold and rejected if it falls below a second thresh-

old. This accounts for 90% of cases, and the remaining 10% are referred to loan

officers for a decision. On examining historical data on whether applicants

did indeed repay their loans, however, it turned out that half of the borderline

applicants who were granted loans actually defaulted. Although it would be

22 CHAPTER 1 What’s it all about?

tempting simply to deny credit to borderline customers, credit industry

professionals pointed out that if only their repayment future could be reliably

determined it is precisely these customers whose business should be wooed; they

tend to be active customers of a credit institution because their finances remain in

a chronically volatile condition. A suitable compromise must be reached between

the viewpoint of a company accountant, who dislikes bad debt, and that of a sales

executive, who dislikes turning business away.

Enter machine learning. The input was 1000 training examples of borderline

cases for which a loan had been made that specified whether the borrower had

finally paid off or defaulted. For each training example, about 20 attributes were

extracted from the questionnaire, such as age, years with current employer,

years at current address, years with the bank, and other credit cards possessed.

A machine learning procedure was used to produce a small set of classification

rules that made correct predictions on two-thirds of the borderline cases in an

independently chosen test set. Not only did these rules improve the success rate

of the loan decisions, but the company also found them attractive because they

could be used to explain to applicants the reasons behind the decision. Although

the project was an exploratory one that took only a small development effort,

the loan company was apparently so pleased with the result that the rules were

put into use immediately.

SCREENING IMAGES

Since the early days of satellite technology, environmental scientists have been

trying to detect oil slicks from satellite images to give early warning of ecological

disasters and deter illegal dumping. Radar satellites provide an opportunity

for monitoring coastal waters day and night, regardless of weather conditions.

Oil slicks appear as dark regions in the image whose size and shape evolve

depending on weather and sea conditions. However, other look-alike dark regions

can be caused by local weather conditions such as high wind. Detecting oil slicks

is an expensive manual process requiring highly trained personnel who assess

each region in the image.

A hazard detection system has been developed to screen images for

subsequent manual processing. Intended to be marketed worldwide to a wide

variety of users—government agencies and companies—with different objectives,

applications, and geographical areas, it needs to be highly customizable to

individual circumstances. Machine learning allows the system to be trained on

examples of spills and nonspills supplied by the user and lets the user control

the tradeoff between undetected spills and false alarms. Unlike other machine

learning applications, which generate a classifier that is then deployed in the field,

here it is the learning scheme itself that will be deployed.

The input is a set of raw pixel images from a radar satellite, and the output is

a much smaller set of images with putative oil slicks marked by a colored border.

First, standard image-processing operations are applied to normalize the image.

231.3 Fielded Applications

Then, suspicious dark regions are identified. Several dozen attributes are extracted

from each region, characterizing its size, shape, area, intensity, sharpness, and

jaggedness of the boundaries, proximity to other regions, and information about

the background in the vicinity of the region. Finally, standard learning techniques

are applied to the resulting attribute vectors. (An alternative, omitting explicit

feature extraction steps, would be to use the deep learning approach discussed in

Chapter 10, Deep learning).

Several interesting problems were encountered. One is the scarcity of training

data. Oil slicks are (fortunately) very rare, and manual classification is extremely

costly. Another is the unbalanced nature of the problem: of the many dark regions

in the training data, only a very small fraction are actual oil slicks. A third is that

the examples group naturally into batches, with regions drawn from each image

forming a single batch, and background characteristics vary from one batch to

another. Finally, the performance task is to serve as a filter, and the user must

be provided with a convenient means of varying the false-alarm rate.

LOAD FORECASTING

In the electricity supply industry, it is important to determine future demand for

power as far in advance as possible. If accurate estimates can be made for the

maximum and minimum load for each hour, day, month, season, and year, utility

companies can make significant economies in areas such as setting the operating

reserve, maintenance scheduling, and fuel inventory management.

An automated load-forecasting assistant has been operating at a major utility

supplier for more than a decade to generate hourly forecasts 2 days in advance.

The first step was to use data collected over the previous 15 years to create a

sophisticated load model manually. This model had three components: base load

for the year, load periodicity over the year, and effect of holidays. To normalize

for the base load, the data for each previous year was standardized by subtracting

the average load for that year from each hourly reading and dividing by the stan-

dard deviation over the year. Electric load shows periodicity at three fundamental

frequencies: diurnal, where usage has an early morning minimum and midday and

afternoon maxima; weekly, where demand is lower at weekends; and seasonal,

where increased demand during winter and summer for heating and cooling,

respectively, creates a yearly cycle. Major holidays such as Thanksgiving,

Christmas, and New Year’s Day show significant variation from the normal load

and are each modeled separately by averaging hourly loads for that day over

the past 15 years. Minor official holidays, such as Columbus Day, are lumped

together as school holidays and treated as an offset to the normal diurnal pattern.

All of these effects are incorporated by reconstructing a year’s load as a sequence

of typical days, fitting the holidays in their correct position, and denormalizing

the load to account for overall growth.

Thus far, the load model is a static one, constructed manually from historical

data, and implicitly assumes “normal” climatic conditions over the year. The final

24 CHAPTER 1 What’s it all about?

step was to take weather conditions into account by locating the previous day

most similar to the current circumstances and using the historical information

from that day as a predictor. The prediction is treated as an additive correction to

the static load model. To guard against outliers, the eight most similar days are

located and their additive corrections averaged. A database was constructed of

temperature, humidity, wind speed, and cloud cover at three local weather centers

for each hour of the 15-year historical record, along with the difference between

the actual load and that predicted by the static model. A linear regression analysis

was performed to determine the relative effects of these observations on load, and

the coefficients were applied to weight the distance function used to locate the

most similar days.

The resulting system yielded the same performance as trained human forecasters

but was far quicker—taking seconds rather than hours to generate a daily forecast.

Human operators can analyze the forecast’s sensitivity to simulated changes in

weather and bring up for examination the “most similar” days that the system used

for weather adjustment.

DIAGNOSIS

Diagnosis is one of the principal application areas of expert systems. Although the

hand-crafted rules used in expert systems often perform well, machine learning

can be useful in situations in which producing rules manually is too labor intensive.

Preventative maintenance of electromechanical devices such as motors and

generators can forestall failures that disrupt industrial processes. Technicians

regularly inspect each device, measuring vibrations at various points to determine

whether the device needs servicing. Typical faults include shaft misalignment,

mechanical loosening, faulty bearings, and unbalanced pumps. A particular chemi-

cal plant uses more than 1000 different devices, ranging from small pumps to very

large turbo-alternators, which used to be diagnosed by a human expert with 20 years

of experience. Faults are identified by measuring vibrations at different places on

the device’s mounting and using Fourier analysis to check the energy present in

three different directions at each harmonic of the basic rotation speed. This infor-

mation, which is very noisy because of limitations in the measurement and record-

ing procedure, can be studied by the expert to arrive at a diagnosis. Although

handcrafted expert system rules had been elicited for some situations, the elicitation

process would have to be repeated several times for different types of machinery;

so a learning approach was investigated.

Six hundred faults, each comprising a set of measurements along with the

expert’s diagnosis, were available, representing 20 years of experience. About half

were unsatisfactory for various reasons and had to be discarded; the remainder

were used as training examples. The goal was not to determine whether or not a

fault existed, but to diagnose the kind of fault, given that one was there. Thus

there was no need to include fault-free cases in the training set. The measured

attributes were rather low level and had to be augmented by intermediate concepts,

251.3 Fielded Applications

i.e., functions of basic attributes, which were defined in consultation with the

expert and embodied some causal domain knowledge. The derived attributes were

run through an induction algorithm to produce a set of diagnostic rules. Initially, the

expert was not satisfied with the rules because he could not relate them to his own

knowledge and experience. For him, mere statistical evidence was not, by itself,

an adequate explanation. Further background knowledge had to be used before

satisfactory rules were generated. Although the resulting rules were quite complex,

the expert liked them because he could justify them in light of his mechanical

knowledge. He was pleased that a third of the rules coincided with ones he used

himself and was delighted to gain new insight from some of the others.

Performance tests indicated that the learned rules were slightly superior to the

handcrafted ones that had previously been elicited from the expert, and this result

was confirmed by subsequent use in the chemical factory. It is interesting to note,

however, that the system was put into use not because of its good performance

but because the domain expert approved of the rules that had been learned.

MARKETING AND SALES

Some of the most active applications of data mining have been in the area of

marketing and sales. These are domains in which companies possess massive

volumes of precisely recorded data, data that is potentially extremely valuable.

In these applications, predictions themselves are the chief interest: the structure of

how decisions are made is often completely irrelevant.

We have already mentioned the problem of fickle customer loyalty and the

challenge of detecting customers who are likely to defect so that they can be wooed

back into the fold by giving them special treatment. Banks were early adopters of

data mining technology because of their successes in the use of machine learning

for credit assessment. Data mining is now being used to reduce customer attrition

by detecting changes in individual banking patterns that may herald a change of

bank, or even life changes—such as a move to another city—that could result in a

different bank being chosen. It may reveal, e.g., a group of customers with above-

average attrition rate who do most of their banking by phone after hours when tele-

phone response is slow. Data mining may determine groups for whom new services

are appropriate, such as a cluster of profitable, reliable customers who rarely get

cash advances from their credit card except in November and December, when

they are prepared to pay exorbitant interest rates to see them through the holiday

season. In another domain, cellular phone companies fight churn by detecting pat-

terns of behavior that could benefit from new services, and then advertise such ser-

vices to retain their customer base. Incentives provided specifically to retain

existing customers can be expensive, and successful data mining allows them to be

precisely targeted to those customers who are likely to yield maximum benefit.

Market basket analysis is the use of association techniques to find groups of

items that tend to occur together in transactions, e.g., supermarket checkout data.

For many retailers this is the only source of sales information that is available for

26 CHAPTER 1 What’s it all about?

data mining. For example, automated analysis of checkout data may uncover

the fact that customers who buy beer also buy chips, a discovery that could be

significant from the supermarket operator’s point of view (although rather an

obvious one that probably does not need a data mining exercise to discover). Or it

may come up with the fact that on Thursdays, customers often purchase diapers

and beer together, an initially surprising result that, on reflection, makes some

sense as young parents stock up for a weekend at home. Such information could

be used for many purposes: planning store layouts, limiting special discounts

to just one of a set of items that tend to be purchased together, offering coupons

for a matching product when one of them is sold alone, and so on.

There is enormous added value in being able to identify individual customer’s

sales histories. Discount or “loyalty” cards let retailers identify all the purchases

that each individual customer makes. This personal data is far more valuable

than the cash value of the discount. Identification of individual customers not

only allows historical analysis of purchasing patterns but also permits precisely

targeted special offers to be mailed out to prospective customers—or perhaps

personalized coupons can be printed in real time at the checkout for use during

the next grocery run. Supermarkets want you to feel that although we may live in

a world of inexorably rising prices, they don’t increase so much for you because

the bargains offered by personalized coupons make it attractive for you to stock

up on things that you wouldn’t normally have bought.

Direct marketing is another popular domain for data mining. Bulk-mail

promotional offers are expensive, and have a low—but highly profitable—response

rate. Anything that helps focus promotions, achieving the same or nearly the same

response from a smaller sample, is valuable. Commercially available databases con-

taining demographic information that characterize neighborhoods based on ZIP

codes can be correlated with information on existing customers to predict what

kind of people might buy which items. This model can be trialed on information

gained in response to an initial mailout, where people send back a response card or

call an 800 number for more information, to predict likely future customers. Unlike

shopping-mall retailers, direct mail companies have complete purchasing histories

for each individual customer and can use data mining to determine those likely to

respond to special offers. Targeted campaigns save money—and reduce annoy-

ance—by directing offers only to those likely to want the product.

OTHER APPLICATIONS

There are countless other applications of machine learning. We briefly mention a

few more areas to illustrate the breadth of what has been done.

Sophisticated manufacturing processes often involve tweaking control para-

meters. Separating crude oil from natural gas is an essential prerequisite to oil

refinement, and controlling the separation process is a tricky job. British Petroleum

used machine learning to create rules for setting the parameters. Setting parameters

using these rules takes just 10 minutes, whereas human experts take more than a

271.3 Fielded Applications

day. Westinghouse faced problems in their process for manufacturing nuclear fuel

pellets and used machine learning to create rules to control the process. This was

reported to save them more than $10 million per year (in 1984). The Tennessee

printing company R.R. Donnelly applied the same idea to control rotogravure

printing presses to reduce artifacts caused by inappropriate parameter settings,

reducing the number of artifacts from more than 500 each year to less than 30.

In the realm of customer support and service, we have already described

adjudicating loans, and marketing and sales applications. Another example arises

when a customer reports a telephone problem and the company must decide

what kind of technician to assign to the job. An expert system developed by Bell

Atlantic in 1991 to make this decision was replaced in 1999 by a set of rules

learned using machine learning, which saved more than $10 million per year by

making fewer incorrect decisions.

There are many scientific applications. In biology, machine learning is used to

help identify the thousands of genes within each new genome. In biomedicine,

it is used to predict drug activity by analyzing not just the chemical properties of

drugs but also their three-dimensional structure. This accelerates drug discovery

and reduces its cost. In astronomy, machine learning has been used to develop a

fully automatic cataloguing system for celestial objects that are too faint to be

seen by visual inspection. In chemistry, it has been used to predict the structure

of certain organic compounds from magnetic resonance spectra. In all these appli-

cations, machine learning techniques have attained levels of performance—or

should we say skill?—that rival or surpass human experts.

Automation is especially welcome in situations involving continuous monitoring,

a job that is time consuming and exceptionally tedious for humans. Ecological

applications include the oil spill monitoring described earlier. Some other applica-

tions are rather less consequential—e.g., machine learning is being used to predict

preferences for TV programs based on past choices and advise viewers about the

available channels. Still others may save lives. Intensive care patients may be

monitored to detect changes in variables that cannot be explained by circadian

rhythm, medication, and so on, raising an alarm when appropriate. Finally, in a

world that relies on vulnerable networked computer systems and is increasingly

concerned about cybersecurity, machine learning is used to detect intrusion by

recognizing unusual patterns of operation.

1.4 THE DATA MINING PROCESS
This book is about machine learning techniques for data mining: the technical

core of practical data mining applications. Successful implementation of these

techniques in a business context requires an understanding of important aspects

that we do not—and cannot—cover in this book.

Fig. 1.4 shows the life cycle of a data mining project, as defined by the CRISP-

DM reference model. Before data mining can be applied, you need to understand

28 CHAPTER 1 What’s it all about?

what you want to achieve by implementing it. This is the “business understanding”

phase: investigating the business objectives and requirements, deciding whether

data mining can be applied to meet them, and determining what kind of data can

be collected to build a deployable model. In the next phase, “data understanding,”

an initial dataset is established and studied to see whether it is suitable for further

processing. If the data quality is poor, it may be necessary to collect new data

based on more stringent criteria. Insights into the data that are gained at this stage

may also trigger reconsideration of the business context—perhaps the objective

of applying data mining needs to be reviewed?

The next three steps—data preparation, modeling, and evaluation—are what

this book deals with. Preparation involves preprocessing the raw data so that

machine learning algorithms can produce a model—ideally, a structural description

of the information that is implicit in the data. Preprocessing may include model

building activities as well, because many preprocessing tools build an internal

model of the data to transform it. In fact, data preparation and modeling usually go

hand in hand. It is almost always necessary to iterate: results obtained during

modeling provide new insights that affect the choice of preprocessing techniques.

The next phase in any successful application of data mining—and its

importance cannot be overstated!—is evaluation. Do the structural descriptions

inferred from the data have any predictive value, or do they simply reflect spuri-

ous regularities? This book explains many techniques for estimating the predictive

Business
understanding

Data
understanding

Data
preparation

Modeling

Evaluation

Deployment Data

FIGURE 1.4

Life cycle of a data mining project.

291.4 The Data Mining Process

performance of models built by machine learning. If the evaluation step shows that

the model is poor, you may need to reconsider the entire project and return to the

business understanding step to identify more fruitful business objectives or avenues

for data collection. If, on the other hand, the model’s accuracy is sufficiently high,

the next step is to deploy it in practice. This normally involves integrating it into a

larger software system, so the model needs to be handed over to the project’s soft-

ware engineers. This is the stage where the implementation details of the modeling

techniques matter. For example, to slot the model into the software system it may

be necessary to reimplement it in a different programming language.

1.5 MACHINE LEARNING AND STATISTICS
What’s the difference between machine learning and statistics? Cynics, looking

wryly at the explosion of commercial interest (and hype) in this area, equate data

mining to statistics plus marketing. In truth, you should not look for a dividing

line between machine learning and statistics because there is a continuum—and a

multidimensional one at that—of data analysis techniques. Some derive from the

skills taught in standard statistics courses, and others are more closely associated

with the kind of machine learning that has arisen out of computer science.

Historically, the two sides have had rather different traditions. If forced to point

to a single difference of emphasis, it might be that statistics has been more

concerned with testing hypotheses, whereas machine learning has been more con-

cerned with formulating the process of generalization as a search through possible

hypotheses. But this is a gross oversimplification: statistics is far more than

just hypothesis-testing, and many machine learning techniques do not involve

any searching at all.

In the past, very similar schemes have developed in parallel in machine

learning and statistics. One is decision tree induction. Four statisticians at

Californian universities published a book on Classification and regression trees

in the mid-1980s, and throughout the 1970s and early 1980s a prominent

Australian machine learning researcher, J. Ross Quinlan, was developing a system

for inferring classification trees from examples. These two independent projects

produced quite similar schemes for generating trees from examples, and the

researchers only became aware of one another’s work much later. A second area

where similar methods have arisen involves the use of nearest-neighbor methods

for classification. These are standard statistical techniques that have been exten-

sively adapted by machine learning researchers, both to improve classification

performance and to make the procedure more efficient computationally. We will

examine both decision tree induction and nearest-neighbor methods in Chapter 4,

Algorithms: the basic methods.

But now the two perspectives have converged. The techniques we will examine

in this book incorporate a great deal of statistical thinking. Right from the

30 CHAPTER 1 What’s it all about?

beginning, when constructing and refining the initial example set, standard

statistical methods apply: visualization of data, selection of attributes, discarding

outliers, and so on. Many learning algorithms use statistical tests when construct-

ing rules or trees and for correcting models that are “overfitted” in that they

depend too strongly on the details of the particular examples used to produce them

(we have already seen an example of this in the two decision trees of Fig. 1.3

for the labor negotiations problem). Statistical tests are used to validate machine

learning models and to evaluate machine learning algorithms. In our study of

practical techniques for data mining, we will learn a great deal about statistics.

1.6 GENERALIZATION AS SEARCH
One way of visualizing the problem of learning—and one that distinguishes

it from statistical approaches—is to imagine a search through a space of possible

concept descriptions for one that fits the data. Although the idea of generaliza-

tion as search is a powerful conceptual tool for thinking about machine learning,

it is not essential for understanding the practical schemes described in this book.

That is why this section is marked optional, as indicated by the gray bar in

the margin.

Suppose, for definiteness, that concept descriptions—the result of learning—

are expressed as rules such as the ones given for the weather problem in

Section 1.2 (although other concept description languages would do just as well).

Suppose that we list all possible sets of rules and then look for ones that satisfy a

given set of examples. A big job? Yes. An infinite job? At first glance it seems

so because there is no limit to the number of rules there might be. But actually

the number of possible rule sets is finite. Note first that each individual rule is no

greater than a fixed maximum size, with at most one term for each attribute:

for the weather data of Table 1.2 this involves four terms in all. Because the

number of possible rules is finite, the number of possible rule sets is finite too,

although extremely large. However, we’d hardly be interested in sets that

contained a very large number of rules. In fact, we’d hardly be interested in sets

that had more rules than there are examples because it is difficult to imagine

needing more than one rule for each example. So if we were to restrict consider-

ation to rule sets smaller than that, the problem would be substantially reduced,

although still very large.

The threat of an infinite number of possible concept descriptions seems more

serious for the second version of the weather problem in Table 1.3 because these

rules contain numbers. If they are real numbers, you can’t enumerate them,

even in principle. However, on reflection the problem again disappears because

the numbers really just represent breakpoints in the numeric values that appear

in the examples. For instance, consider the temperature attribute in Table 1.3.

It involves the numbers 64, 65, 68, 69, 70, 71, 72, 75, 80, 81, 83, and 85—12

311.6 Generalization as Search

different numbers. There are 13 possible places in which we might want to put a

breakpoint for a rule involving temperature. The problem isn’t infinite after all.

So the process of generalization with rule sets can be regarded as a search

through an enormous, but finite, search space. In principle, the problem can be

solved by enumerating descriptions and striking out those that do not fit the exam-

ples presented—assuming there is no noise in the examples, and the description

language is sufficiently expressive. A positive example eliminates all descriptions

that it does not match, and a negative one eliminates those it does match. With

each example the set of remaining descriptions shrinks (or stays the same). If only

one is left, it is the target description—the target concept.

If several descriptions are left, they may still be used to classify unknown

objects. An unknown object that matches all remaining descriptions should be

classified as matching the target; if it fails to match any description it should

be classified as being outside the target concept. Only when it matches some

descriptions but not others is there ambiguity. In this case if the classification

of the unknown object were revealed, it would cause the set of remaining descrip-

tions to shrink because rule sets that classified the object the wrong way would

be rejected.

ENUMERATING THE CONCEPT SPACE

Regarding it as search is a good way of looking at the learning process. However,

the search space, although finite, is extremely big, and it is generally quite

impractical to enumerate all possible descriptions and then see which ones fit.

In the weather problem there are 43 43 33 33 25 288 possibilities for each

rule. There are four possibilities for the outlook attribute: sunny, overcast, rainy,

or it may not participate in the rule at all. Similarly, there are four for tempera-

ture, three for windy and humidity, and two for the class. If we restrict the rule set

to contain no more than 14 rules (because there are 14 examples in the training

set), there are around 2.73 1034 possible different rule sets. That’s a lot to enu-

merate, especially for such a patently trivial problem.

Although there are ways of making the enumeration procedure more feasible,

a serious problem remains: in practice, it is rare for the process to converge on a

unique acceptable description. Either many descriptions are still in the running

after the examples are processed or the descriptors are all eliminated. The first

case arises when the examples are not sufficiently comprehensive to eliminate all

possible descriptions except for the “correct” one. In practice, people often want a

single “best” description, and it is necessary to apply some other criteria to select

the best one from the set of remaining descriptions. The second problem arises

either because the description language is not expressive enough to capture the

actual concept or because of noise in the examples. If an example comes in with

the “wrong” classification due to an error in some of the attribute values or in the

class that is assigned to it, this will likely eliminate the correct description from

the space. The result is that the set of remaining descriptions becomes empty.

32 CHAPTER 1 What’s it all about?

This situation is very likely to happen if the examples contain any noise at all,

which inevitably they do except in artificial situations.

Another way of looking at generalization as search is to imagine it not as a

process of enumerating descriptions and striking out those that don’t apply but as

a kind of hill-climbing in description space to find the description that best

matches the set of examples according to some prespecified matching criterion.

This is the way that most practical machine learning methods work. However, it

is often impractical to search the whole space exhaustively; many practical

algorithms involve heuristic search and cannot guarantee to find the optimal

description.

BIAS

Viewing generalization as a search in a space of possible concepts makes it clear

that the most important decisions in a machine learning system are:

• the concept description language;

• the order in which the space is searched;

• the way that overfitting to the particular training data is avoided.

These three properties are generally referred to as the bias of the search and

are called language bias, search bias, and overfitting-avoidance bias. You bias

the learning scheme by choosing a language in which to express concepts, by

searching in a particular way for an acceptable description, and by deciding when

the concept has become so complex that it needs to be simplified.

Language bias
The most important question for language bias is whether the concept description

language is universal or whether it imposes constraints on what concepts can be

learned. If you consider the set of all possible examples, a concept is really just a

division of it into subsets. In the weather example, if you were to enumerate all

possible weather conditions, the play concept is a subset of possible weather con-

ditions. A “universal” language is one that is capable of expressing every possible

subset of examples. In practice, the set of possible examples is generally huge,

and in this respect our perspective is a theoretical, not a practical, one.

If the concept description language permits statements involving logical or,

i.e., disjunctions (as well as logical and, i.e., conjunctions), then any subset can be

represented. If the description language is rule-based, disjunction can be achieved

by using separate rules. For example, one possible concept representation is just to

enumerate the examples:

If outlook5overcast and temperature5hot and humidity5high
and windy5false then play5yes

If outlook5rainy and temperature5mild and humidity5high
and windy5false then play5yes

331.6 Generalization as Search

If outlook5rainy and temperature5cool and humidity5normal
and windy5false then play5yes

If outlook5overcast and temperature5cool and humidity5normal
and windy5true then play5yes

. . .

If none of the above then play5no

This is not a particularly enlightening concept description: it simply records the

positive examples that have been observed and assumes that all the rest are negative.

Each positive example is given its own rule, and the concept is the disjunction of the

rules. Alternatively, you could imagine having individual rules for each of the nega-

tive examples, too—an equally uninteresting concept. In either case the concept

description does not perform any generalization; it simply records the original data.

On the other hand, if disjunction is not allowed, some possible concepts—sets

of examples—may not be able to be represented at all. In that case, a machine

learning scheme may simply be unable to achieve good performance.

Another kind of language bias is that obtained from knowledge of the

particular domain being used. For example, it may be that some combinations of

attribute values can never happen. This would be the case if one attribute implied

another. We saw an example of this when considering the rules for the soybean

problem described above. Then, it would be pointless to even consider concepts

that involved redundant or impossible combinations of attribute values. Domain

knowledge can be used to cut down the search space, but specialized techniques

may be needed for this. Knowledge is power: a little goes a long way, and even

a small hint can reduce the search space dramatically.

Search bias
In realistic data mining problems, there are many alternative concept descriptions

that fit the data, and the problem is to find the “best” one according to some

criterion—usually simplicity. We use the term fit in a statistical sense; we seek the

best description that fits the data reasonably well. Moreover, it is often computa-

tionally infeasible to search the whole space and guarantee that the description

found really is the best. Consequently, the search procedure is heuristic, and no

guarantees can be made about the optimality of the final result. This leaves plenty

of room for bias: different search heuristics bias the search in different ways.

For example, a learning algorithm might adopt a “greedy” search for rules by

trying to find the best rule at each stage and adding it in to the rule set. However,

it may be that the best pair of rules is not just the two rules that are individually

found best. Or when building a decision tree, a commitment to split early on

using a particular attribute might turn out later to be ill considered in light of how

the tree develops below that node. To get around these problems, a beam search

could be used where irrevocable commitments are not made but instead a set

of several active alternatives—whose number is the beam width—are pursued in

parallel. This will complicate the learning algorithm quite considerably but has

the potential to avoid the myopia associated with a greedy search. Of course,

34 CHAPTER 1 What’s it all about?

if the beam width is not large enough, myopia may still occur. There are more

complex search strategies that help to overcome this problem.

A more general and higher level kind of search bias concerns whether the search

is done by starting with a general description and refining it, or by starting with a

specific example and generalizing it. The former is called a general-to-specific

search bias, the latter a specific-to-general one. Many learning algorithms adopt

the former policy, starting with an empty decision tree, or a very general rule,

and specializing it to fit the examples. However, it is perfectly possible to work in

the other direction. Instance-based methods start with a particular example and see

how it can be generalized to cover other nearby examples in the same class.

Overfitting-avoidance bias
Overfitting-avoidance bias is often just another kind of search bias. But because it

addresses a rather special problem, we treat it separately. Recall the disjunction

problem described previously. The problem is that if disjunction is allowed,

useless concept descriptions that merely summarize the data become possible,

whereas if it is prohibited, some concepts are unlearnable. To get around this

problem, it is common to search the concept space starting with the simplest con-

cept descriptions and proceeding to more complex ones: simplest-first ordering.

This biases the search in favor of simple concept descriptions.

Using a simplest-first search and stopping when a sufficiently complex con-

cept description is found is a good way of avoiding overfitting. It is sometimes

called forward pruning or prepruning because complex descriptions are pruned

away before they are reached. The alternative, backward pruning or postpruning,

is also viable. Here, we first find a description that fits the data well and then

prune it back to a simpler description that also fits the data. This is not as redun-

dant as it sounds: often the best way to arrive at a simple theory is to find a com-

plex one and then simplify it. Forward and backward pruning are both a kind of

overfitting-avoidance bias.

In summary, although generalization as search is a nice way to think about the

learning problem, bias is the only way to make it feasible in practice. Different

learning algorithms correspond to different concept description spaces searched

with different biases. This is what makes it interesting: different description lan-

guages and biases serve some problems well and other problems badly. There is

no universal “best” learning method—as every teacher knows!

1.7 DATA MINING AND ETHICS
The use of data—particularly data about people—for data mining has serious ethi-

cal implications, and practitioners of data mining techniques must act responsibly

by making themselves aware of the ethical issues that surround their particular

application.

351.7 Data Mining and Ethics

When applied to people, data mining is frequently used to discriminate—

who gets the loan, who gets the special offer, and so on. Certain kinds of

discrimination—racial, sexual, religious, and so on—are not only unethical but

also illegal. However, the situation is complex: everything depends on the

application. Using sexual and racial information for medical diagnosis is certainly

ethical, but using the same information when mining loan payment behavior is

not. Even when sensitive information is discarded, there is a risk that models will

be built that rely on variables that can be shown to substitute for racial or sexual

characteristics. For example, people frequently live in areas that are associated

with particular ethnic identities, and so using a ZIP code runs the risk of building

models that are based on race—even though racial information has been explicitly

excluded from the data.

REIDENTIFICATION

Work on what are being called “reidentification” techniques has provided

sobering insights into the difficulty of anonymizing data. It turns out, e.g., that

over 85% of Americans can be identified from publicly available records using

just three pieces of information: five-digit ZIP code, birthdate (including year),

and sex. Don’t know the ZIP code?—over half of Americans can be identified

from just city, birthdate, and sex. When the state of Massachusetts released

medical records summarizing every state employee’s hospital record in the

mid-1990s, the Governor gave a public assurance that it had been anonymized by

removing all identifying information such as name, address, and social security

number. He was surprised to receive his own health records (which included

diagnoses and prescriptions) in the mail.

Stories abound of companies releasing allegedly anonymous data in good

faith, only to find that many individuals are easily identifiable. In 2006 an

Internet services company released to the research community the records of

20 million user searches. The records were anonymized by removing all personal

information—or so the company thought. But pretty soon journalists from

The New York Times were able to identify the actual person corresponding to user

number 4417749 (they sought her permission before exposing her). They did so

by analyzing the search terms she used, which included queries for landscapers

in her home town, and several people with the same last name as her, which

reporters correlated with public databases.

Two months later, Netflix, an online movie rental service, released 100 million

records of movie ratings (from 1 to 5), with their dates. To their surprise, it turned

out to be quite easy to identify people in the database and thus discover all the

movies they had rated. For example, if you know approximately when (give or

take 2 weeks) a person in the database rated six movies, and the ratings, you can

identify 99% of the people in the database. Knowing only two movies with their

ratings and dates give or take 3 days, nearly 70% of people can be identified.

36 CHAPTER 1 What’s it all about?

From just a little information about your friends (or enemies) you can determine

all the movies they have rated on Netflix.

The moral is that if you really do remove all possible identification information

from a database, you will probably be left with nothing useful.

USING PERSONAL INFORMATION

It is widely accepted that before people make a decision to provide personal

information they need to know how it will be used and what it will be used for,

what steps will be taken to protect its confidentiality and integrity, what the

consequences of supplying or withholding the information are, and any rights of

redress they may have. Whenever such information is collected, individuals

should be told these things—not in legalistic small print but straightforwardly

in plain language they can understand.

The potential use of data mining techniques means that the ways in which

a repository of data can be used may stretch far beyond what was conceived

when the data was originally collected. This creates a serious problem: it is neces-

sary to determine the conditions under which the data was collected and for what

purposes it may be used. Does the ownership of data bestow the right to use it in

ways other than those purported when it was originally recorded? Clearly in the

case of explicitly collected personal data it does not. But in general the situation

is complex.

Surprising things emerge from data mining. For example, it has been reported

that one of the leading consumer groups in France has found that people with red

cars are more likely to default on their car loans. What is the status of such a

“discovery”? What information is it based on? Under what conditions was that

information collected? In what ways is it ethical to use it? Clearly, insurance

companies are in the business of discriminating among people based on stereo-

types—young males pay heavily for automobile insurance—but such stereotypes

are not based solely on statistical correlations; they also draw on common-sense

knowledge about the world as well. Whether the preceding finding says some-

thing about the kind of person who chooses a red car, or whether it should be

discarded as an irrelevancy, is a matter for human judgment based on knowledge

of the world rather than on purely statistical criteria.

When presented with data, it is important to ask who is permitted to have

access to it, for what purpose it was collected, and what kind of conclusions is it

legitimate to draw from it. The ethical dimension raises tough questions for those

involved in practical data mining. It is necessary to consider the norms of the com-

munity that is used to dealing with the kind of data involved, standards that may

have evolved over decades or centuries but ones that may not be known to the

information specialist. For example, did you know that in the library community, it

is taken for granted that the privacy of readers is a right that is jealously protected?

If you call your university library and ask who has such-and-such a textbook out

on loan, they will not tell you. This prevents a student being subjected to pressure

371.7 Data Mining and Ethics

from an irate professor to yield access to a book that she desperately needs for

her latest grant application. It also prohibits enquiry into the dubious recreational

reading tastes of the university ethics committee chairperson. Those who build,

say, digital libraries may not be aware of these sensitivities and might incorporate

data mining systems that analyze and compare individuals’ reading habits to

recommend new books—perhaps even selling the results to publishers.

WIDER ISSUES

In addition to community standards for the use of data, logical and scientific stan-

dards must be adhered to when drawing conclusions from data. If conclusions are

derived (such as red car owners being greater credit risks), caveats need to be

attached unless they can be backed up by arguments other than purely statistical

ones. The point is that data mining is just a tool in the whole process: it is people

who take the results, along with other knowledge, and decide what action to apply.

Data mining prompts another question, which is really a political one concern-

ing the use to which society’s resources are being put. We mentioned earlier the

application of data mining to basket analysis, where supermarket checkout records

are analyzed to detect associations among items that people purchase. What use

should be made of the resulting information? Should the supermarket manager

place the beer and chips together, to make it easier for shoppers, or farther apart,

making it less convenient for them, to maximize their time in the store and there-

fore their likelihood of being drawn into further purchases? Should the manager

move the most expensive, most profitable diapers near the beer, increasing sales

to harried fathers of a high-margin item, and add further luxury baby products

nearby?

Of course, anyone who uses advanced technologies should consider the

wisdom of what they are doing. If data is characterized as recorded facts,

then information is the set of patterns, or expectations, that underlie the data.

You could go on to define knowledge as the accumulation of your set of expecta-

tions and wisdom as the value attached to knowledge. Although we will not

pursue it further here, this issue is worth pondering.

As we saw at the very beginning of this chapter, the techniques described

in this book may be called upon to help make some of the most profound and

intimate decisions that life presents. Machine learning is a technology that we

need to take seriously.

1.8 FURTHER READING AND BIBLIOGRAPHIC NOTES
To avoid breaking up the flow of the main text, all references are collected in a

section at the end of each chapter. This first such section describes papers, books,

and other resources relevant to the material covered in this chapter. The human

in vitro fertilization research mentioned in the opening was undertaken by

38 CHAPTER 1 What’s it all about?

the Oxford University Computing Laboratory, and the research on cow culling

was performed in the Computer Science Department at Waikato University,

New Zealand.

The weather problem is from Quinlan (1986) and has been widely used to

explain machine learning schemes. The corpus of example problems mentioned in

the introduction to Section 1.2 is available from Lichman (2013). The contact lens

example is from Cendrowska (1987), who introduced the PRISM rule-learning

algorithm that we will encounter in Chapter 4, Algorithms: the basic methods.

The iris dataset was described in a classic early paper on statistical inference

(Fisher, 1936). The labor negotiations data is from the Collective bargaining

review, a publication of Labour Canada issued by the Industrial Relations

Information Service (BLI, 1988), and the soybean problem was first described

by Michalski and Chilausky (1980).

Some of the applications in Section 1.3 are covered in an excellent paper

that gives plenty of other applications of machine learning and rule induction

(Langley & Simon, 1995); another source of fielded applications is a special issue

of the Machine Learning Journal (Kohavi & Provost, 1988). Chakrabarti (2003)

has written an excellent and comprehensive book on techniques of Web mining;

another is Liu’s Web data mining (2009). The loan company application is

described in more detail by Michie (1989); the oil slick detector is due to Kubat,

Holte, and Matwin (1998); the electric load forecasting work is by Jabbour,

Riveros, Landsbergen, and Meyer (1988); and the application to preventative

maintenance of electromechanical devices is from Saitta and Neri (1998). Fuller

descriptions of some of the other projects mentioned in Section 1.3 (including

the figures of dollars saved, and related literature references) appeared at the website

of the Alberta Ingenuity Centre for Machine Learning. Luan (2002) described

applications for data mining in higher education. Dasu, Koutsofios, and Wright

(2006) have some recommendations for successful data mining. Another special issue

of the Machine Learning Journal addresses the lessons that have been learned from

data mining applications and collaborative problem solving (Lavrac et al., 2004).

The “diapers and beer” story is legendary. According to an article in London’s

Financial Times (February 7, 1996), “The oft-quoted example of what data

mining can achieve is the case of a large US supermarket chain which discovered

a strong association for many customers between a brand of babies nappies

(diapers) and a brand of beer. Most customers who bought the nappies also

bought the beer. The best hypothesizers in the world would find it difficult to

propose this combination but data mining showed it existed, and the retail outlet

was able to exploit it by moving the products closer together on the shelves.”

However, it seems that it is just a legend after all; Power (2002) traced its history.

Shearer (2000) discussed the data mining process, including the Cross

Industry Standard Process for Data Mining (CRISP-DM) depicted in Fig. 1.4.

The book Classification and regression trees mentioned in Section 1.5 is by

Breiman, Friedman, Olshen, and Stone (1984), and Quinlan’s (1993) independently

derived but similar scheme was described in a series of papers that eventually

led to a book.

391.8 Further Reading and Bibliographic Notes

The first book on data mining appeared in 1991 (Piatetsky-Shapiro & Frawley,

1991)—a collection of papers presented at a workshop on knowledge discovery in

databases in the late 1980s. Another book from the same stable has appeared since

(Fayyad, Piatetsky-Shapiro, Smyth, & Uthurusamy, 1996) from a 1994 workshop.

There followed a rash of business-oriented books on data mining, focusing mainly

on practical aspects of how it can be put into practice with only rather superficial

descriptions of the technology that underlies the methods used. They are valuable

sources of applications and inspiration. For example, Adriaans and Zantige (1996)

from Syllogic, a European systems and database consultancy, is an early introduc-

tion to data mining. Berry and Linoff (1997), from a Pennsylvania-based firm

specializing in data warehousing and data mining, gave an excellent and example-

studded review of data mining techniques for marketing, sales, and customer

support. Cabena, Hadjinian, Stadler, Verhees, and Zanasi (1998), written by people

from five international IBM laboratories, overviews the data mining process with

many examples of real-world applications. Dhar and Stein (1997) gave a business

perspective on data mining and include broad-brush, popularized reviews of many

of the technologies involved. Groth (1998), working for a provider of data mining

software, gave a brief introduction to data mining and then a fairly extensive

review of data mining software products; the book includes a CD-ROM containing

a demo version of his company’s product. Weiss and Indurkhya (1998) looked at

a wide variety of statistical techniques for making predictions from what they call

“big data.” Han, Kamber, and Pei (2011) covered data mining from a database

perspective, focusing on the discovery of knowledge in large corporate databases;

they also discussed mining complex types of data. Hand, Manilla, and Smyth

(2001) produced an interdisciplinary book on data mining from an international

group of authors who are well respected in the field. Finally, Nisbet, Elder, and

Miner (2009) have produced a comprehensive handbook of statistical analysis

and data mining applications.

Books on machine learning, on the other hand, tend to be academic texts

suited for use in university courses rather than practical guides. Mitchell (1997)

wrote an excellent book that covers many techniques of machine learning,

including some—notably genetic algorithms, and reinforcement learning—that

are not covered here. Langley (1996) offered another good text. Although the pre-

viously mentioned book by Quinlan (1993) concentrated on a particular learning

algorithm, C4.5, which we will cover in detail in Chapters 4 and 6, it is a good

introduction to some of the problems and techniques of machine learning.

An absolutely excellent book on machine learning from a statistical perspective is

Hastie, Tibshirani, and Friedman (2009). This is quite a theoretically oriented

work, and is beautifully produced with apt and telling illustrations. Another excel-

lent book, covering machine learning from a probabilistic perspective, is Murphy

(2012). Russell and Norvig’s (2009) Artificial intelligence: A modern approach

is the third edition of a classic text that includes a great deal of information on

machine learning and data mining.

40 CHAPTER 1 What’s it all about?

Pattern recognition is a topic that is closely related to machine learning,

and many of the same techniques apply. Duda, Hart, and Stork (2001) was the

second edition of a classic and successful book on pattern recognition (Duda &

Hart, 1973). Ripley (1996) and Bishop (1995) described the use of neural net-

works for pattern recognition; Bishop had a more recent book Pattern recognition

and machine learning (2006). Data mining with neural networks is the subject

of a book by Bigus (1996) of IBM, which features the IBM Neural Network

Utility Product that he developed. A very recent textbook on deep learning is

Goodfellow, Bengio, and Courville (2016).

Support vector machines and kernel-based learning is an important topic in

machine learning. Cristianini and Shawe-Taylor (2000) gave a nice introduction,

and a follow-up work generalized this to cover additional algorithms, kernels and

solutions with applications to pattern discovery problems in fields such as bioin-

formatics, text analysis, and image analysis (Shawe-Taylor & Cristianini, 2004).

Schölkopf and Smola (2002) provided a comprehensive introduction to support

vector machines and related kernel methods.

The emerging area of reidentification techniques was explored, along with its

implications for anonymization, by Ohm (2009).

411.8 Further Reading and Bibliographic Notes

2Input: concepts, instances,
attributes

CHAPTER OUTLINE

2.1 What’s a Concept? ...44

2.2 What’s in an Example? ...46

Relations ...47

Other Example Types ..51

2.3 What’s in an Attribute? ...53

2.4 Preparing the Input ..56

Gathering the Data Together ..56

ARFF Format..57

Sparse Data ...60

Attribute Types...61

Missing Values ...62

Inaccurate Values ...63

Unbalanced Data..64

Getting to Know Your Data...65

2.5 Further Reading and Bibliographic Notes ...65

Before delving into the question of how machine learning schemes operate, we

begin by looking at the different forms the input might take and, in Chapter 3,

Output: knowledge representation, the different kinds of output that might be

produced. With any software system, understanding what the inputs and outputs

are is far more important than knowing what goes on in between, and machine

learning is no exception.

The input takes the form of concepts, instances, and attributes. We call the

thing that is to be learned a concept description. The idea of a concept, like the

very idea of learning in the first place, is hard to pin down precisely, and we

won’t spend time philosophizing about just what it is and isn’t. In a sense, what

we are trying to find—the result of the learning process—is a description of the

concept that is, ideally, intelligible in that it can be understood, discussed, and

disputed, and operational in that it can be applied to actual examples. Section 2.1

explains some distinctions among different kinds of learning problems, distinc-

tions that are very concrete and very important in practical data mining.

The information that the learner is given takes the form of a set of instances.

In the illustrations in Chapter 1, What’s it all about?, each instance was an indi-

vidual, independent example of the concept to be learned. Of course there are

many things you might like to learn for which the raw data cannot be expressed

as individual, independent instances. Perhaps background knowledge should be

taken into account as part of the input. Perhaps the raw data is an agglomerated

mass that cannot be fragmented into individual instances. Perhaps it is a single

sequence, say a time sequence, that cannot meaningfully be cut into pieces. This

book is about simple, practical methods of data mining, and we focus on situa-

tions where the information can be supplied in the form of individual examples.

However, we do introduce one slightly more complicated scenario where the

examples for learning contain multiple instances.

Each instance is characterized by the values of attributes that measure differ-

ent aspects of the instance. There are many different types of attribute, although

typical machine learning schemes deal only with numeric and nominal, or cate-

gorical, ones.

Finally, we examine the question of preparing input for data mining and intro-

duce a simple format—the one that is used by the Weka system that accompanies

this book—for representing the input information as a text file.

2.1 WHAT’S A CONCEPT?
Four basically different styles of learning commonly appear in data mining appli-

cations. In classification learning, the learning scheme is presented with a set of

classified examples from which it is expected to learn a way of classifying unseen

examples. In association learning, any association among features is sought, not

just ones that predict a particular class value. In clustering, groups of examples

that belong together are sought. In numeric prediction, the outcome to be pre-

dicted is not a discrete class but a numeric quantity. Regardless of the type of

learning involved, we call the thing to be learned the concept and the output pro-

duced by a learning scheme the concept description.

Most of the examples in Chapter 1, What’s it all about?, are classification pro-

blems. The weather data (Tables 1.2 and 1.3) presents a set of days together with

a decision for each as to whether to play the game or not. The problem is to learn

how to classify new days as play or don’t play. Given the contact lens data

(Table 1.1), the problem is to learn how to determine a lens recommendation for

a new patient—or more precisely, since every possible combination of attributes

is present in the data, the problem is to learn a way of summarizing the given

data. For the irises (Table 1.4), the problem is to learn how to determine whether

a new iris flower is setosa, versicolor, or virginica, given its sepal length and

width and petal length and width. For the labor negotiations data (Table 1.6), the

problem is to determine whether a new contract is acceptable or not, on the basis

44 CHAPTER 2 Input: concepts, instances, attributes

of its duration; wage increase in the first, second, and third years; cost of living

adjustment; and so forth.

We assume throughout this book that each example belongs to one, and only

one, class. However, there exist classification scenarios in which individual exam-

ples may belong to multiple classes. In technical jargon, these are called “multila-

beled instances.” One simple way to deal with such situations is to treat them as

several different classification problems, one for each possible class, where the

problem is to determine whether instances belong to that class or not.

Classification learning is sometimes called supervised because, in a sense, the

scheme operates under supervision by being provided with the actual outcome for

each of the training examples—the play or don’t play judgment, the lens recom-

mendation, the type of iris, the acceptability of the labor contract. This outcome

is called the class of the example. The success of classification learning can be

judged by trying out the concept description that is learned on an independent set

of test data for which the true classifications are known but not made available to

the machine. The success rate on test data gives an objective measure of how

well the concept has been learned. In many practical data mining applications,

success is measured more subjectively in terms of how acceptable the learned

description—such as the rules or decision tree—are to a human user.

Most of the examples in Chapter 1, What’s it all about?, can equally well be

used for association learning, in which there is no specified class. Here, the prob-

lem is to discover any structure in the data that is “interesting.” Some association

rules for the weather data were given in Section 1.2. Association rules differ from

classification rules in two ways: they can “predict” any attribute, not just the

class, and they can predict more than one attribute’s value at a time. Because of

this there are far more association rules than classification rules, and the challenge

is to avoid being swamped by them. For this reason, association rules are often

limited to those that apply to a certain minimum number of examples—say 80%

of the dataset—and have greater than a certain minimum accuracy level—say

95% accurate. Even then, there are usually lots of them, and they have to be

examined manually to determine whether they are meaningful or not. Association

rules usually involve only nonnumeric attributes: thus you wouldn’t normally

look for association rules in the iris dataset.

When there is no specified class, clustering is used to group items that seem

to fall naturally together. Imagine a version of the iris data in which the type of

iris is omitted, such as in Table 2.1. Then it is likely that the 150 instances fall

into natural clusters corresponding to the three iris types. The challenge is to find

these clusters and assign the instances to them—and to be able to assign new

instances to the clusters as well. It may be that one or more of the iris types split

naturally into subtypes, in which case the data will exhibit more than three natural

clusters. The success of clustering is often measured subjectively in terms of how

useful the result appears to be to a human user. It may be followed by a second

step of classification learning in which rules are learned that give an intelligible

description of how new instances should be placed into the clusters.

452.1 What’s a Concept?

Numeric prediction is a variant of classification learning in which the outcome

is a numeric value rather than a category. The CPU performance problem is one

example. Another, shown in Table 2.2, is a version of the weather data in which

what is to be predicted is not play or don’t play but rather is the time (in minutes)

to play. With numeric prediction problems, as with other machine learning situa-

tions, the predicted value for new instances is often of less interest than the struc-

ture of the description that is learned, expressed in terms of what the important

attributes are and how they relate to the numeric outcome.

2.2 WHAT’S IN AN EXAMPLE?
The input to a machine learning scheme is a set of instances. These instances are

the things that are to be classified, or associated, or clustered. Although until now

we have called them examples, henceforth we will generally use the more specific

term instances to refer to the input. In the standard scenario, each instance is an

individual, independent example of the concept to be learned. Instances are char-

acterized by the values of a set of predetermined attributes. This was the case in

all the sample datasets described in Chapter 1, What’s it all about? (weather, con-

tact lens, the iris, and labor negotiations problems). Each dataset is represented

Table 2.1 Iris Data as a Clustering Problem

Sepal Length Sepal Width Petal Length Petal Width

1 5.1 3.5 1.4 0.2
2 4.9 3.0 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5.0 3.6 1.4 0.2
. . .

51 7.0 3.2 4.7 1.4
52 6.4 3.2 4.5 1.5
53 6.9 3.1 4.9 1.5
54 5.5 2.3 4.0 1.3
55 6.5 2.8 4.6 1.5
. . .

101 6.3 3.3 6.0 2.5
102 5.8 2.7 5.1 1.9
103 7.1 3.0 5.9 2.1
104 6.3 2.9 5.6 1.8
105 6.5 3.0 5.8 2.2
. . .

46 CHAPTER 2 Input: concepts, instances, attributes

as a matrix of instances versus attributes, which in database terms is a single

relation, or a flat file.

Expressing the input data as a set of independent instances is by far the most com-

mon situation for practical data mining. However, it is a rather restrictive way of for-

mulating problems, and it is worth spending some time reviewing why. Problems

often involve relationships between objects, rather than separate, independent

instances. Suppose, to take a specific situation, a family tree is given, and we want to

learn the concept sister. Imagine your own family tree, with your relatives (and their

genders) placed at the nodes. This tree is the input to the learning process, along with

a list of pairs of people and an indication of whether they are sisters or not.

RELATIONS

Fig. 2.1 shows part of a family tree, below which are two tables that each define

sisterhood in a slightly different way. A yes in the third column of the tables means

that the person in the second column is a sister of the person in the first column

(that’s just an arbitrary decision we’ve made in setting up this example).

The first thing to notice is that there are a lot of nos in the third column of the

table on the left—because there are 12 people and 123 125 144 pairs of people

in all, and most pairs of people aren’t sisters. The table on the right, which gives

the same information, records only the positive examples and assumes that all

others are negative. The idea of specifying only positive examples and adopting a

standing assumption that the rest are negative is called the closed world assump-

tion. It is frequently assumed in theoretical studies; however, it may be less

appropriate in real-life problems.

Table 2.2 Weather Data With a Numeric Class

Outlook Temperature Humidity Windy Play-time

Sunny 85 85 False 5
Sunny 80 90 True 0
Overcast 83 86 False 55
Rainy 70 96 False 40
Rainy 68 80 False 65
Rainy 65 70 True 45
Overcast 64 65 True 60
Sunny 72 95 False 0
Sunny 69 70 False 70
Rainy 75 80 False 45
Sunny 75 70 True 50
Overcast 72 90 True 55
Overcast 81 75 False 75
Rainy 71 91 True 10

472.2 What’s in an Example?

Neither table in Fig. 2.1 is of any use without the family tree itself. This tree

can also be expressed in the form of a table, part of which is shown in Table 2.3.

Now the problem is expressed in terms of two relationships. But these tables do

not contain independent sets of instances because values in the Name, Parent1,

and Parent2 columns of the sister-of relation refer to rows of the family tree rela-

tion. We can make them into a single set of instances by collapsing the two

tables into the single one of Table 2.4.

FIGURE 2.1

A family tree and two ways of expressing the sister-of relation.

Table 2.3 Family Tree

Name Gender Parent1 Parent2

Peter Male ? ?
Peggy Female ? ?
Steven Male Peter Peggy
Graham Male Peter Peggy
Pam Female Peter Peggy
Ian Male Grace Ray

48 CHAPTER 2 Input: concepts, instances, attributes

Table 2.4 The Sister-of Relation

First Person Second Person

Name Gender Parent1 Parent2 Name Gender Parent1 Parent2 Sister-of?

Steven Male Peter Peggy Pam Female Peter Peggy Yes
Graham Male Peter Peggy Pam Female Peter Peggy Yes
Ian Male Grace Ray Pippa Female Grace Ray Yes
Brian Male Grace Ray Pippa Female Grace Ray Yes
Anna Female Pam Ian Nikki Female Pam Ian Yes
Nikki Female Pam Ian Anna Female Pam Ian Yes

All the rest No

We have at last succeeded in transforming the original relational problem into

the form of instances, each of which is an individual, independent example of the

concept that is to be learned. Of course, the instances are not really indepen-

dent—there are plenty of relationships among different rows of the table!—but

they are independent as far as the concept of sisterhood is concerned. Most

machine learning schemes will still have trouble dealing with this kind of data, as

we will see in Section 3.6, but at least the problem has been recast into the right

form. A simple rule for the sister-of relation is.

If second person’s gender 5 female
and first person’s parent1 5 second person’s parent1
then sister-of 5 yes.

This example shows how you can take a relationship between different nodes

of a tree and recast it into a set of independent instances. In database terms, you

take two relations and join them together to make one, a process of flattening that

is technically called denormalization. It is always possible to do this with any

(finite) set of (finite) relations, but denormalization may yield sets of rows that

need to be aggregated to form independent instances.

The structure of Table 2.4 can be used to describe any relationship between

two people—grandparenthood, second cousins twice removed, and so on.

Relationships among more people would require a larger table. Relationships in

which the maximum number of people is not specified in advance pose a more

serious problem. If we want to learn the concept of nuclear family (parents and

their children), the number of people involved depends on the size of the largest

nuclear family, and although we could guess at a reasonable maximum

(10? 20?), the actual number can only be found by scanning the tree itself.

Nevertheless, given a finite set of finite relations we could, at least in principle,

form a new “superrelation” that contained one row for every combination of

people, and this would be enough to express any relationship between people

no matter how many were involved. The computational and storage costs

would, however, be prohibitive.

Another problem with denormalization is that it produces apparent regularities

in the data that are completely spurious and are in fact merely reflections of the

original database structure. For example, imagine a supermarket database with a

relation for customers and the products they buy, one for products and their sup-

pliers, and one for suppliers and their address. Denormalizing this will produce a

flat file that contains, for each instance, customer, product, supplier, and supplier

address. A database mining tool that seeks structure in the database may come up

with the fact that customers who buy beer also buy chips, a discovery that could

be significant from the supermarket manager’s point of view. However, it may

also come up with the fact that supplier address can be predicted exactly from

supplier—a “discovery” that will not impress the supermarket manager at all.

This fact masquerades as a significant discovery from the flat file but is present

explicitly in the original database structure.

50 CHAPTER 2 Input: concepts, instances, attributes

Many abstract computational problems involve relations that are not finite,

although clearly any actual set of input examples must be finite. Concepts such as

ancestor-of involve arbitrarily long paths through a tree, and although the human

race, and hence its family tree, may be finite (although prodigiously large), many

artificial problems generate data that truly is infinite. Although it may sound

abstruse, this situation is the norm in areas such as list processing and logic pro-

gramming and is addressed in a subdiscipline of machine learning called inductive

logic programming. Computer scientists usually use recursion to deal with situa-

tions in which the number of possible examples is infinite. For example,

If person1 is a parent of person2
then person1 is an ancestor of person2

If person1 is a parent of person2
and person2 is an ancestor of person3
then person1 is an ancestor of person3

is a simple recursive definition of ancestor that works no matter how distantly

two people are related. Techniques of inductive logic programming can learn

recursive rules such as these from a finite set of instances such as those in

Table 2.5.

The real drawbacks of such techniques, however, are that they do not cope

well with noisy data, and they tend to be so slow as to be unusable on anything

but small artificial datasets. They are not covered in this book.

OTHER EXAMPLE TYPES

As we have seen, general relations present substantial challenges and this book

will deal with them no further. Structured examples such as graphs and trees can

be viewed as special cases of relations that are often mapped into independent

instances by extracting local or global features based on their structure and repre-

senting them as attributes. Similarly, sequences of items may be treated by

describing them, or their individual items, in terms of a fixed set of properties

represented by attributes. Fortunately most practical data mining problems can be

expressed quite effectively as a set of instances, each one being an example of

the concept to be learned.

In some situations, instead of the individual instances being examples of the

concept, each individual example comprises a set of instances that are described

by the same attributes. This “multi-instance” setting covers some important real-

world applications. One concerns the inference of characteristics of active drug

molecules, where activity corresponds to how well a drug molecule bonds to a

“bonding site” on a target molecule. The problem is that the drug molecule can

assume alternative shapes by rotating its bonds. It is classed as positive if just one

of these shapes actually binds to the site and has the desired effect—but it is not

known which shape it is. On the other hand, a drug molecule is negative if none

512.2 What’s in an Example?

Table 2.5 Another Relation

First Person Second Person

Name Gender Parent1 Parent2 Name Gender Parent1 Parent2 Ancestor of?

Peter Male ? ? Steven Male Peter Peggy Yes
Peter Male ? ? Pam Female Peter Peggy Yes
Peter Male ? ? Anna Female Pam Ian Yes
Peter Male ? ? Nikki Female Pam Ian Yes
Pam Female Peter Peggy Nikki Female Pam Ian Yes
Grace Female ? ? Ian Male Grace Ray Yes
Grace Female ? ? Nikki Female Pam Ian Yes

Other examples here Yes

All the rest No

of the shapes bind successfully. In this case, a multiple instance is a set of shapes,

and the entire set is classified as positive or negative.

Multi-instance problems often also arise naturally when relations from a data-

base are joined, i.e., when several rows from a secondary relation are associated

with the same row in the target relation. For example, we may want to classify

computer users as experts or novices based on descriptions of user sessions that

are stored in a secondary table. The target relation just has the classification and

the user ID. Joining the two tables creates a flat file. However, the rows pertain-

ing to an individual user are not independent. Classification is performed on a

per-user basis, so the set of session instances associated with the same user should

be viewed as a single example for learning.

The goal of multi-instance learning is still to produce a concept description,

but now the task is more difficult because the learning algorithm has to contend

with incomplete information about each training example. Rather than seeing

each example in terms of a single definitive attribute vector, the learning

algorithm sees each example as a set of attribute vectors. Things would be easy

if only it knew which member of the set was responsible for the example’s

classification—but this is not known.

Several special learning algorithms have been developed to tackle the multi-

instance problem: we describe some of them in Chapter 4, Algorithms: the basic

methods. It is also possible to apply standard machine learning schemes by recast-

ing the problem as a single table comprising independent instances. Chapter 4,

Algorithms: the basic methods, gives some ways of achieving this.

In summary, the input to a data mining scheme is generally expressed as a

table of independent instances of the concept to be learned. Because of this it

has been suggested, disparagingly, that we should really talk of file mining

rather than database mining. Relational data is more complex than a flat file. A

finite set of finite relations can always be recast into a single table, although

often at enormous cost in space. Moreover, denormalization can generate spuri-

ous regularities in the data, and it is essential to check the data for such artifacts

before applying a learning scheme. Potentially infinite concepts can be dealt

with by learning rules that are recursive, although that is beyond the scope of

this book. Finally, some important real-world problems are most naturally

expressed in a multi-instance format, where each example is actually a separate

set of instances.

2.3 WHAT’S IN AN ATTRIBUTE?
Each instance that provides the input to machine learning is characterized by its

values on a fixed, predefined set of features or attributes. The instances are the

rows of the tables that we have shown for the weather, contact lens, iris, and CPU

performance problems, and the attributes are the columns. (The labor negotiations

532.3 What’s in an Attribute?

data was an exception: we presented this with instances in columns and attributes

in rows for space reasons.)

The use of a fixed set of features imposes another restriction on the kinds of

problems generally considered in practical data mining. What if different

instances have different features? If the instances were transportation vehicles,

then number of wheels is a feature that applies to many vehicles but not to ships,

e.g., whereas number of masts might be a feature that applies to ships but not to

land vehicles. The standard workaround is to make each possible feature an

attribute and to use a special “irrelevant value” flag to indicate that a particular

attribute is not available for a particular case. A similar situation arises when the

existence of one feature (say, spouse’s name) depends on the value of another

(married or single).

The value of an attribute for a particular instance is a measurement of the

quantity to which the attribute refers. There is a broad distinction between attri-

butes that are numeric and ones that are nominal. Numeric attributes, sometimes

called continuous attributes, measure numbers—either real or integer valued.

Note that the term continuous is routinely abused in this context: integer-valued

attributes are certainly not continuous in the mathematical sense. Nominal attri-

butes take on values in a prespecified, finite set of possibilities and are sometimes

called categorical. But there are other possibilities. Statistics texts often introduce

“levels of measurement” such as nominal, ordinal, interval, and ratio.

Nominal attributes have values that are distinct symbols. The values them-

selves serve just as labels or names—hence the term nominal, which comes from

the Latin word for name. For example, in the weather data the attribute outlook

has values sunny, overcast, and rainy. No relation is implied among these three—

no ordering or distance measure. It certainly does not make sense to add the

values together, multiply them, or even compare their size. A rule using such an

attribute can only test for equality or inequality, as in

outlook: sunny - no
overcast - yes
rainy - yes

Ordinal attributes are ones that make it possible to rank order the categories.

However, although there is a notion of ordering, there is no notion of distance.

For example, in the weather data the attribute temperature has values hot, mild,

and cool. These are ordered. Whether you say that

hot . mild . cool or hot , mild , cool

is a matter of convention—it does not matter which is used as long as consistency

is maintained. What is important is that mild lies between the other two.

Although it makes sense to compare two values, it does not make sense to add or

subtract them—the difference between hot and mild cannot be compared with the

difference between mild and cool. A rule using such an attribute might involve a

comparison, as in

54 CHAPTER 2 Input: concepts, instances, attributes

temperature 5 hot - no
temperature , hot - yes

Notice that the distinction between nominal and ordinal attributes is not

always straightforward and obvious. Indeed, the very example of a nominal attri-

bute that we used above, outlook, is not completely clear: you might argue that

the three values do have an ordering—overcast being somehow intermediate

between sunny and rainy as weather turns from good to bad.

Interval quantities have values that are not only ordered but measured in fixed

and equal units. A good example is temperature, expressed in degrees (say,

degrees Fahrenheit) rather than on the nonnumeric scale implied by cool, mild,

and hot. It makes perfect sense to talk about the difference between two

temperatures, say 46�C and 48�C, and compare that with the difference between

another two temperatures, say 22�C and 24�C. Another example is dates. You can

talk about the difference between the years 1939 and 1945 (6 years), or even the

average of the years 1939 and 1945 (1942), but it doesn’t make much sense to

consider the sum of the years 1939 and 1945 (3884) or three times the year 1939

(5817), because the starting point, year 0, is completely arbitrary—indeed, it has

changed many times throughout the course of history. (Children sometimes

wonder what the year 300 BC was called in 300 BC).

Ratio quantities are ones for which the measurement scheme inherently

defines a zero point. For example, when measuring the distance from one object

to another, the distance between the object and itself forms a natural zero. Ratio

quantities are treated as real numbers: any mathematical operations are allowed.

It certainly does make sense to talk about three times the distance, and even to

multiply one distance by another to get an area.

However, the question of whether there is an “inherently” defined zero point

depends on our scientific knowledge—it’s culture relative. For example, Daniel

Fahrenheit knew no lower limit to temperature, and his scale is an interval one.

Nowadays, however, we view temperature as a ratio scale based on absolute zero.

Measurement of time in years since some culturally defined zero such as ad 0 is

not a ratio scale; years since the big bang is. Even the zero point of money—

where we are usually quite happy to say that something cost twice as much as

something else—may not be quite clearly defined for those of us who constantly

max out our credit cards.

Many practical data mining systems accommodate just two of these four levels

of measurement: nominal and ordinal. Nominal attributes are sometimes called

categorical, enumerated, or discrete. Enumerated is the standard term used in

computer science to denote a categorical data type; however, the strict definition

of the term—namely, to put into one-to-one correspondence with the natural

numbers—implies an ordering, which is specifically not implied in the machine

learning context. Discrete also has connotations of ordering because you often

discretize a continuous numeric quantity. Ordinal attributes are often coded

as numeric data, or perhaps continuous data, but without the implication of

552.3 What’s in an Attribute?

mathematical continuity. A special case of the nominal scale is the dichotomy,

which has only two members—often designated as true and false, or yes and no

in the weather data. Such attributes are sometimes called Boolean.

Machine learning systems can use a wide variety of other information about

attributes. For instance, dimensional considerations could be used to restrict the

search to expressions or comparisons that are dimensionally correct. Circular

ordering could affect the kinds of tests that are considered. For example, in a tem-

poral context, tests on a day attribute could involve next day, previous day, next

weekday, same day next week. Partial orderings, i.e., generalization or specializa-

tion relations, frequently occur in practical situations. Information of this kind is

often referred to as metadata, data about data. However, the kinds of practical

schemes used for data mining are rarely capable of taking metadata into account,

although it is likely that these capabilities will develop rapidly in the future.

2.4 PREPARING THE INPUT
Preparing input for a data mining investigation usually consumes the bulk of the

effort invested in the entire data mining process. While this book is not really

about the problems of data preparation, we want to give you a feeling for the

issues involved so that you can appreciate the complexities. Following that, we

look at a particular input file format, the attribute-relation file format (ARFF),

that is used in the Weka system described in Appendix B. Then we consider

issues that arise when converting datasets to such a format, because there are

some simple practical points to be aware of. Bitter experience shows that real

data is often disappointingly low in quality, and careful checking—a process that

has become known as data cleaning—pays off many times over.

GATHERING THE DATA TOGETHER

When beginning work on a data mining problem, it is first necessary to bring all

the data together into a set of instances. We explained the need to denormalize

relational data when describing the family tree example. Although it illustrates

the basic issue, this self-contained and rather artificial example does not really

convey a feeling for what the process will be like in practice. In a real business

application, it will be necessary to bring data together from different departments.

For example, in a marketing study data will be needed from the sales department,

the customer billing department, and the customer service department.

Integrating data from different sources usually presents many challenges—not

deep issues of principle but nasty realities of practice. Different departments will

use different styles of record keeping, different conventions, different time peri-

ods, different degrees of data aggregation, different primary keys, and will have

different kinds of error. The data must be assembled, integrated, and cleaned up.

56 CHAPTER 2 Input: concepts, instances, attributes

The idea of company-wide database integration is known as data warehousing.

Data warehouses provide a single consistent point of access to corporate or orga-

nizational data, transcending departmental divisions. They are the place where old

data is published in a way that can be used to inform business decisions. The

movement toward data warehousing is a recognition of the fact that the fragmen-

ted information that an organization uses to support day-to-day operations at a

departmental level can have immense strategic value when brought together.

Clearly, the presence of a data warehouse is a very useful precursor to data min-

ing, and if it is not available, many of the steps involved in data warehousing will

have to be undertaken to prepare the data for mining.

Even a data warehouse may not contain all the necessary data, and you may

have to reach outside the organization to bring in data relevant to the problem at

hand. For example, weather data had to be obtained in the load forecasting exam-

ple in Chapter 1, What’s it all about?, and demographic data is needed for mar-

keting and sales applications. Sometimes called overlay data, this is not normally

collected by an organization but is clearly relevant to the data mining problem. It,

too, must be cleaned up and integrated with the other data that has been

collected.

Another practical question when assembling the data is the degree of aggrega-

tion that is appropriate. When a dairy farmer decides which cows to sell off, the

milk production records—which an automatic milking machine records twice a

day—must be aggregated. Similarly, raw telephone call data is not much use

when telecommunications firms study their clients’ behavior: the data must be

aggregated to the customer level. But do you want usage by month or by quarter,

and for how many months or quarters in arrears? Selecting the right type and

level of aggregation is usually critical for success.

Because so many different issues are involved, you can’t expect to get it right

the first time. This is why data assembly, integration, cleaning, aggregating, and

general preparation take so long.

ARFF FORMAT

We now look at a standard way of representing datasets, called an ARFF file. We

describe the regular version, but there is also a version called XRFF, which, as

the name suggests, gives ARFF header and instance information in the XML

markup language.

Fig. 2.2 shows an ARFF file for the weather data in Table 1.3, the version

with some numeric features. Lines beginning with a % sign are comments.

Following the comments at the beginning of the file are the name of the relation

(weather) and a block defining the attributes (outlook, temperature, humidity,

windy, play?). Nominal attributes are followed by the set of values they can take

on, enclosed in curly braces. Values can include spaces; if so, they must be placed

within quotation marks. Numeric values are followed by the keyword numeric.

572.4 Preparing the Input

Although the weather problem is to predict the class value play? from the

values of the other attributes, the class attribute is not distinguished in any way in

the data file. The ARFF format merely gives a dataset; it does not specify which

of the attributes is the one that is supposed to be predicted. This means that the

same file can be used for investigating how well each attribute can be predicted

from the others, or to find association rules, or for clustering.

Following the attribute definitions is an @data line that signals the start of the

instances in the dataset. Instances are written one per line, with values for each

attribute in turn, separated by commas. If a value is missing it is represented by a

single question mark (there are no missing values in this dataset). The attribute

specifications in ARFF files allow the dataset to be checked to ensure that it con-

tains legal values for all attributes, and programs that read ARFF files do this

checking automatically.

As well as nominal and numeric attributes, exemplified by the weather data,

the ARFF format has three further attribute types: string attributes, date attributes,

and relation-valued attributes. String attributes have values that are textual.

Suppose you have a string attribute that you want to call description. In the block

defining the attributes it is specified like this:

@attribute description string

Then, in the instance data, include any character string in quotation marks (to

include quotation marks in your string, use the standard convention of preceding

FIGURE 2.2

ARFF file for the weather data.

58 CHAPTER 2 Input: concepts, instances, attributes

each one by a backslash “\”). Strings are stored internally in a string table, and

represented by their address in that table. Thus two strings that contain the same

characters will have the same value.

String attributes can have values that are very long—even a whole document.

To be able to use string attributes for text mining, it is necessary to be able to

manipulate them. For example, a string attribute might be converted into many

numeric attributes, one for each word in the string, whose value is the number of

times that word appears. These transformations are described in Section 8.3.

Date attributes are strings with a special format and are introduced like this:

@attribute today date

(for an attribute called today). Weka uses the ISO-8601 combined date and time

format yyyy-MM-dd’T’HH:mm:ss with four digits for the year, two each for the

month and day, then the letter T followed by the time with two digits for each of

hours, minutes, and seconds.1 In the data section of the file dates are specified as

the corresponding string representation of the date and time, e.g., 2004-04-

03T12:00:00. Although they are specified as strings, dates are converted to numeric

form when the input file is read. Dates can also be converted internally to different

formats, so you can have absolute timestamps in the data file and use transforma-

tions to forms such as time of day or day of the week to detect periodic behavior.

Relation-valued attributes differ from the other types because they allow

multi-instance problems to be represented in ARFF format. The value of a

relation attribute is a separate set of instances. The attribute is defined with a

name and the type relational, followed by a nested attribute block that gives the

structure of the referenced instances. For example, a relation-valued attribute

called bag whose value is a dataset with the same structure as the weather data

but without the play attribute can be specified like this:

@attribute bag relational
@attribute outlook {sunny, overcast, rainy}
@attribute temperature numeric
@attribute humidity numeric
@attribute windy {true, false}

@end bag

The @end bag indicates the end of the nested attribute block. Fig. 2.3 shows

an ARFF file for a multi-instance problem based on the weather data. In this

case, each example is made up of an identifier value, two consecutive instances

from the original weather data, and a class label. Each value of the attribute is a

string that encapsulates two weather instances separated by the “\n” character

(which represents an embedded new-line). This might be appropriate for a game

1Weka contains a mechanism for defining a date attribute to have a different format by including a

special string in the attribute definition.

592.4 Preparing the Input

that lasts 2 days. A similar dataset might be used for games that last for an inde-

terminate number of days (e.g., first-class cricket takes 3�5 days). Note, how-

ever, that in multi-instance learning the order in which the instances is given is

generally considered unimportant. An algorithm might learn that cricket can be

played if none of the days is rainy and at least one is sunny, but not that it can

only be played in a certain sequence of weather events.

SPARSE DATA

Sometimes most attributes have a value of 0 for most of the instances. For exam-

ple, market basket data records purchases made by supermarket customers. No

matter how big the shopping expedition, customers never purchase more than a

tiny portion of the items a store offers. The market basket data contains the quan-

tity of each item that the customer purchases, and this is 0 for almost all items in

stock. The data file can be viewed as a matrix whose rows and columns represent

customers and stock items, and the matrix is “sparse”—nearly all its elements are

0. Another example occurs in text mining, where the instances are documents.

Here, the columns and rows represent documents and words, and the numbers

indicate how many times a particular word appears in a particular document.

Most documents have a rather small vocabulary, so most entries are 0.

It can be impractical to represent each element of a sparse matrix explicitly.

Instead of representing each value in order, like this:

0, X, 0, 0, 0, 0, Y, 0, 0, 0, “class A”
0, 0, 0, W, 0, 0, 0, 0, 0, 0, “class B”

FIGURE 2.3

Multi-instance ARFF file for the weather data.

60 CHAPTER 2 Input: concepts, instances, attributes

the nonzero attributes can be explicitly identified by attribute number and their

value stated:

{1 X, 6 Y, 10 “class A”}
{3 W, 10 “class B”}

Each instance is enclosed in braces and contains the index number of each non-

zero attribute (indexes start from 0) and its value. Sparse data files have the same

@relation and @attribute tags, followed by an @data line, but the data section is

different and contains specifications in braces such as those shown previously.

Note that the omitted values have a value of 0—they are not “missing” values! If a

value is unknown, it must be explicitly represented with a question mark.

ATTRIBUTE TYPES

The ARFF format accommodates the two basic data types: nominal and numeric.

String attributes and date attributes are effectively nominal and numeric, respec-

tively, although before they are used strings are often converted into a numeric

form such as a word vector. Relation-valued attributes contain separate sets of

instances that have basic attributes, such as numeric and nominal ones. How the

two basic types are interpreted depends on the learning scheme being used. For

example, many schemes treat numeric attributes as ordinal scales and only use

less-than and greater-than comparisons between the values. However, some treat

them as ratio scales and use distance calculations. You need to understand how

machine learning schemes work before using them for data mining.

If a learning scheme treats numeric attributes as though they are measured on

ratio scales, the question of normalization arises. Attributes are often normalized

to lie in a fixed range—usually from zero to one—by dividing all values by the

maximum value encountered or by subtracting the minimum value and dividing

by the range between the maximum and minimum values. Another normalization

technique is to calculate the statistical mean and standard deviation of the attri-

bute values, subtract the mean from each value, and divide the result by the stan-

dard deviation. This process is called standardizing a statistical variable and

results in a set of values whose mean is zero and standard deviation is one.

Some learning schemes—e.g., instance-based and regression methods—deal

only with ratio scales because they calculate the “distance” between two instances

based on the values of their attributes. If the actual scale is ordinal, a numeric dis-

tance function must be defined. One way of doing this is to use a two-level

distance: one if the two values are different and zero if they are the same. Any

nominal quantity can be treated as numeric by using this distance function.

However, it is rather a crude technique and conceals the true degree of variation

between instances. Another possibility is to generate several synthetic binary attri-

butes for each nominal attribute: we return to this in Section 7.3 when we look at

the use of trees for numeric prediction.

612.4 Preparing the Input

Sometimes there is a genuine mapping between nominal attributes and

numeric scales. For example, postal ZIP codes indicate areas that could be repre-

sented by geographical coordinates; the leading digits of telephone numbers may

do so too, depending on where you live. The first two digits of a student’s identi-

fication number may be the year in which she first enrolled.

It is very common for practical datasets to contain nominal values that are

coded as integers. For example, an integer identifier may be used as a code for an

attribute such as part number, yet such integers are not intended for use in less-

than or greater-than comparisons. If this is the case, it is important to specify that

the attribute is nominal rather than numeric.

It is quite possible to treat an ordinal attribute as though it were nominal.

Indeed, some machine learning schemes only deal with nominal elements. For

example, in the contact lens problem the age attribute is treated as nominal, and

the rules generated included these:

If age 5 young and astigmatic 5 no
and tear production rate 5 normal
then recommendation 5 soft

If age 5 pre-presbyopic and astigmatic 5 no
and tear production rate 5 normal
then recommendation 5 soft

But in fact age, specified in this way, is really an ordinal attribute for which

the following is true:

young , pre-presbyopic , presbyopic.

If it were treated as ordinal, the two rules could be collapsed into one:

If age #pre-presbyopic and astigmatic 5 no
and tear production rate 5 normal
then recommendation 5 soft

which is a more compact, and hence more satisfactory, way of saying the same

thing.

MISSING VALUES

Most datasets encountered in practice, such as the labor negotiations data in

Table 1.6, contain missing values. Missing values are frequently indicated by out-

of-range entries; perhaps a negative number (e.g., 21) in a numeric field that is

normally only positive, or a 0 in a numeric field that can never normally be 0.

For nominal attributes, missing values may be indicated by blanks or dashes.

Sometimes different kinds of missing values are distinguished (e.g., unknown vs

unrecorded vs irrelevant values) and perhaps represented by different negative

integers (21, 22, etc.).

62 CHAPTER 2 Input: concepts, instances, attributes

You have to think carefully about the significance of missing values. They may

occur for a number of reasons, such as malfunctioning measurement equipment,

changes in experimental design during data collection, and collation of several sim-

ilar but not identical datasets. Respondents in a survey may refuse to answer certain

questions such as age or income. In an archeological study, a specimen such as a

skull may be damaged so that some variables cannot be measured. In a biological

one, plants or animals may die before all variables have been measured. What do

these things mean about the example under consideration? Might the skull damage

have some significance in itself, or is it just because of some random event? Does a

plant’s early death have some bearing on the case or not?

Most machine learning schemes make the implicit assumption that there is no

particular significance in the fact that a certain instance has an attribute value

missing: the value is simply not known. However, there may be a good reason

why the attribute’s value is unknown—perhaps a decision was taken, on the evi-

dence available, not to perform some particular test—and that might convey some

information about the instance other than the fact that the value is simply missing.

If this is the case, then it would be more appropriate to record not tested as

another possible value for this attribute or perhaps as another attribute in the data-

set. As the preceding examples illustrate, only someone familiar with the data can

make an informed judgment about whether a particular value being missing has

some extra significance or whether it should simply be coded as an ordinary miss-

ing value. Of course, if there seem to be several types of missing value, that is

prima facie evidence that something is going on that needs to be investigated.

If missing values mean that an operator has decided not to make a particular

measurement, that may convey a great deal more than the mere fact that the value

is unknown. For example, people analyzing medical databases have noticed that

cases may, in some circumstances, be diagnosable simply from the tests that a

doctor decides to make regardless of the outcome of the tests. Then a record of

which values are “missing” is all that is needed for a complete diagnosis—the

actual values can be ignored completely!

INACCURATE VALUES

It is important to check data mining files carefully for rogue attributes and attri-

bute values. The data used for mining has almost certainly not been gathered

expressly for that purpose. When originally collected, many of the fields probably

didn’t matter and were left blank or unchecked. Provided it does not affect the

original purpose of the data, there is no incentive to correct it. However, when

the same database is used for mining, the errors and omissions suddenly start to

assume great significance. For example, banks do not really need to know the age

of their customers, so their databases may contain many missing or incorrect

values. But age may be a very significant feature in mined rules.

Typographic errors in a dataset will obviously lead to incorrect values. Often

the value of a nominal attribute is misspelled, creating an extra possible value for

632.4 Preparing the Input

that attribute. Or perhaps it is not a misspelling but different names for the same

thing, such as Pepsi and Pepsi Cola. Obviously the point of a defined format such

as ARFF is to allow data files to be checked for internal consistency. However,

errors that occur in the original data file are often preserved through the conver-

sion process into the file that is used for data mining; thus the list of possible

values that each attribute takes on should be examined carefully.

Typographical or measurement errors in numeric values generally cause out-

liers that can be detected by graphing one variable at a time. Erroneous values

often deviate significantly from the pattern that is apparent in the remaining

values. Sometimes, however, inaccurate values are hard to find, particularly with-

out specialist domain knowledge.

Duplicate data presents another source of error. Most machine learning tools

will produce different results if some of the instances in the data files are dupli-

cated, because repetition gives them more influence on the result.

People often make deliberate errors when entering personal data into data-

bases. They might make minor changes in the spelling of their street to try to

identify whether the information they have provided ends up being sold to adver-

tising agencies that burden them with junk mail. They might adjust the spelling of

their name when applying for insurance if they have had insurance refused in the

past. Rigid computerized data entry systems often impose restrictions that require

imaginative workarounds. One story tells of a foreigner renting a vehicle in the

United States. Being from abroad, he had no ZIP code; yet the computer insisted

on one; in desperation the operator suggested that he use the ZIP code of the

rental agency. If this is common practice, future data mining projects may notice

a cluster of customers who apparently live in the same district as the agency!

Similarly, a supermarket checkout operator sometimes uses his own frequent

buyer card when the customer does not supply one, either so that the customer

can get a discount that would otherwise be unavailable or simply to accumulate

credit points in the cashier’s account. Only a deep semantic knowledge of what is

going on will be able to explain systematic data errors like these.

Finally, data goes stale. Many items change as circumstances change. For

example, items in mailing lists—names, addresses, telephone numbers, and so

on—change frequently. You need to consider whether the data you are mining is

still current.

UNBALANCED DATA

In practical applications of classification schemes, it is very often the case that

one class is far more prevalent than the others. For example, when predicting the

weather in Ireland, it is pretty safe to predict that tomorrow will be rainy rather

than sunny. Given a dataset in which these two values form the class attribute,

with information relevant to the forecast in the other attributes, excellent accuracy

is obtained by predicting rainy regardless of the values of the attributes. In fact, it

might be very difficult to come up with a prediction that is numerically more

64 CHAPTER 2 Input: concepts, instances, attributes

accurate. (A more serious example is the image screening problem of Section 1.3:

of the many dark regions in the training data, only a very small fraction are actual

oil slicks—fortunately).

Suppose the accuracy if the same class value is predicted for every instance,

regardless of the other attributes’ values, is (say) 99%. It’s hard to imagine that a

more sophisticated rule could do better. It’s true that there may be better ways of

predicting the minority outcome, but these will inevitably make some errors on

some cases with the majority outcome. The advantage of better predictions in the

1% of minority-outcome cases will almost certainly be overwhelmed by sacrific-

ing even a tiny bit of accuracy on the 99% cases with the majority outcome.

Always predicting the majority outcome rarely says anything interesting about

the data. The problem is that raw accuracy, measured by the proportion of correct

predictions, is not necessarily the best criterion of success. In practice, different

costs may be associated with the two types of error. If preventative measures are

available, the cost of predicting a nuclear disaster (or a death) which turns out not

to happen may be serious, but is overwhelmed by the cost of not predicting a

nuclear disaster (or a death) if one actually happens. We will consider cost-

sensitive evaluation, classification, and learning later in this book.

GETTING TO KNOW YOUR DATA

There is no substitute for getting to know your data. Simple tools that show histo-

grams of the distribution of values of nominal attributes, and graphs of the values

of numeric attributes (perhaps sorted or simply graphed against instance number),

are very helpful. These graphical visualizations of the data make it easy to iden-

tify outliers, which may well represent errors in the data file—or arcane conven-

tions for coding unusual situations, such as a missing year as 9999 or a missing

weight as 21 kg, that no one has thought to tell you about. Domain experts need

to be consulted to explain anomalies, missing values, the significance of integers

that represent categories rather than numeric quantities, and so on. Pairwise plots

of one attribute against another, or each attribute against the class value, can be

extremely revealing.

Data cleaning is a time-consuming and labor-intensive procedure, but one that

is absolutely necessary for successful data mining. With a large dataset, people

often give up—How can they possibly check it all? Instead, you should sample a

few instances and examine them carefully. You’ll be surprised at what you find.

Time looking at your data is always well spent.

2.5 FURTHER READING AND BIBLIOGRAPHIC NOTES
Pyle (1999) provided an extensive guide to data preparation for data mining.

There is also a great deal of interest in data warehousing and the problems it

652.5 Further Reading and Bibliographic Notes

entails. Kimball and Ross (2002) is the best introduction to these that we know

of. Cabena et al. (1998) estimated that data preparation accounts for 60% of the

effort involved in a data mining application, and they write at some length about

the problems involved.

The area of inductive logic programming, which deals with finite and infinite

relations, was covered by Bergadano and Gunetti (1996). The different “levels of

measurement” for attributes were introduced by Stevens (1946) and are well

described in the manuals for statistical packages such as SPSS (Nie, Hull,

Jenkins, Steinbrenner, & Bent, 1970).

The multi-instance learning setting in its original, quite specific sense, and the

drug activity prediction problem that motivated it, was introduced by Dietterich,

Lathrop, and Lozano-Perez (1997). The multilabeled instance problem, mentioned

near the beginning of Section 2.1, is quite a different setting; Read, Pfahringer,

Holmes, and Frank (2009) discussed some approaches for tackling it using

standard classification algorithms.

66 CHAPTER 2 Input: concepts, instances, attributes

3Output: knowledge
representation

CHAPTER OUTLINE

3.1 Tables ...68

3.2 Linear Models..68

3.3 Trees ..70

3.4 Rules ..75

Classification Rules ..75

Association Rules ...79

Rules With Exceptions ..80

More Expressive Rules ..82

3.5 Instance-Based Representation ...84

3.6 Clusters...87

3.7 Further Reading and Bibliographic Notes ...88

Many of the techniques in this book produce easily comprehensible descriptions

of the structural patterns in the data. Before looking at how these techniques

work, we have to see how structural patterns can be expressed. There are many

different ways for representing the patterns that can be discovered by machine

learning, and each one dictates the kind of technique that can be used to infer that

output structure from data. Once you understand how the output is represented,

you have come a long way toward understanding how it can be generated.

We saw many examples of machine learning in Chapter 1, What’s it all

about?. In these cases the output took the form of decision trees and classification

rules, which are basic knowledge representation styles that many machine learn-

ing methods use. Knowledge is really too imposing a word for a decision tree or

a collection of rules, and by using it we don’t really mean to imply that these

structures vie with the real kind of knowledge that we carry in our heads: it’s just

that we need some word to refer to the structures that learning methods produce.

There are more complex varieties of rules that allow exceptions to be specified,

and ones that can express relations among the values of the attributes of different

instances. Some problems have a numeric class, and—as mentioned in chapter:

What’s it all about?—the classic way of dealing with these is to use linear

models. Linear models can also be adapted to deal with binary classification.

Moreover, special forms of trees can be developed for numeric prediction.

Instance-based representations focus on the instances themselves rather than

rules that govern their attribute values. Finally, some learning schemes generate

clusters of instances. These different knowledge representation methods parallel

the different kinds of learning problems introduced in Chapter 2, Input: concepts,

instances, attributes.

3.1 TABLES
The simplest, most rudimentary way of representing the output from machine

learning is to make it just the same as the input—a table. For example, Table 1.2

is a decision table for the weather data: you just look up the appropriate condi-

tions to decide whether or not to play. Exactly the same process can be used for

numeric prediction too—in this case, the structure is sometimes referred to as

a regression table. Less trivially, creating a decision or regression table might

involve selecting some of the attributes. If temperature is irrelevant to the deci-

sion, e.g., a smaller, condensed table with that attribute missing would be a better

guide. The problem is, of course, to decide which attributes to leave out without

affecting the final decision. Attribute selection is discussed in Chapter 8, Data

transformations.

3.2 LINEAR MODELS
Another simple style of representation is a “linear model,” whose output is just

the sum of the attribute values, except that weights are applied to each attribute

before adding them together. The trick is to come up with good values for the

weights—ones that make the model’s output match the desired output. Here,

the output and the inputs—attribute values—are all numeric. Statisticians use the

word regression for the process of predicting a numeric quantity, and “linear

regression model” is another term for this kind of model. Unfortunately this does

not really relate to the ordinary use of the word “regression,” which means to

return to a previous state.

Linear models are easiest to visualize in two dimensions, where they are

tantamount to drawing a straight line through a set of data points. Fig. 3.1 shows a

line fitted to the CPU performance data described in Chapter 1, What’s it all about?

(Table 1.5), where only the cache attribute is used as input. The class attribute

performance is shown on the vertical axis, with cache on the horizontal axis: both

are numeric. The straight line represents the “best fit” prediction equation:

PRP5 37:061 2:47 CACH:

Given a test instance, a prediction can be produced by plugging the observed

value of cache into this expression to obtain a value for performance. Here the

68 CHAPTER 3 Output: knowledge representation

expression comprises a constant “bias” term (37.06) and a weight for the cache

attribute (2.47). Of course, linear models can be extended beyond a single

attribute—the trick is to come up with suitable values for each attribute’s weight,

and a bias term, that together give a good fit to the training data.

Linear models can also be applied to binary classification problems. In this

case, the line produced by the model separates the two classes: it defines where

the decision changes from one class value to the other. Such a line is often

referred to as the decision boundary. Fig. 3.2 shows a decision boundary for the

iris data that separates the Iris setosas from the Iris versicolors. In this case,

the data is plotted using two of the input attributes—petal length and petal

width—and the straight line defining the decision boundary is a function of these

two attributes. Points lying on the line are given by the equation:

2:0� 0:5 PETAL-LENGTH2 0:8 PETAL-WIDTH5 0:

As before, given a test instance, a prediction is produced by plugging the

observed values of the attributes in question into the expression. But here we

check the result and predict one class if it is greater than or equal to 0 (in this

case, Iris setosa) and the other if it is less than 0 (I. versicolor). Again, the model

can be extended to multiple attributes, in which case the boundary becomes

0

250

500

750

1000

1250

0 50 100 150 200 250 300

P
R

P

CACH

FIGURE 3.1

A linear regression function for the CPU performance data.

693.2 Linear Models

a high-dimensional plane or “hyperplane” in the instance space. The task is to

find values for the weights so that the training data is correctly classified by the

hyperplane.

In Figs. 3.1 and 3.2, a different fit to the data could be obtained by changing the

position and orientation of the line, i.e., by changing the weights. The weights for

Fig. 3.1 were found by a method called least squares linear regression; those

for Fig. 3.2 were found by the perceptron training rule. Both methods are described

in Chapter 4, Algorithms: the basic methods.

3.3 TREES
A “divide-and-conquer” approach to the problem of learning from a set of

independent instances leads naturally to a style of representation called a decision

tree. We have seen some examples of decision trees, for the contact lens

(Fig. 1.2) and labor negotiations (Fig. 1.3) datasets. Nodes in a decision tree

involve testing a particular attribute. Usually, the test compares an attribute value

with a constant. Leaf nodes give a classification that applies to all instances

that reach the leaf, or a set of classifications, or a probability distribution over all

–0.5

0

0.5

1

1.5

2

1 2 3 4 5

P
et

al
 w

id
th

Petal length

FIGURE 3.2

A linear decision boundary separating Iris setosas from Iris versicolors.

70 CHAPTER 3 Output: knowledge representation

possible classifications. To classify an unknown instance, it is routed down

the tree according to the values of the attributes tested in successive nodes,

and when a leaf is reached the instance is classified according to the class

assigned to the leaf.

If the attribute that is tested at a node is a nominal one, the number of

children is usually the number of possible values of the attribute. In this case,

because there is one branch for each possible value, the same attribute will not

be retested further down the tree. Sometimes the attribute values are divided

into two subsets, and the tree branches just two ways depending on which subset

the value lies in the tree; in that case, the attribute might be tested more than

once in a path.

If the attribute is numeric, the test at a node usually determines whether its

value is greater or less than a predetermined constant, giving a two-way split.

Alternatively, a three-way split may be used, in which case there are several

different possibilities. If missing value is treated as an attribute value in its own

right, that will create a third branch. An alternative for an integer-valued attribute

would be a three-way split into less than, equal to, and greater than. An alterna-

tive for a real-valued attribute, for which equal to is not such a meaningful

option, would be to test against an interval rather than a single constant, again

giving a three-way split: below, within, and above. A numeric attribute is often

tested several times in any given path down the tree from root to leaf, each test

involving a different constant. We return to this when describing the handling

of numeric attributes in Section 6.1.

Missing values pose an obvious problem. It is not clear which branch should

be taken when a node tests an attribute whose value is missing. Sometimes, as

described in Section 2.4, missing value is treated as an attribute value in its own

right. If this is not the case, missing values should be treated in a special way

rather than being considered just another possible value that the attribute might

take. A simple solution is to record the number of elements in the training set that

go down each branch and to use the most popular branch if the value for a test

instance is missing.

A more sophisticated solution is to notionally split the instance into pieces and

send part of it down each branch and from there right on down to the leaves of

the subtrees involved. The split is accomplished using a numeric weight between

0 and 1, and the weight for a branch is chosen to be proportional to the number

of training instances going down that branch, all weights summing to 1.

A weighted instance may be further split at a lower node. Eventually, the various

parts of the instance will each reach a leaf node, and the decisions at these leaf

nodes must be recombined using the weights that have percolated down to the

leaves. We return to this in Section 6.1.

So far we’ve described decision trees that divide the data at a node by

comparing the value of some attribute with a constant. This is the most common

approach. If you visualize this with two input attributes in two dimensions,

comparing the value of one attribute with a constant splits the data parallel to that

713.3 Trees

axis. However, there are other possibilities. Some trees compare two attributes

with one another, while others compute some function of several attributes.

For example, using a hyperplane as described in Section 3.2 results in an oblique

split that is not parallel to an axis. A functional tree can have oblique splits as

well as linear models at the leaf nodes, which are used for prediction. It is also

possible for some nodes in the tree to specify alternative splits on different

attributes, as though the tree designer couldn’t make up their mind which one to

choose. This might be useful if the attributes seem to be equally useful for classi-

fying the data. Such nodes are called option nodes, and when classifying

an unknown instance all branches leading from an option node are followed.

This means that the instance will end up in more than one leaf, giving various

alternative predictions, which are then combined in some fashion—e.g., using

majority voting.

It is instructive and can even be entertaining to build a decision tree for a

dataset manually. To do so effectively, you need a good way of visualizing

the data so that you can decide which are likely to be the best attributes to test

and what an appropriate test might be. The Weka Explorer, described in

Appendix B, has a User Classifier facility that allows users to construct a decision

tree interactively. It presents you with a scatter plot of the data against two

selected attributes, which you choose. When you find a pair of attributes that

discriminates the classes well, you can create a two-way split by drawing a

polygon around the appropriate data points on the scatter plot.

For example, in Fig. 3.3A the user is operating on a dataset with three classes,

the iris dataset, and has found two attributes, petallength and petalwidth, that do a

good job of splitting up the classes. A rectangle has been drawn, manually,

to separate out one of the classes (I. versicolor). Then the user switches to the

decision tree view in Fig. 3.3B to see the tree so far. The left-hand leaf node

contains predominantly irises of one type (I. versicolor, contaminated by only one

virginica); the right-hand one contains predominantly two types (I. setosa and

virginica, contaminated by only three versicolors). The user will probably

select the right-hand leaf and work on it next, splitting it further with another

rectangle—perhaps based on a different pair of attributes (although, from

Fig. 3.3A, these two look pretty good).

The kinds of decision trees we’ve been looking at are designed for predicting

categories rather than numeric quantities. When it comes to predicting numeric

quantities, as with the CPU performance data in Table 1.5, the same kind of tree

can be used, but each leaf would contain a numeric value that is the average of

all the training set values to which the leaf applies. Because a numeric quantity is

what is predicted, decision trees with averaged numeric values at the leaves are

called regression trees.

Fig. 3.4A shows a regression equation for the CPU performance data,

and Fig. 3.4B shows a regression tree. The leaves of the tree are numbers that

represent the average outcome for instances that reach the leaf. The tree is much

larger and more complex than the regression equation, and if we calculate the

72 CHAPTER 3 Output: knowledge representation

(A)

(B)

FIGURE 3.3

Constructing a decision tree interactively: (A) creating a rectangular test involving

petallength and petalwidth; (B) the resulting (unfinished) decision tree.

733.3 Trees

PRP =
– 56.1
+ 0.049 MYCT

+ 0.015 MMIN

+ 0.006 MMAX

+ 0.630 CACH

– 0.270 CHMIN

+ 1.46 CHMAX

LM1 PRP = 8.29 + 0.004 MMAX + 2.77 CHMIN

LM2 PRP = 20.3 + 0.004 MMIN – 3.99 CHMIN

+ 0.946 CHMAX

LM3 PRP = 38.1 + 0.012 MMIN

LM4 PRP = 19.5 + 0.002 MMAX + 0.698 CACH

+ 0.969 CHMAX

LM5 PRP = 285 1.46 MYCT + 1.02 CACH

– 9.39 CHMIN

LM6 PRP = – 65.8 + 0.03 MMIN – 2.94 CHMIN
+ 4.98 CHMAX

(A) (B) (C)

CHMIN

CACH

≤7.5

MMAX

>7.5

MMAX

≤8.5

64.6 (24/19.2%)

(8.5,28)

MMAX

>28

19.3 (28/8.7%)

≤2500

29.8 (37/8.18%)

(2500,4250)

CACH

>4250

MYCT

≤0.5

59.3 (24/16.9%)

(0.5,8.5)

37.3 (19/11.3%)

≤550

18.3 (7/3.83%)

>550

75.7 (10/24.6%)

≤10000

133 (16/28.8%)

>10000

157 (21/73.7%)

≤28000

CHMAX

>28000

MMIN

≤58

783 (5/359%)

>58

281 (11/56%)

≤12000

492 (7/53.9%)

>12000

CHMIN

CACH

≤7.5

MMAX

>7.5

MMAX

≤8.5

LM4 (50/22.1%)

>8.5

LM1 (65/7.32%)

≤4250

CACH

>4250

LM2 (26/6.37%)

≤0.5

LM3 (24/14.5%)

(0.5,8.5)

LM5 (21/45.5%)

≤28,000

LM6 (23/63.5%)

>28,000

FIGURE 3.4

Models for the CPU performance data: (A) linear regression; (B) regression tree; (C) model tree.

average of the absolute values of the errors between the predicted and actual

CPU performance measures, it turns out to be significantly less for the tree than

for the regression equation. The regression tree is more accurate because a simple

linear model poorly represents the data in this problem. However, the tree is

cumbersome and difficult to interpret because of its large size.

It is possible to combine regression equations with regression trees. Fig. 3.4C

is a tree whose leaves contain linear expressions—i.e., regression equations—

rather than single predicted values. This is called a model tree. Fig. 3.4C contains

the six linear models that belong at the six leaves, labeled LM1 through LM6.

The model tree approximates continuous functions by linear “patches,” a more

sophisticated representation than either linear regression or regression trees.

Although the model tree is smaller and more comprehensible than the regression

tree, the average error values on the training data are lower. (However, we will

see in Chapter 5, Credibility: evaluating what’s been learned, that calculating

the average error on the training set is not in general a good way of assessing the

performance of models.)

3.4 RULES
Rules are a popular alternative to decision trees, and we have already seen

examples for the weather, contact lens, iris, and soybean datasets. The antecedent,

or precondition, of a rule is a series of tests just like the tests at nodes in decision

trees, while the consequent, or conclusion, gives the class or classes that apply to

instances covered by that rule, or perhaps gives a probability distribution over the

classes. Generally, the preconditions are logically ANDed together, and all the

tests must succeed if the rule is to fire. However, in some rule formulations

the preconditions are general logical expressions rather than simple conjunctions.

We often think of the individual rules as being effectively logically ORed

together: if any one applies, the class (or probability distribution) given in its

conclusion is applied to the instance. However, conflicts arise when several rules

with different conclusions apply; we will return to this shortly.

CLASSIFICATION RULES

It is easy to read a set of classification rules directly off a decision tree. One rule

is generated for each leaf. The antecedent of the rule includes a condition for every

node on the path from the root to that leaf, and the consequent of the rule is the

class assigned by the leaf. This procedure produces rules that are unambiguous

in that the order in which they are executed is irrelevant. However, in general,

rules that are read directly off a decision tree are far more complex than necessary,

and rules derived from trees are usually pruned to remove redundant tests.

753.4 Rules

Because decision trees cannot easily express the disjunction implied among

the different rules in a set, transforming a general set of rules into a tree is not

quite so straightforward. A good illustration of this occurs when the rules have

the same structure but different attributes, like:

If a and b then x
If c and d then x

Then it is necessary to break the symmetry and choose a single test for the

root node. If, e.g., a is chosen, the second rule must, in effect, be repeated twice

in the tree, as shown in Fig. 3.5. This is known as the replicated subtree problem.

The replicated subtree problem is sufficiently important that it is worth looking

at a couple more examples. The diagram on the left of Fig. 3.6 shows an exclusive-

or function for which the output is a if x5 1 or y5 1 but not both. To make this

into a tree, you have to split on one attribute first, leading to a structure like the

one shown in the center. In contrast, rules can faithfully reflect the true symmetry

of the problem with respect to the attributes, as shown on the right.

In this example the rules are not notably more compact than the tree. In fact,

they are just what you would get by reading rules off the tree in the obvious way.

But in other situations, rules are much more compact than trees, particularly if

it is possible to have a “default” rule that covers cases not specified by the other

rules. For example, to capture the effect of the rules in Fig. 3.7, in which there

a

b

y

c

n

x

y

c

n

d

y n

x

y n

d

y n

x

y n

FIGURE 3.5

Decision tree for a simple disjunction.

76 CHAPTER 3 Output: knowledge representation

If x=1 and y=0 then class = a
If x=0 and y=1 then class = a
If x=0 and y=0 then class = b

x = 1 ?

y = 1 ?

No

y = 1 ?

Yes

b

No

a

Yes

a

No

b

Yes

a b1

0 b a

0 1

If x=1 and y=1 then class = b

FIGURE 3.6

The exclusive-or problem.

x

y

1 2 3

a

1

z

2

3

w

1

b

2

b

3

a

1

b

2

b

3

If x=1 and y=1 then class = a

If z=1 and w=1 then class = a

Otherwise class = b

FIGURE 3.7

Decision tree with a replicated subtree.

773.4 Rules

are four attributes—x, y, z, and w, which can each be 1, 2, or 3—requires the tree

shown on the right. Each of the three small gray triangles to the upper right

should actually contain the whole three-level subtree that is displayed in gray,

a rather extreme example of the replicated subtree problem. This is a distressingly

complex description of a rather simple concept.

One reason why rules are popular is that each rule seems to represent an

independent “nugget” of knowledge. New rules can be added to an existing rule

set without disturbing ones already there, whereas to add to a tree structure may

require reshaping the whole tree. However, this independence is something of

an illusion, because it ignores the question of how the rule set is executed.

We explained earlier the fact that if rules are meant to be interpreted in order

as a “decision list,” some of them, taken individually and out of context,

may be incorrect. On the other hand, if the order of interpretation is supposed to

be immaterial, then it is not clear what to do when different rules lead to different

conclusions for the same instance. This situation cannot arise for rules that are

read directly off a decision tree because the redundancy included in the structure

of the rules prevents any ambiguity in interpretation. But it does arise when rules

are generated in other ways.

If a rule set gives multiple classifications for a particular example, one solution

is to give no conclusion at all. Another is to count how often each rule fires on the

training data and go with the most popular one. These strategies can lead to radi-

cally different results. A different problem occurs when an instance is encountered

that the rules fail to classify at all. Again, this cannot occur with decision trees, or

with rules read directly off them, but it can easily happen with general rule sets.

One way of dealing with this situation is to fail to classify such an example;

another is to choose the most frequently occurring class as a default. Again,

radically different results may be obtained for these strategies. Individual rules are

simple, and sets of rules seem deceptively simple—but given just a set of rules

with no additional information, it is not clear how it should be interpreted.

A particularly straightforward situation occurs when rules lead to a class

that is Boolean (say, yes and no), and when only rules leading to one outcome

(say, yes) are expressed. The assumption is that if a particular instance is not in

class yes, then it must be in class no—a form of closed world assumption. If this

is the case, rules cannot conflict and there is no ambiguity in rule interpretation:

any interpretation strategy will give the same result. Such a set of rules can be

written as a logic expression in what is called disjunctive normal form: i.e., as a

disjunction (OR) of conjunctive (ANDed) conditions.

It is this simple special case that seduces people into assuming that rules are

very easy to deal with, for here each rule really does operate as a new, independent

piece of information that contributes in a straightforward way to the disjunction.

Unfortunately, it only applies to Boolean outcomes and requires the closed

world assumption, and these constraints are unrealistic in many practical situations.

Machine learning algorithms that generate rules invariably produce ordered rule

sets in multiclass situations, and this sacrifices any possibility of modularity

because the order of execution is critical.

78 CHAPTER 3 Output: knowledge representation

ASSOCIATION RULES

Association rules are no different from classification rules except that they can

predict any attribute, not just the class, and this gives them the freedom to predict

combinations of attributes too. Also, association rules are not intended to be used

together as a set, as classification rules are. Different association rules express

different regularities that underlie the dataset, and they generally predict different

things.

Because so many different association rules can be derived from even a tiny

dataset, interest is restricted to those that apply to a reasonably large number of

instances and have a reasonably high accuracy on the instances to which they

apply. The coverage of an association rule is the number of instances for which

it predicts correctly—this is often called its support. Its accuracy—often called

confidence—is the number of instances that it predicts correctly, expressed as a

proportion of all instances to which it applies. For example, with the rule:

If temperature 5 cool then humidity 5 normal

the coverage is the number of days that are both cool and have normal humidity

(4 in the data of Table 1.2), and the accuracy is the proportion of cool days

that have normal humidity (100% in this case). It is usual to specify minimum

coverage and accuracy values, and to seek only those rules whose coverage and

accuracy are both at least these specified minima. In the weather data, e.g., there

are 58 rules whose coverage and accuracy are at least 2 and 95%, respectively.

(It may also be convenient to specify coverage as a percentage of the total

number of instances instead.)

Association rules that predict multiple consequences must be interpreted rather

carefully. For example, with the weather data in Table 1.2 we saw this rule:

If windy 5 false and play 5 no then outlook 5 sunny
and humidity 5 high.

This is not just a shorthand expression for the two separate rules:

If windy 5 false and play 5 no then outlook 5 sunny
If windy 5 false and play 5 no then humidity 5 high

It does indeed imply that these exceed the minimum coverage and accuracy

figures—but it also implies more. The original rule means that the number of

examples that are nonwindy, nonplaying, with sunny outlook and high humidity,

is at least as great as the specified minimum coverage figure. It also means that

the number of such days, expressed as a proportion of nonwindy, nonplaying

days, is at least the specified minimum accuracy figure. This implies that the rule

If humidity 5 high and windy 5 false and play 5 no then outlook 5 sunny

also holds, because it has the same coverage as the original rule, and its accuracy

must be at least as high as the original rule’s because the number of high-humidity,

793.4 Rules

nonwindy, nonplaying days is necessarily less than that of nonwindy, nonplaying

days—which makes the accuracy greater.

As we have seen, there are relationships between particular association rules:

some rules imply others. To reduce the number of rules that are produced, in cases

where several rules are related it makes sense to present only the strongest one

to the user. In the above example, only the first rule should be printed.

RULES WITH EXCEPTIONS

Returning to classification rules, a natural extension is to allow them to have

exceptions. Then incremental modifications can be made to a rule set by expres-

sing exceptions to existing rules rather than reengineering the entire set. For

example, consider the iris problem described earlier. Suppose a new flower was

found with the dimensions given in Table 3.1, and an expert declared it to be an

instance of I. setosa. If this flower was classified by the rules given in Chapter 1,

What’s it all about?, for this problem, it would be misclassified by two of them:

If petal-length $ 2.45 and petal-length , 4.45 then Iris-versicolor
If petal-length $ 2.45 and petal-length , 4.95 and petal-width , 1.55

then Iris-versicolor

These rules require modification so that the new instance can be treated

correctly. However, simply changing the bounds for the attribute�value tests in

these rules may not suffice because the instances used to create the rule set may

then be misclassified. Fixing up a rule set is not as simple as it sounds.

Instead of changing the tests in the existing rules, an expert might be

consulted to explain why the new flower violates them, giving explanations that

could be used to extend the relevant rules only. For example, the first of these

two rules misclassifies the new I. setosa as an instance of the genus I. versicolor.

Instead of altering the bounds on any of the inequalities in the rule, an exception

can be made based on some other attribute:

If petal-length $ 2.45 and petal-length , 4.45 then Iris-versicolor
EXCEPT if petal-width , 1.0 then Iris-setosa

This rule says that a flower is I. versicolor if its petal length is between

2.45 and 4.45 cm except when its petal width is less than 1.0 cm, in which case

it is I. setosa.

Of course, we might have exceptions to the exceptions, exceptions to these,

and so on, giving the rule set something of the character of a tree. As well as being

Table 3.1 A New Iris Flower

Sepal Length Sepal Width Petal Length Petal Width Type

5.1 3.5 2.6 0.2 ?

80 CHAPTER 3 Output: knowledge representation

used to make incremental changes to existing rule sets, rules with exceptions can

be used to represent the entire concept description in the first place.

Fig. 3.8 shows a set of rules that correctly classify all examples in the iris

dataset given earlier. These rules are quite difficult to comprehend at first.

Let’s follow them through. A default outcome has been chosen, I. setosa, and is

shown in the first line. For this dataset, the choice of default is rather arbitrary

because there are 50 examples of each type. Normally, the most frequent outcome

is chosen as the default.

Subsequent rules give exceptions to this default. The first if . . . then, on lines 2

through 4, gives a condition that leads to the classification I. versicolor. However,

there are two exceptions to this rule (lines 5 through 8), which we will deal with

in a moment. If the conditions on lines 2 and 3 fail, the else clause on line 9 is

reached, which essentially specifies a second exception to the original default.

If the condition on line 9 holds, the classification is Iris virginica (line 10).

Again, there is an exception to this rule (on lines 11 and 12).

Now return to the exception on lines 5 through 8. This overrides the I. versicolor

conclusion on line 4 if either of the tests on lines 5 and 7 holds. As it happens,

these two exceptions both lead to the same conclusion, I. virginica (lines 6

and 8). The final exception is the one on lines 11 and 12, which overrides the

I. virginica conclusion on line 10 when the condition on line 11 is met, and leads

to the classification I. versicolor.

You will probably need to ponder these rules for some minutes before

it becomes clear how they are intended to be read. Although it takes some time to

get used to reading them, sorting out the excepts and if . . . then . . . elses becomes

easier with familiarity. People often think of real problems in terms of rules,

exceptions, and exceptions to the exceptions, so it is often a good way to express

a complex rule set. But the main point in favor of this way of representing

rules is that it scales up well. Although the whole rule set is a little hard to

comprehend, each individual conclusion, each individual then statement, can be

considered just in the context of the rules and exceptions that lead to it; whereas

with decision lists, all prior rules need to be reviewed to determine the precise

Default: Iris-setosa 1
except if petal-length ≥ 2.45 and petal-length < 5.355 2

and petal-width < 1.75 3
then Iris-versicolor 4

except if petal-length ≥ 4.95 and petal-width < 1.55 5
then Iris-virginica 6
else if sepal-length < 4.95 and sepal-width ≥ 2.45 7

then Iris-virginica 8
else if petal-length ≥ 3.35 9

then Iris-virginica 10
except if petal-length < 4.85 and sepal-length < 5.95 11

then Iris-versicolor 12

FIGURE 3.8

Rules for the iris data.

813.4 Rules

effect of an individual rule. This locality property is crucial when trying to

understand large rule sets. Psychologically, people familiar with the data think of

a particular set of cases, or kind of case, when looking at any one conclusion in

the exception structure, and when one of these cases turns out to be an exception

to the conclusion, it is easy to add an except clause to cater for it.

It is worth pointing out that the default . . . except if . . . then . . . structure is

logically equivalent to an if . . . then . . . else . . ., where the else is unconditional

and specifies exactly what the default did. An unconditional else is, of course, a

default. (Note that there are no unconditional elses in the preceding rules.)

Logically, the exception-based rules can very simply be rewritten in terms of

regular if . . . then . . . else clauses. What is gained by the formulation in terms

of exceptions is not logical but psychological. We assume that the defaults and

the tests that occur early on apply more widely than the exceptions further down.

If this is indeed true for the domain, and the user can see that it is plausible,

the expression in terms of (common) rules and (rare) exceptions will be easier to

grasp than a different, but logically equivalent, structure.

MORE EXPRESSIVE RULES

We have assumed implicitly that the conditions in rules involve testing an

attribute value against a constant. But this may not be ideal. Suppose, to take a

concrete example, we have the set of eight building blocks of the various shapes

and sizes illustrated in Fig. 3.9, and we wish to learn the concept of standing up.

This is a classic two-class problem with classes standing and lying. The four

shaded blocks are positive (standing) examples of the concept, and the unshaded

blocks are negative (lying) examples. The only information the learning algorithm

will be given is the width, height, and number of sides of each block. The training

data is shown in Table 3.2.

Shaded: standing
Unshaded: lying

FIGURE 3.9

The shapes problem.

82 CHAPTER 3 Output: knowledge representation

A conventional rule set that might be produced for this data is:

if width $ 3.5 and height , 7.0 then lying
if height $ 3.5 then standing

In case you’re wondering, 3.5 is chosen as the breakpoint for width because it

is halfway between the width of the thinnest lying block, namely 4, and the width

of the fattest standing block whose height is less than 7, namely 3. Also, 7.0 is

chosen as the breakpoint for height because it is halfway between the height

of the tallest lying block, namely 6, and the shortest standing block whose width

is greater than 3.5, namely 8. It is common to place numeric thresholds halfway

between the values that delimit the boundaries of a concept.

Although these two rules work well on the examples given, they are not very

good. Many new blocks would not be classified by either rule (e.g., one with

width 1 and height 2), and it is easy to devise many legitimate blocks that the

rules would not fit.

A person classifying the eight blocks would probably notice that “standing

blocks are those that are taller than they are wide.” This rule does not compare

attribute values with constants, it compares attributes with one another:

if width . height then lying
if height . width then standing

The actual values of the height and width attributes are not important: just the

result of comparing the two.

Many machine learning schemes do not consider relations between attributes

because there is a considerable cost in doing so. One way of rectifying this is to

add extra, secondary attributes that say whether two primary attributes are equal

or not, or give the difference between them if they are numeric. For example, we

might add a binary attribute is width , height? to Table 3.2. Such attributes are

often added as part of the data engineering process.

Table 3.2 Training Data for the Shapes Problem

Width Height Sides Class

2 4 4 Standing
3 6 4 Standing
4 3 4 Lying
7 8 3 Standing
7 6 3 Lying
2 9 4 Standing
9 1 4 Lying
10 2 3 Lying

833.4 Rules

With a seemingly rather small further enhancement, the expressive power of

the knowledge representation can be extended very greatly. The trick is to express

rules in a way that makes the role of the instance explicit:

if width(block) . height(block) then lying(block)
if height(block) . width(block) then standing(block)

Although this may not seem like much of an extension, it is if instances

can be decomposed into parts. For example, if a tower is a pile of blocks, one on

top of the other, the fact that the topmost block of the tower is standing can be

expressed by:

if height(tower.top) . width(tower.top) then standing(tower.top)

Here, tower.top is used to refer to the topmost block. So far, nothing has been

gained. But if tower.rest refers to the rest of the tower, then the fact that the tower

is composed entirely of standing blocks can be expressed by the rules:

if height(tower.top) . width(tower.top) and standing(tower.rest)
then standing(tower)

The apparently minor addition of the condition standing(tower.rest) is a

recursive expression that will turn out to be true only if the rest of the tower is

composed of standing blocks. That will be tested by a recursive application of the

same rule. Of course, it is necessary to ensure that the recursion “bottoms out”

properly by adding a further rule, such as:

if tower 5 empty then standing(tower.top)

Sets of rules like this are called logic programs, and this area of machine

learning is called inductive logic programming. We will not be treating it further

in this book.

3.5 INSTANCE-BASED REPRESENTATION
The simplest form of learning is plain memorization, or rote learning. Once a set

of training instances has been memorized, on encountering a new instance

the memory is searched for the training instance that most strongly resembles the

new one. The only problem is how to interpret “resembles”: we will explain that

shortly. First, however, note that this is a completely different way of representing

the “knowledge” extracted from a set of instances: just store the instances

themselves and operate by relating new instances whose class is unknown to exist-

ing ones whose class is known. Instead of trying to create rules, work directly

from the examples themselves. This is known as instance-based learning. In a

sense all the other learning methods are “instance-based” too, because we always

84 CHAPTER 3 Output: knowledge representation

start with a set of instances as the initial training information. But the instance-

based knowledge representation uses the instances themselves to represent what is

learned, rather than inferring a rule set or decision tree and storing it instead.

In instance-based learning, all the real work is done when the time comes to

classify a new instance rather than when the training set is processed. In a sense,

then, the difference between this method and the others that we have seen is the

time at which the “learning” takes place. Instance-based learning is lazy, deferring

the real work as long as possible, whereas other methods are eager, producing a

generalization as soon as the data has been seen. In instance-based classification,

each new instance is compared with existing ones using a distance metric, and the

closest existing instance is used to assign the class to the new one. This is called

the nearest-neighbor classification method. Sometimes more than one nearest

neighbor is used, and the majority class of the closest k neighbors (or the distance-

weighted average, if the class is numeric) is assigned to the new instance. This is

termed the k-nearest-neighbor method.

Computing the distance between two examples is trivial when examples have

just one numeric attribute: it is just the difference between the two attribute

values. It is almost as straightforward when there are several numeric attributes:

generally, the standard Euclidean distance is used. However, this assumes that

the attributes are normalized and are of equal importance, and one of the main

problems in learning is to determine which are the important features.

When nominal attributes are present, it is necessary to come up with a

“distance” between different values of that attribute. What are the distances

between, say, the values red, green, and blue? Usually a distance of zero is

assigned if the values are identical; otherwise, the distance is one. Thus the distance

between red and red is zero but that between red and green is one. However, it

may be desirable to use a more sophisticated representation of the attributes.

For example, with more colors one could use a numeric measure of hue in color

space, making yellow closer to orange than it is to green and ocher closer still.

Some attributes will be more important than others, and this is usually

reflected in the distance metric by some kind of attribute weighting. Deriving

suitable attribute weights from the training set is a key problem in instance-based

learning.

It may not be necessary, or desirable, to store all the training instances.

For one thing, this may make the nearest-neighbor calculation unbearably slow.

For another, it may consume unrealistic amounts of storage. Generally some

regions of attribute space are more stable than others with regard to class, and just

a few exemplars are needed inside stable regions. For example, you might expect

the required density of exemplars that lie well inside class boundaries to be much

less than the density that is needed near class boundaries. Deciding which

instances to save and which to discard is another key problem in instance-based

learning.

An apparent drawback to instance-based representations is that they do not

make explicit the structures that are learned. In a sense this violates the notion of

853.5 Instance-Based Representation

“learning” that we presented at the beginning of this book; instances do not really

“describe” the patterns in data. However, the instances combine with the distance

metric to carve out boundaries in instance space that distinguish one class from

another, and this is a kind of explicit representation of knowledge. For example,

given a single instance of each of two classes, the nearest-neighbor rule effectively

splits the instance space along the perpendicular bisector of the line joining the

instances. Given several instances of each class, the space is divided by a set of

lines that represent the perpendicular bisectors of selected lines joining an instance

of one class to one of another class. Fig. 3.10A illustrates a nine-sided polygon

that separates the filled-circle class from the open-circle class. This polygon is

implicit in the operation of the nearest-neighbor rule.

When training instances are discarded, the result is to save just a few

critical examples of each class. Fig. 3.10B shows only the examples that actually

get used in nearest-neighbor decisions: the others (the light gray ones) can be

discarded without affecting the result. These examples serve as a kind of explicit

knowledge representation.

Some instance-based representations go further and explicitly generalize the

instances. Typically this is accomplished by creating rectangular regions that

enclose examples of the same class. Fig. 3.10C shows the rectangular regions that

might be produced. Unknown examples that fall within one of the rectangles will

be assigned the corresponding class: ones that fall outside all rectangles will be

subject to the usual nearest-neighbor rule. Of course this produces different

decision boundaries from the straightforward nearest-neighbor rule, as can be

seen by superimposing the polygon in Fig. 3.10A onto the rectangles. Any part of

the polygon that lies within a rectangle will be chopped off and replaced by the

rectangle’s boundary.

Rectangular generalizations in instance space are just like rules with a special

form of condition, one that tests a numeric variable against an upper and lower

bound and selects the region in between. Different dimensions of the rectangle

correspond to tests on different attributes being ANDed together. Choosing snugly

fitting rectangular regions as tests leads to much more conservative rules than

those generally produced by rule-based machine learning schemes, because for

(A) (B) (C) (D)

FIGURE 3.10

Different ways of partitioning the instance space.

86 CHAPTER 3 Output: knowledge representation

each boundary of the region, there is an actual instance that lies on (or just inside)

that boundary. Tests such as x , a (where x is an attribute value and a is a

constant) encompass an entire half-space—they apply no matter how small x is as

long as it is less than a. When doing rectangular generalization in instance space

you can afford to be conservative because if a new example is encountered that

lies outside all regions, you can fall back on the nearest-neighbor metric. With

rule-based methods the example cannot be classified, or receives just a default

classification, if no rules apply to it. The advantage of more conservative rules is

that, although incomplete, they may be more perspicuous than a complete set of

rules that covers all cases. Finally, ensuring that the regions do not overlap is

tantamount to ensuring that at most one rule can apply to an example, eliminating

another of the difficulties of rule-based systems—what to do when several

rules apply.

A more complex kind of generalization is to permit rectangular regions to

nest one within another. Then a region that is basically all one class can contain

an inner region with a different class, as illustrated in Fig. 3.10D. It is possible to

allow nesting within nesting so that the inner region can itself contain its own

inner region of a different class—perhaps the original class of the outer region.

This is analogous to allowing rules to have exceptions and exceptions to the

exceptions, as in Section 3.5.

It is worth pointing out a slight danger to the technique of visualizing

instance-based learning in terms of boundaries in example space: it makes the

implicit assumption that attributes are numeric rather than nominal. If the various

values that a nominal attribute can take on were laid out along a line, generaliza-

tions involving a segment of that line would make no sense: each test involves

either one value for the attribute or all values for it (or perhaps an arbitrary subset

of values). Although you can more or less easily imagine extending the examples

in Fig. 3.10 to several dimensions, it is much harder to imagine how rules

involving nominal attributes will look in multidimensional instance space.

Many machine learning situations involve numerous attributes, and our intuitions

tend to lead us astray when extended to high-dimensional spaces.

3.6 CLUSTERS
When clusters rather than a classifier is learned, the output takes the form of a

diagram that shows how the instances fall into clusters. In the simplest case this

involves associating a cluster number with each instance, which might be depicted

by laying the instances out in two dimensions and partitioning the space to show

each cluster, as illustrated in Fig. 3.11A.

Some clustering algorithms allow one instance to belong to more than one

cluster, so the diagram might lay the instances out in two dimensions and draw

overlapping subsets representing each cluster—a Venn diagram, as in Fig. 3.11B.

873.6 Clusters

Some algorithms associate instances with clusters probabilistically rather than

categorically. In this case, for every instance there is a probability or degree of

membership with which it belongs to each of the clusters. This is shown in

Fig. 3.11C. This particular association is meant to be a probabilistic one, so the

numbers for each example sum to one—although that is not always the case.

Other algorithms produce a hierarchical structure of clusters so that at the top

level the instance space divides into just a few clusters, each of which divides

into its own subclusters at the next level down, and so on. In this case a dia-

gram such as the one in Fig. 3.11D is used, in which elements joined together

at lower levels are more tightly clustered than ones joined together at higher

levels. Such diagrams are called dendrograms. This term means just the same

thing as tree diagrams (the Greek word dendron means a “tree”), but in cluster-

ing the more exotic version seems to be preferred—perhaps because biological

species are a prime application area for clustering techniques, and ancient lan-

guages are often used for naming in biology.

Clustering is often followed by a stage in which a decision tree or rule set is

inferred that allocates each instance to the cluster in which it belongs. Then, the

clustering operation is just one step on the way to a structural description.

3.7 FURTHER READING AND BIBLIOGRAPHIC NOTES
Knowledge representation is a key topic in classical artificial intelligence and

early work is well represented by a comprehensive series of papers edited by

Brachman and Levesque (1985). The area of inductive logic programming

and associated topics are well covered by de Raedt’s (2008) book Logical and

relational learning.

We mentioned the problem of dealing with conflict among different rules.

Various ways of doing this, called conflict resolution strategies, have been devel-

oped for use with rule-based programming systems. These are described in books

on rule-based programming, such as Brownstown, Farrell, Kant, and Martin (1985).

1 2 3

a 0.4 0.1 0.5

b 0.1 0.8 0.1

c 0.3 0.3 0.4

d 0.1 0.1 0.8

e 0.4 0.2 0.4

f 0.1 0.4 0.5

g 0.7 0.2 0.1

h 0.5 0.4 0.1

(A) (B) (C) (D)

FIGURE 3.11

Different ways of representing clusters.

88 CHAPTER 3 Output: knowledge representation

Again, however, they are designed for use with handcrafted rule sets rather than

ones that have been learned. The use of handcrafted rules with exceptions for a

large dataset has been studied by Gaines and Compton (1995), and Richards

and Compton (1998) describe their role as an alternative to classic knowledge

engineering.

Further information on the various styles of concept representation can be found

in the papers that describe machine learning methods for inferring concepts from

examples, and these are covered in the Further reading section of Chapter 4,

Algorithms: the basic methods, and the Discussion sections of Chapter 6, Trees

and rules, and Chapter 7, Extending instance-based and linear models. Finally,

graphical models for representing concepts in the form of probability distributions

are discussed in Chapter 9, Probabilistic methods.

893.7 Further Reading and Bibliographic Notes

4Algorithms: the basic
methods

CHAPTER OUTLINE

4.1 Inferring Rudimentary Rules..93

Missing Values and Numeric Attributes ..94

4.2 Simple Probabilistic Modeling ..96

Missing Values and Numeric Attributes ..100

Naı̈ve Bayes for Document Classification ..103

Remarks ..105

4.3 Divide-and-Conquer: Constructing Decision Trees ..105

Calculating Information...108

Highly Branching Attributes ..110

4.4 Covering Algorithms: Constructing Rules ...113

Rules Versus Trees..114

A Simple Covering Algorithm ...115

Rules Versus Decision Lists ...119

4.5 Mining Association Rules ...120

Item Sets...120

Association Rules ...122

Generating Rules Efficiently ..124

4.6 Linear Models..128

Numeric Prediction: Linear Regression...128

Linear Classification: Logistic Regression ...129

Linear Classification Using the Perceptron..131

Linear Classification Using Winnow..133

4.7 Instance-Based Learning ..135

The Distance Function ..135

Finding Nearest Neighbors Efficiently ..136

Remarks ..141

4.8 Clustering..141

Iterative Distance-Based Clustering..142

Faster Distance Calculations ...144

Choosing the Number of Clusters ...146

Hierarchical Clustering ...147

Example of Hierarchical Clustering ..148

Incremental Clustering..150

Category Utility ..154

Remarks ..156

4.9 Multi-instance Learning..156

Aggregating the Input ...157

Aggregating the Output ...157

4.10 Further Reading and Bibliographic Notes ...158

4.11 WEKA Implementations...160

Now that we’ve seen how the inputs and outputs can be represented, it’s time to

look at the learning algorithms themselves. This chapter explains the basic ideas

behind the techniques that are used in practical data mining. We will not delve too

deeply into the trickier issues—advanced versions of the algorithms, optimizations

that are possible, complications that arise in practice. These topics are deferred to

Part II, where we come to grips with more advanced machine learning schemes

and data transformations. It is important to understand these more advanced issues

so that you know what is really going on when you analyze a particular dataset.

In this chapter we look at the basic ideas. One of the most instructive lessons is

that simple ideas often work very well, and we strongly recommend the adoption of

a “simplicity-first” methodology when analyzing practical datasets. There are many

different kinds of simple structure that datasets can exhibit. In one dataset, there

might be a single attribute that does all the work and the others are irrelevant or

redundant. In another dataset, the attributes might contribute independently and

equally to the final outcome. A third might have a simple logical structure, involv-

ing just a few attributes, which can be captured by a decision tree. In a fourth, there

may be a few independent rules that govern the assignment of instances to different

classes. A fifth might exhibit dependencies among different subsets of attributes.

A sixth might involve linear dependence among numeric attributes, where what

matters is a weighted sum of attribute values with appropriately chosen weights.

In a seventh, classifications appropriate to particular regions of instance space might

be governed by the distances between the instances themselves. And in an eighth,

it might be that no class values are provided: the learning is unsupervised.

In the infinite variety of possible datasets there are many different kinds of

structure that can occur, and a data mining tool—no matter how capable—i.e.,

looking for one class of structure may completely miss regularities of a different

kind, regardless of how rudimentary those may be. The result is a baroque and

opaque classification structure of one kind instead of a simple, elegant, immedi-

ately comprehensible structure of another.

Each of the eight examples of different kinds of datasets sketched above leads

to a different machine learning scheme that is well suited to discovering the under-

lying concept. The sections of this chapter look at each of these structures in turn.

A final section introduces simple ways of dealing with multi-instance problems,

where each example comprises several different instances.

92 CHAPTER 4 Algorithms: the basic methods

4.1 INFERRING RUDIMENTARY RULES
Here’s an easy way to find very simple classification rules from a set of instances.

Called 1R for 1-rule, it generates a one-level decision tree expressed in the form of

a set of rules that all test one particular attribute. 1R is a simple, cheap method that

often comes up with quite good rules for characterizing the structure in data. It turns

out that simple rules frequently achieve surprisingly high accuracy. Perhaps this is

because the structure underlying many real-world datasets is quite rudimentary, and

just one attribute is sufficient to determine the class of an instance quite accurately.

In any event, it is always a good plan to try the simplest things first.

The idea is this: we make rules that test a single attribute and branch accord-

ingly. Each branch corresponds to a different value of the attribute. It is obvious

what is the best classification to give each branch: use the class that occurs most

often in the training data. Then the error rate of the rules can easily be determined.

Just count the errors that occur on the training data, i.e., the number of instances

that do not have the majority class.

Each attribute generates a different set of rules, one rule for every value of the

attribute. Evaluate the error rate for each attribute’s rule set and choose the best.

It’s that simple! Fig. 4.1 shows the algorithm in the form of pseudocode.

To see the 1R method at work, consider the weather data of Table 1.2 (we will

encounter it many times again when looking at how learning algorithms work). To

classify on the final column, play, 1R considers four sets of rules, one for each attri-

bute. These rules are shown in Table 4.1. An asterisk indicates that a random choice

has been made between two equally likely outcomes. The number of errors is given

for each rule, along with the total number of errors for the rule set as a whole. 1R

chooses the attribute that produces rules with the smallest number of errors—i.e., the

first and third rule sets. Arbitrarily breaking the tie between these two rule sets gives:

outlook: sunny -no
overcast -yes
rainy -yes

We noted at the outset that the game for the weather data is unspecified.

Oddly enough, it is apparently played when it is overcast or rainy but not when it

is sunny. Perhaps it’s an indoor pursuit.

For each attribute,
For each value of that attribute, make a rule as follows:
count how often each class appears
find the most frequent class
make the rule assign that class to this attribute-value.

Calculate the error rate of the rules.
Choose the rules with the smallest error rate.

FIGURE 4.1

Pseudocode for 1R.

934.1 Inferring Rudimentary Rules

Surprisingly, despite its simplicity 1R can do well in comparison with more

sophisticated learning schemes. Rules that test a single attribute are often a viable

alternative to more complex structures, and this strongly encourages a simplicity-

first methodology in which the baseline performance is established using simple,

rudimentary techniques before progressing to more sophisticated learning

schemes, which inevitably generate output that is harder for people to interpret.

MISSING VALUES AND NUMERIC ATTRIBUTES

Although a very rudimentary learning scheme, 1R does accommodate both miss-

ing values and numeric attributes. It deals with these in simple but effective

ways. Missing is treated as just another attribute value so that, e.g., if the weather

data had contained missing values for the outlook attribute, a rule set formed on

outlook would specify four possible class values, one for each of sunny, overcast,

and rainy and a fourth for missing.

We can convert numeric attributes into nominal ones using a simple discreti-

zation method. First, sort the training examples according to the values of the

numeric attribute. This produces a sequence of class values. For example, sorting

the numeric version of the weather data (Table 1.3) according to the values of

temperature produces the sequence

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

Discretization involves partitioning this sequence by placing breakpoints in it.

One possibility is to place breakpoints wherever the class changes, producing

eight categories:

Yes| No| Yes Yes Yes | No No | Yes Yes Yes | No | Yes Yes | No

Table 4.1 Evaluating the Attributes in the Weather Data

Attribute Rules Errors Total Errors

1 Outlook Sunny - no 2/5 4/14
Overcast - yes 0/4
Rainy - yes 2/5

2 Temperature Hot - no� 2/4 5/14
Mild - yes 2/6
Cool - yes 1/4

3 Humidity High - no 3/7 4/14
Normal - yes 1/7

4 Windy False - yes 2/8 5/14
True - no� 3/6

94 CHAPTER 4 Algorithms: the basic methods

Choosing breakpoints halfway between the examples on either side places

them at 64.5, 66.5, 70.5, 72, 77.5, 80.5, and 84. However, the two instances with

value 72 cause a problem because they have the same value of temperature but

fall into different classes. The simplest fix is to move the breakpoint at 72 up one

example, to 73.5, producing a mixed partition in which no is the majority class.

A more serious problem is that this procedure tends to form a large number of

categories. The 1R method will naturally gravitate toward choosing an attribute

that splits into many categories, because this will partition the dataset into many

classes, making it more likely that instances will have the same class as the

majority in their partition. In fact, the limiting case is an attribute that has a dif-

ferent value for each instance—i.e., an identification code attribute that pinpoints

instances uniquely—and this will yield a zero error rate on the training set

because each partition contains just one instance. Of course, highly branching

attributes do not usually perform well on new examples; indeed the identification

code attribute will never get any examples outside the training set correct. This

phenomenon is known as overfitting; we have already described overfitting-

avoidance bias in Chapter 1, What’s it all about?, and we will encounter this

problem repeatedly in the subsequent chapters.

For 1R, overfitting is likely to occur whenever an attribute has a large number

of possible values. Consequently, when discretizing a numeric attribute a mini-

mum limit is imposed on the number of examples of the majority class in each

partition. Suppose that minimum is set at three. This eliminates all but two of the

preceding partitions. Instead, the partitioning process begins

Yes No Yes Yes | Yes . . .

ensuring that there are three occurrences of yes, the majority class, in the first

partition. However, because the next example is also yes, we lose nothing by

including that in the first partition, too. This leads to a new division.

Yes No Yes Yes Yes | No No Yes Yes Yes | No Yes Yes No

where each partition contains at least three instances of the majority class,

except the last one, which will usually have less. Partition boundaries always fall

between examples of different classes.

Whenever adjacent partitions have the same majority class, as do the first two

partitions above, they can be merged together without affecting the meaning of

the rule sets. Thus the final discretization is

Yes No Yes Yes Yes No No Yes Yes Yes | No Yes Yes No

which leads to the rule set.

temperature: #77.5 -yes
.77.5 -no

954.1 Inferring Rudimentary Rules

The second rule involved an arbitrary choice: as it happens, no was chosen. If

yes had been chosen instead, there would be no need for any breakpoint at all—

and as this example illustrates, it might be better to use the adjacent categories to

help to break ties. In fact this rule generates five errors on the training set and so

is less effective than the preceding rule for outlook. However, the same procedure

leads to this rule for humidity:

humidity: #82.5 -yes
.82.5 and #95.5 -no
.95.5 -yes

This generates only three errors on the training set and is the best “1-rule” for

the data in Table 1.3.

Finally, if a numeric attribute has missing values, an additional category is

created for them, and the discretization procedure is applied just to the instances

for which the attribute’s value is defined.

4.2 SIMPLE PROBABILISTIC MODELING
The 1R method uses a single attribute as the basis for its decisions and chooses

the one that works best. Another simple technique is to use all attributes and

allow them to make contributions to the decisions that are equally important and

independent of one another, given the class. This is unrealistic, of course: what

makes real-life datasets interesting is that the attributes are certainly not equally

important or independent. But it leads to a simple scheme that again works sur-

prisingly well in practice.

Table 4.2 shows a summary of the weather data obtained by counting how

many times each attribute�value pair occurs with each value (yes and no) for

play. For example, you can see from Table 1.2 that outlook is sunny for five

examples, two of which have play5 yes and three of which have play5 no. The

cells in the first row of the new table simply count these occurrences for all possi-

ble values of each attribute, and the play figure in the final column counts the

total number of occurrences of yes and no. The lower part of the table contains

the same information expressed as fractions, or observed probabilities. For exam-

ple, of the 9 days that play is yes, outlook is sunny for two, yielding a fraction of

2/9. For play the fractions are different: they are the proportion of days that play

is yes and no, respectively.

Now suppose we encounter a new example with the values that are shown in

Table 4.3. We treat the five features in Table 4.2—outlook, temperature, humid-

ity, windy, and the overall likelihood that play is yes or no—as equally important,

independent pieces of evidence and multiply the corresponding fractions. Looking

at the outcome yes gives:

Likelihood of yes5 2=93 3=93 3=93 3=93 9=145 0:0053:

96 CHAPTER 4 Algorithms: the basic methods

Table 4.2 The Weather Data, With Counts and Probabilities

Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 Hot 2 2 High 3 4 False 6 2 9 5
Overcast 4 0 Mild 4 2 Normal 6 1 True 3 3
Rainy 3 2 Cool 3 1

Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14
Overcast 4/9 0/5 Mild 4/9 2/5 Normal 6/9 1/5 True 3/9 3/5
Rainy 3/9 2/5 Cool 3/9 1/5

The fractions are taken from the yes entries in the table according to the

values of the attributes for the new day, and the final 9/14 is the overall fraction

representing the proportion of days on which play is yes. A similar calculation for

the outcome no leads to

Likelihood of no5 3=53 1=53 4=53 3=53 5=145 0:0206:

This indicates that for the new day, no is more likely than yes—four times

more likely. The numbers can be turned into probabilities by normalizing them so

that they sum to 1:

Probability of yes5
0:0053

0:00531 0:0206
5 20:5%;

Probability of no5
0:0206

0:00531 0:0206
5 79:5%:

This simple and intuitive method is based on Bayes’ rule of conditional proba-

bility. Bayes’ rule says that if you have a hypothesis H and evidence E that bears

on that hypothesis, then

PðEjHÞ5N!3Lk

i51

P
nj
i

nj!
(4.1)

We use the notation that P(A) denotes the probability of an event A and PðAjBÞ
denotes the probability of A conditional on another event B. The hypothesis H

is that play will be, say, yes, and PðHjEÞ is going to turn out to be 20.5%, just as

determined previously. The evidence E is the particular combination of attribute

values for the new day, outlook5 sunny, temperature5 cool, humidity5 high,

and windy5 true. Let’s call these four pieces of evidence E1, E2, E3, and E4,

respectively. Assuming that these pieces of evidence are independent (given the

class), their combined probability is obtained by multiplying the probabilities:

PðyesjEÞ5 PðE1jyesÞ3PðE2jyesÞ3PðE3jyesÞ3PðE4jyesÞ3PðyesÞ
PðEÞ : (4.2)

Don’t worry about the denominator: we will ignore it and eliminate it in the

final normalizing step when we make the probabilities of yes and no sum to 1, just

as we did previously. The P(yes) at the end is the probability of a yes outcome with-

out knowing any of the evidence E, i.e., without knowing anything about the particu-

lar day in question—it’s called the prior probability of the hypothesis H. In this case,

it’s just 9/14, because 9 of the 14 training examples had a yes value for play.

Table 4.3 A New Day

Outlook Temperature Humidity Windy Play

Sunny Cool High True ?

98 CHAPTER 4 Algorithms: the basic methods

Substituting the fractions in Table 4.2 for the appropriate evidence probabilities

leads to

PðyesjEÞ5 2=93 3=93 3=93 3=93 9=14

PðEÞ ;

just as we calculated previously. Again, the PðEÞ in the denominator will disap-

pear when we normalize.

This method goes by the name of Naı̈ve Bayes, because it’s based on Bayes’ rule

and “naı̈vely” assumes independence—it is only valid to multiply probabilities when

the events are independent. The assumption that attributes are independent (given

the class) in real life certainly is a simplistic one. But despite the disparaging name,

Naı̈ve Bayes works very well when tested on actual datasets, particularly when com-

bined with some of the attribute selection procedures introduced in Chapter 8, Data

transformations, that eliminate redundant, and hence nonindependent, attributes.

Things go badly awry in Naı̈ve Bayes if a particular attribute value does not

occur in the training set in conjunction with every class value. Suppose that in the

training data the attribute value outlook5 sunny was always associated with the

outcome no. Then the probability of outlook5 sunny given a yes, i.e.,

Pðoutlook5 sunnyjyesÞ, would be zero, and because the other probabilities are

multiplied by this the final probability of yes in the above example would be zero

no matter how large they were. Probabilities that are zero hold a veto over the

other ones. This is not a good idea. But the bug is easily fixed by minor adjust-

ments to the method of calculating probabilities from frequencies.

For example, the upper part of Table 4.2 shows that for play5 yes, outlook is

sunny for two examples, overcast for four, and rainy for three, and the lower part

gives these events probabilities of 2/9, 4/9, and 3/9, respectively. Instead, we could

add 1 to each numerator, and compensate by adding 3 to the denominator, giving

probabilities of 3/12, 5/12, and 4/12, respectively. This will ensure that an attribute

value that occurs zero times receives a probability which is nonzero, albeit small.

The strategy of adding 1 to each count is a standard technique called the Laplace

estimator after the great 18th century French mathematician Pierre Laplace.

Although it works well in practice, there is no particular reason for adding 1 to the

counts: we could instead choose a small constant μ and use

21μ=3
91μ

;
41μ=3
91μ

; and
31μ=3
91μ

:

The value of μ, which was set to 3 above, effectively provides a weight that

determines how influential the a priori values of 1/3, 1/3, and 1/3 are for each of

the three possible attribute values. A large μ says that these priors are very impor-

tant compared with the new evidence coming in from the training set, whereas a

small one gives them less influence. Finally, there is no particular reason for divid-

ing μ into three equal parts in the numerators: we could use

21μp1
91μ

;
41μp2
91μ

; and
31μp3
91μ

994.2 Simple Probabilistic Modeling

instead, where p1, p2, and p3 sum to 1. Effectively, these three numbers are a

priori probabilities of the values of the outlook attribute being sunny, overcast,

and rainy, respectively.

This technique of smoothing parameters using pseudocounts for imaginary

data can be rigorously justified using a probabilistic framework. Think of each

parameter—in this case, the three numbers—as having an associated probability

distribution. This is called a Bayesian formulation, to which we will return in

greater detail in Chapter 9, Probabilistic methods. The initial “prior” distributions

dictate how important the prior information is, and when new evidence comes in

from the training set they can be updated to “posterior” distributions, which take

that information into account. If the prior distributions have a particular form,

namely, “Dirichlet” distributions, then the posterior distributions have the same

form. Dirichlet distributions are defined in Appendix A.2, which contains a more

detailed theoretical explanation.

The upshot is that the mean values for the posterior distribution are computed

from the prior distribution in a way that generalizes the above example. Thus this

heuristic smoothing technique can be justified theoretically as corresponding to

the use of a Dirichlet prior with a nonzero mean for the parameter, then taking

the value of the posterior mean as the updated estimate for the parameter.

This Bayesian formulation has the advantage of deriving from a rigorous theo-

retical framework. However, from a practical point of view it does not really help

in determining just how to assign the prior probabilities. In practice, so long as

zero values are avoided in the parameter estimates, the prior probabilities make

little difference given a sufficient number of training instances, and people typi-

cally just estimate frequencies using the Laplace estimator by initializing all

counts to one instead of zero.

MISSING VALUES AND NUMERIC ATTRIBUTES

One of the really nice things about Naı̈ve Bayes is that missing values are no

problem at all. For example, if the value of outlook were missing in the example

of Table 4.3, the calculation would simply omit this attribute, yielding

Likelihood of yes5 3=93 3=93 3=93 9=145 0:0238
Likelihood of no5 1=53 4=53 3=53 5=145 0:0343:

These two numbers are individually a lot higher than they were before, because

one of the fractions is missing. But that’s not a problem because a fraction is miss-

ing in both cases, and these likelihoods are subject to a further normalization pro-

cess. This yields probabilities for yes and no of 41% and 59%, respectively.

If a value is missing in a training instance, it is simply not included in the fre-

quency counts, and the probability ratios are based on the number of values that

actually occur rather than on the total number of instances.

Numeric values are usually handled by assuming that they have a “normal” or

“Gaussian” probability distribution. Table 4.4 gives a summary of the weather

100 CHAPTER 4 Algorithms: the basic methods

Table 4.4 The Numeric Weather Data With Summary Statistics

Outlook Temperature Humidity Windy Play

Yes No Yes No Yes No Yes No Yes No

Sunny 2 3 83 85 86 85 False 6 2 9 5
Overcast 4 0 70 80 96 90 True 3 3
Rainy 3 2 68 65 80 70

64 72 65 95
69 71 70 91
75 80
75 70
72 90
81 75

Sunny 2/9 3/5 Mean 73 74.6 Mean 79.1 86.2 False 6/9 2/5 9/14 5/14
Overcast 4/9 0/5 Std dev 6.2 7.9 Std dev 10.2 9.7 True 3/9 3/5
Rainy 3/9 2/5

data with numeric features from Table 1.3. For nominal attributes, we calculate

counts as before, while for numeric ones we simply list the values that occur.

Then, instead of normalizing counts into probabilities as we do for nominal attri-

butes, we calculate the mean and standard deviation for each class and each

numeric attribute. The mean value of temperature over the yes instances is 73,

and its standard deviation is 6.2. The mean is simply the average of the values,

i.e., the sum divided by the number of values. The standard deviation is the

square root of the sample variance, which we calculate as follows: subtract the

mean from each value, square the result, sum them together, and then divide by

one less than the number of values. After we have found this “sample variance,”

take its square root to yield the standard deviation. This is the standard way of

calculating mean and standard deviation of a set of numbers (the “one less than”

is to do with the number of degrees of freedom in the sample, a statistical notion

that we don’t want to get into here).

The probability density function for a normal distribution with mean μ and

standard deviation σ is given by the rather formidable expression

f ðxÞ5 1ffiffiffiffiffiffi
2π

p
σ
e2

ðx2μÞ2
2σ2 :

But fear not! All this means is that if we are considering a yes outcome when

temperature has a value, say, of 66, we just need to plug x5 66, μ5 73, and

σ5 6.2 into the formula. So the value of the probability density function is

f ðtemperature5 66jyesÞ5 1ffiffiffiffiffiffi
2π

p
U6:2

e2
ð66273Þ2
2U6:22 5 0:0340:

And by the same token, the probability density of a yes outcome when humid-

ity has a value, say, of 90 is calculated in the same way:

f ðhumidity5 90jyesÞ5 0:0221:

The probability density function for an event is very closely related to its

probability. However, it is not quite the same thing. If temperature is a continuous

scale, the probability of the temperature being exactly 66—or exactly any other

value, such as 63.14159262—is zero. The real meaning of the density function

f(x) is that the probability that the quantity lies within a small region around x,

say, between x2 ε=2 and x1 ε=2, is εUf ðxÞ. You might think we ought to factor

in the accuracy figure ε when using these density values, but that’s not necessary.

The same ε would appear in both the yes and no likelihoods that follow and can-

cel out when the probabilities were calculated.

Using these probabilities for the new day in Table 4.5 yields

Table 4.5 Another New Day

Outlook Temperature Humidity Windy Play

Sunny 66 90 True ?

102 CHAPTER 4 Algorithms: the basic methods

Likelihood of yes5 2=93 0:03403 0:02213 3=93 9=145 0:000036;
Likelihood of no5 3=53 0:02793 0:03813 3=53 5=145 0:000137;

which leads to probabilities

Probability of yes5
0:000036

0:0000361 0:000137
5 20:8%;

Probability of no5
0:000137

0:0000361 0:000137
5 79:2%:

These figures are very close to the probabilities calculated earlier for the new

day in Table 4.3, because the temperature and humidity values of 66 and 90 yield

similar probabilities to the cool and high values used before.

The normal-distribution assumption makes it easy to extend the Naı̈ve Bayes clas-

sifier to deal with numeric attributes. If the values of any numeric attributes are missing,

the mean and standard deviation calculations are based only on the ones that are present.

NAÏVE BAYES FOR DOCUMENT CLASSIFICATION

An important domain for machine learning is document classification, in which each

instance represents a document and the instance’s class is the document’s topic.

Documents might be news items and the classes might be domestic news, overseas

news, financial news, and sport. Documents are characterized by the words that

appear in them, and one way to apply machine learning to document classification is

to treat the presence or absence of each word as a Boolean attribute. Naı̈ve Bayes is

a popular technique for this application because it is very fast and quite accurate.

However, this does not take into account the number of occurrences of each

word, which is potentially useful information when determining the category of a

document. Instead, a document can viewed as a bag of words—a set that contains

all the words in the document, with multiple occurrences of a word appearing

multiple times (technically, a set includes each of its members just once, whereas

a bag can have repeated elements). Word frequencies can be accommodated by

applying a modified form of Naı̈ve Bayes called multinominal Naı̈ve Bayes.

Suppose n1, n2,. . ., nk is the number of times word i occurs in the document,

and P1, P2,. . ., Pk is the probability of obtaining word i when sampling from all

the documents in category H. Assume that the probability is independent of the

word’s context and position in the document. These assumptions lead to a multi-

nomial distribution for document probabilities. For this distribution, the probabil-

ity of a document E given its class H—in other words, the formula for computing

the probability P(E|H) in Bayes’ rule—is

P EjHð Þ5N!3 L
k

i51

Pi
ni

ni!

where N5 n11 n21?1 nk is the number of words in the document. The reason

for the factorials is to account for the fact that the ordering of the occurrences of

1034.2 Simple Probabilistic Modeling

each word is immaterial according to the bag-of-words model. Pi is estimated by

computing the relative frequency of word i in the text of all training documents

pertaining to category H. In reality there could be a further term that gives the

probability that the model for category H generates a document whose length is

the same as the length of E, but it is common to assume that this is the same for

all classes and hence can be dropped.

For example, suppose there are only two words, yellow and blue, in the vocabu-

lary, and a particular document class H has P(yellow |H)5 75% and P(blue |H)5
25% (you might call H the class of yellowish green documents). Suppose E is the

document blue yellow blue with a length of N5 3 words. There are four possible

bags of three words. One is {yellow yellow yellow}, and its probability according to

the preceding formula is

Pðfyellow yellow yellowgjHÞ5 3!3
0:753

3!
3

0:250

0!
5

27

64

The other three, with their probabilities, are

Pðfblue blue bluegjHÞ5 1

64

Pðfyellow yellow bluegjHÞ5 27

64

Pðfyellow blue bluegjHÞ5 9

64

E corresponds to the last case (recall that in a bag of words the order is imma-

terial); thus its probability of being generated by the yellowish green document

model is 9/64, or 14%. Suppose another class, very bluish green documents (call

it H0), has P(yellow |H0)5 10% and P(blue |H0)5 90%. The probability that E is

generated by this model is 24%.

If these are the only two classes, does that mean that E is in the very bluish

green document class? Not necessarily. Bayes’ rule, given earlier, says that you

have to take into account the prior probability of each hypothesis. If you know

that in fact very bluish green documents are twice as rare as yellowish green

ones, this would be just sufficient to outweigh the 14�24% disparity and tip the

balance in favor of the yellowish green class.

The factorials in the probability formula don’t actually need to be computed

because—being the same for every class—they drop out in the normalization pro-

cess anyway. However, the formula still involves multiplying together many

small probabilities, which soon yields extremely small numbers that cause under-

flow on large documents. The problem can be avoided by using logarithms of the

probabilities instead of the probabilities themselves.

In the multinomial Naı̈ve Bayes formulation a document’s class is determined

not just by the words that occur in it but also by the number of times they occur.

In general it performs better than the ordinary Naı̈ve Bayes model for document

classification, particularly for large dictionary sizes.

104 CHAPTER 4 Algorithms: the basic methods

REMARKS

Naı̈ve Bayes gives a simple approach, with clear semantics, to representing,

using, and learning probabilistic knowledge. It can achieve impressive results.

People often find that Naı̈ve Bayes rivals, and indeed outperforms, more sophisti-

cated classifiers on many datasets. The moral is, always try the simple things first.

Over and over again people have eventually, after an extended struggle, managed

to obtain good results using sophisticated learning schemes, only to discover later

that simple methods such as 1R and Naı̈ve Bayes do just as well—or even better.

The primary reason for its effectiveness in classification problems is that maxi-

mizing classification accuracy does not require particularly accurate probability

estimates; it is sufficient for the correct class to receive the greatest probability.

There are many datasets for which Naı̈ve Bayes does not do well, however,

and it is easy to see why. Because attributes are treated as though they were inde-

pendent given the class, the addition of redundant ones skews the learning pro-

cess. As an extreme example, if you were to include a new attribute with the

same values as temperature to the weather data, the effect of the temperature

attribute would be multiplied: all of its probabilities would be squared, giving it a

great deal more influence in the decision. If you were to add 10 such attributes,

the decisions would effectively be made on temperature alone. Dependencies

between attributes inevitably reduce the power of Naı̈ve Bayes to discern what is

going on. They can, however, be ameliorated by using a subset of the attributes in

the decision procedure, making a careful selection of which ones to use.

Chapter 8, Data transformations, shows how.

The normal-distribution assumption for numeric attributes is another restric-

tion on Naı̈ve Bayes as we have formulated it here. Many features simply aren’t

normally distributed. However, there is nothing to prevent us from using other

distributions: there is nothing magic about the normal distribution. If you know

that a particular attribute is likely to follow some other distribution, standard esti-

mation procedures for that distribution can be used instead. If you suspect it isn’t

normal but don’t know the actual distribution, there are procedures for “kernel

density estimation” that do not assume any particular distribution for the attribute

values. Another possibility is simply to discretize the data first.

Naı̈ve Bayes is a very simple probabilistic model, and we examine far more

sophisticated ones in Chapter 9, Probabilistic methods.

4.3 DIVIDE-AND-CONQUER: CONSTRUCTING
DECISION TREES

The problem of constructing a decision tree can be expressed recursively. First,

select an attribute to place at the root node, and make one branch for each possi-

ble value. This splits up the example set into subsets, one for every value of the

attribute. Now the process can be repeated recursively for each branch, using only

1054.3 Divide-and-Conquer: Constructing Decision Trees

those instances that actually reach the branch. If at any time all instances at a

node have the same classification, stop developing that part of the tree.

The only thing left is how to determine which attribute to split on, given a set

of examples with different classes. Consider (again!) the weather data. There are

four possibilities for each split, and at the top level they produce the trees in

Fig. 4.2 Which is the best choice? The number of yes and no classes are shown at

the leaves. Any leaf with only one class—yes or no—will not have to be split fur-

ther, and the recursive process down that branch will terminate. Because we seek

small trees, we would like this to happen as soon as possible. If we had a measure

of the purity of each node, we could choose the attribute that produces the purest

daughter nodes. Take a moment to look at Fig. 4.2 and ponder which attribute

you think is the best choice.

The measure of purity that we will use is called the information and is mea-

sured in units called bits. Associated with a node of the tree, it represents the

expected amount of information that would be needed to specify whether a new

instance should be classified yes or no, given that the example reached that node.

Unlike the bits in computer memory, the expected amount of information usually

involves fractions of a bit—and is often less than one! It is calculated based on

the number of yes and no classes at the node; we will look at the details of the

Humidity

Yes
Yes
Yes
No
No
No
No

High

Yes
Yes
Yes
Yes
Yes
Yes
No

Normal

Outlook

Yes
Yes
No
No
No

Sunny

Yes
Yes
Yes
Yes

Overcast

Yes
Yes
Yes
No
No

Rainy

Temperature

Yes
Yes
No
No

Hot

Yes
Yes
Yes
Yes
No
No

Mild

Yes
Yes
Yes
No

Cool

Windy

Yes
Yes
Yes
Yes
Yes
Yes
No
No

False

Yes
Yes
Yes
No
No
No

True

(A) (B)

(C) (D)

FIGURE 4.2

Tree stumps for the weather data.

106 CHAPTER 4 Algorithms: the basic methods

calculation shortly. But first let’s see how it’s used. When evaluating the first tree

in Fig. 4.2, the number of yes and no classes at the leaf nodes are [2, 3], [4, 0],

and [3, 2], respectively, and the information values of these nodes are:

Infoð½2; 3�Þ5 0:971 bits
Infoð½4; 0�Þ5 0:0 bits
Infoð½3; 2�Þ5 0:971 bits

We calculate the average information value of these, taking into account the

number of instances that go down each branch—five down the first and third and

four down the second:

Infoð½2; 3�; ½4; 0�; ½3; 2�Þ5 ð5=14Þ3 0:9711 ð4=14Þ3 01 ð5=14Þ3 0:971

5 0:693 bits:

This average represents the amount of information that we expect would be nec-

essary to specify the class of a new instance, given the tree structure in Fig. 4.2A.

Before any of the nascent tree structures in Fig. 4.2 were created, the training

examples at the root comprised nine yes and five no nodes, corresponding to an

information value of

Infoð½9; 5�Þ5 0:940 bits:

Thus the tree in Fig. 4.2A is responsible for an information gain of

GainðoutlookÞ5 infoð½9; 5�Þ2 infoð½2; 3�; ½4; 0�; ½3; 2�Þ5 0:9402 0:693

5 0:247 bits;

which can be interpreted as the informational value of creating a branch on the

outlook attribute.

The way forward is clear. We calculate the information gain for each attribute

and split on the one that gains the most information. In the situation of Fig. 4.2,

GainðoutlookÞ5 0:247 bits

GainðtemperatureÞ5 0:029 bits

GainðhumidityÞ5 0:152 bits

GainðwindyÞ5 0:048 bits;

so we select outlook as the splitting attribute at the root of the tree. Hopefully this

accords with your intuition as the best one to select. It is the only choice for

which one daughter node is completely pure, and this gives it a considerable

advantage over the other attributes. Humidity is the next best choice because it

produces a larger daughter node that is almost completely pure.

Then we continue, recursively. Fig. 4.3 shows the possibilities for a further

branch at the node reached when outlook is sunny. Clearly, a further split on out-

look will produce nothing new, so we only consider the other three attributes. The

information gain for each turns out to be

GainðtemperatureÞ5 0:571 bits

GainðhumidityÞ5 0:971 bits

GainðwindyÞ5 0:020 bits;

1074.3 Divide-and-Conquer: Constructing Decision Trees

so we select humidity as the splitting attribute at this point. There is no need to

split these nodes any further, so this branch is finished.

Continued application of the same idea leads to the decision tree of Fig. 4.4

for the weather data. Ideally the process terminates when all leaf nodes are pure,

i.e., when they contain instances that all have the same classification. However, it

might not be possible to reach this happy situation because there is nothing to

stop the training set containing two examples with identical sets of attributes but

different classes. Consequently we stop when the data cannot be split any further.

Alternatively, one could stop if the information gain is zero. This is slightly more

conservative, because it is possible to encounter cases where the data can be split

into subsets exhibiting identical class distributions, which would make the infor-

mation gain zero.

CALCULATING INFORMATION

Now it is time to explain how to calculate the information measure that is

used as a basis for evaluating different splits. We describe the basic idea in this

(A)

(C)

(B)
Outlook

Temperature

Sunny

... ...

No
No

Hot

Yes
No

Mild

Yes

Cool

Outlook

Humidity

Sunny

... ...

No
No
No

High

Yes
Yes

Normal

Outlook

Windy

Sunny

... ...

Yes
No
No

False

Yes
No

True

FIGURE 4.3

Expanded tree stumps for the weather data.

108 CHAPTER 4 Algorithms: the basic methods

section, then in the next we examine a correction that is usually made to counter

a bias toward selecting splits on attributes with large numbers of possible

values.

Before examining the detailed formula for calculating the amount of informa-

tion required to specify the class of an example given that it reaches a tree node

with a certain number of yes’s and no’s, consider first the kind of properties we

would expect this quantity to have:

1. When the number of either yes’s or no’s is zero, the information is zero;

2. When the number of yes’s and no’s is equal, the information reaches a

maximum.

Moreover, the measure should be applicable to multiclass situations, not just

to two-class ones.

The information measure relates to the amount of information obtained by

making a decision, and a more subtle property of information can be derived by

considering the nature of decisions. Decisions can be made in a single stage, or

they can be made in several stages, and the amount of information involved is the

same in both cases. For example, the decision involved in

Infoð½2; 3; 4�Þ

can be made in two stages. First decide whether it’s the first case or one of the

other two cases:

Infoð½2; 7�Þ

and then decide which of the other two cases it is:

Infoð½3; 4�Þ

Outlook

Humidity

Sunny

Yes

Overcast

Windy

Rainy

No

High

Yes

Normal

Yes

False

No

True

FIGURE 4.4

Decision tree for the weather data.

1094.3 Divide-and-Conquer: Constructing Decision Trees

In some cases the second decision will not need to be made, namely, when the

decision turns out to be the first one. Taking this into account leads to the equation

Infoð½2; 3; 4�Þ5 infoð½2; 7�Þ1 ð7=9Þ3 infoð½3; 4�Þ:
Of course, there is nothing special about these particular numbers, and a simi-

lar relationship should hold regardless of the actual values. Thus we could add a

further criterion to the list above:

3. The information should obey the multistage property that we have illustrated.

Remarkably, it turns out that there is only one function that satisfies all these

properties, and it is known as the information value or entropy:

Entropyðp1; p2; . . .; pnÞ52 p1log p1 2 p2 log p2. . .2 pn log pn

The reason for the minus signs is that logarithms of the fractions p1; p2; :::; pn
are negative, so the entropy is actually positive. Usually the logarithms are

expressed in base 2, and then the entropy is in units called bits—just the usual

kind of bits used with computers.

The arguments p1, p2,. . . of the entropy formula are expressed as fractions that

add up to one, so that, e.g.,

Infoð½2; 3; 4�Þ5 entropyð2=9; 3=9; 4=9Þ:
Thus the multistage decision property can be written in general as

Entropyðp; q; rÞ5 entropyðp; q1 rÞ1 ðq1 rÞUentropy q

q1 r
;

r

q1 r

� �
where p1 q1 r5 1.

Because of the way the log function works, you can calculate the information

measure without having to work out the individual fractions:

Infoð½2; 3; 4�Þ5 2 2=93 log 2=92 3=93 log 3=92 4=93 log 4=9

5 ½2 2 log 22 3 log 32 4 log 41 9 log 9�=9:

This is the way that the information measure is usually calculated in practice.

So the information value for the first node of the first tree in Fig. 4.2 is

Infoð½2; 3�Þ52 2=53 log 2=52 3=53 log 3=55 0:971 bits;

as stated earlier.

HIGHLY BRANCHING ATTRIBUTES

When some attributes have a large number of possible values, giving rise to a mul-

tiway branch with many child nodes, a problem arises with the information gain

calculation. The problem can best be appreciated in the extreme case when an

attribute has a different value for each instance in the dataset—as, e.g., an identifi-

cation code attribute might.

110 CHAPTER 4 Algorithms: the basic methods

Table 4.6 gives the weather data with this extra attribute. Branching on ID

code produces the tree stump in Fig. 4.5. The expected information required to

specify the class given the value of this attribute is

1

14
ðinfoð 0; 1½ �Þ1 infoð 0; 1½ �Þ1 infoð 1; 0½ �Þ1?1 infoð 1; 0½ �Þ1 infoð 0; 1½ �ÞÞ;

which is zero because each of the 14 terms is zero. This is not surprising: the ID

code attribute identifies the instance, which determines the class without any

ambiguity—just as Table 4.6 shows. Consequently, the information gain of this

attribute is just the information at the root, info([9,5])5 0.940 bits. This is greater

than the information gain of any other attribute, and so ID code will inevitably be

chosen as the splitting attribute. But branching on the identification code is no

good for predicting the class of unknown instances.

The overall effect is that the information gain measure tends to prefer attri-

butes with large numbers of possible values. To compensate for this, a modifica-

tion of the measure called the gain ratio is widely used. The gain ratio is derived

Table 4.6 The Weather Data with Identification Codes

ID Code Outlook Temperature Humidity Windy Play

a Sunny Hot High False No
b Sunny Hot High True No
c Overcast Hot High False Yes
d Rainy Mild High False Yes
e Rainy Cool Normal False Yes
f Rainy Cool Normal True No
g Overcast Cool Normal True Yes
h Sunny Mild High False No
i Sunny Cool Normal False Yes
j Rainy Mild Normal False Yes
k Sunny Mild Normal True Yes
l Overcast Mild High True Yes
m Overcast Hot Normal False Yes
n Rainy Mild High True No

ID code

No

a

No

b

Yes

c ...

Yes

m

No

n

FIGURE 4.5

Tree stump for the ID code attribute.

1114.3 Divide-and-Conquer: Constructing Decision Trees

by taking into account the number and size of daughter nodes into which an

attribute splits the dataset, disregarding any information about the class. In the sit-

uation shown in Fig. 4.5, all counts have a value of 1, so the information value of

the split is

Infoð½1; 1; . . .; 1�Þ52 1=143 log 1=143 14;

because the same fraction, 1/14, appears 14 times. This amounts to log 14, or

3.807 bits, which is a very high value. This is because the information value of a

split is the number of bits needed to determine to which branch each instance is

assigned, and the more branches there are, the greater this value is. The gain ratio

is calculated by dividing the original information gain, 0.940 in this case, by the

information value of the attribute, 3.807—yielding a gain ratio value of 0.247 for

the ID code attribute.

Returning to the tree stumps for the weather data in Fig. 4.2, outlook splits the

dataset into three subsets of size 5, 4, and 5 and thus has an intrinsic information

value of

Infoð½5; 4; 5�Þ5 1:577

without paying any attention to the classes involved in the subsets. As we have

seen, this intrinsic information value is greater for a more highly branching attri-

bute such as the hypothesized ID code. Again we can correct the information gain

by dividing by the intrinsic information value to get the gain ratio.

The results of these calculations for the tree stumps of Fig. 4.2 are summa-

rized in Table 4.7 Outlook still comes out on top, but humidity is now a much

closer contender because it splits the data into two subsets instead of three. In this

particular example, the hypothetical ID code attribute, with a gain ratio of 0.247,

would still be preferred to any of these four. However, its advantage is greatly

reduced. In practical implementations, we can use an ad hoc test to guard against

splitting on such a useless attribute.

Unfortunately, in some situations the gain ratio modification overcompensates

and can lead to preferring an attribute just because its intrinsic information is much

lower than for the other attributes. A standard fix is to choose the attribute that

maximizes the gain ratio, provided that the information gain for that attribute is at

least as great as the average information gain for all the attributes examined.

Table 4.7 Gain Ratio Calculations for the Tree Stumps of Fig. 4.2

Outlook Temperature Humidity Windy

Info: 0.693 Info: 0.911 Info: 0.788 Info: 0.892

Gain:
0.940�0.693

0.247 Gain:
0.940�0.911

0.029 Gain:
0.940�0.788

0.152 Gain:
0.940�0.892

0.048

Split info:
info([5,4,5])

1.577 Split info:
info([4,6,4])

1.557 Split info:
info([7,7])

1.000 Split info:
info([8,6])

0.985

Gain ratio:
0.247/1.577

0.156 Gain ratio:
0.029/1.557

0.019 Gain ratio:
0.152/1

0.152 Gain ratio:
0.048/0.985

0.049

112 CHAPTER 4 Algorithms: the basic methods

The basic information-gain algorithm we have described is called ID3. A series

of improvements to ID3, including the gain ratio criterion, culminated in a practi-

cal and influential system for decision tree induction called C4.5. Further improve-

ments include methods for dealing with numeric attributes, missing values, noisy

data, and generating rules from trees, and they are described in Section 6.1.

4.4 COVERING ALGORITHMS: CONSTRUCTING RULES
As we have seen, decision tree algorithms are based on a divide-and-conquer

approach to the classification problem. They work top-down, seeking at each

stage an attribute to split on that best separates the classes, and then recursively

processing the subproblems that result from the split. This strategy generates a

decision tree, which can if necessary be converted into a set of classification

rules—although if it is to produce effective rules, the conversion is not trivial.

An alternative approach is to take each class in turn and seek a way of cover-

ing all instances in it, at the same time excluding instances not in the class. This

is called a covering approach because at each stage you identify a rule that “cov-

ers” some of the instances. By its very nature, this covering approach leads to a

set of rules rather than to a decision tree.

The covering method can readily be visualized in a two-dimensional space of

instances as shown in Fig. 4.6A. We first make a rule covering the a’s. For the

(A)

y

x

a

b b

b

b

b

b
b

b

b b b
b

b
b

a
a

a
a

a
y

a

b b

b

b

b

b
b

b

b b b
b

b
b

a a

aa

a

x
1.2 1.2

2.6

y

a

b b

b

b

b

b
b

b

b b b
b

b
b

a a

aa

a

x

(B)
x > 1.2 ?

b

No

y > 2.6 ?

Yes

b

No

a

Yes

FIGURE 4.6

Covering algorithm: (A) covering the instances; (B) decision tree for the same problem.

1134.4 Covering Algorithms: Constructing Rules

first test in the rule, split the space vertically as shown in the center picture. This

gives the beginnings of a rule:

If x . 1.2 then class 5 a

However, the rule covers many b’s as well as a’s, so a new test is added to

the rule by further splitting the space horizontally as shown in the third diagram:

If x . 1.2 and y . 2.6 then class 5 a

This gives a rule covering all but one of the a’s. It’s probably appropriate to

leave it at that, but if it were felt necessary to cover the final a, another rule

would be necessary—perhaps.

If x . 1.4 and y , 2.4 then class 5 a

The same procedure leads to two rules covering the b’s:

If x #1.2 then class 5 b
If x . 1.2 and y #2.6 then class 5 b

Again, one a is erroneously covered by these rules. If it were necessary to

exclude it, more tests would have to be added to the second rule, and additional

rules would be needed to cover the b’s that these new tests exclude.

RULES VERSUS TREES

A top-down divide-and-conquer algorithm operates on the same data in a manner,

i.e., at least superficially, quite similar to a covering algorithm. It might first split

the dataset using the x attribute, and would probably end up splitting it at the

same place, x5 1.2. However, whereas the covering algorithm is concerned only

with covering a single class, the division would take both classes into account,

because divide-and-conquer algorithms create a single concept description that

applies to all classes. The second split might also be at the same place, y5 2.6,

leading to the decision tree in Fig. 4.6B. This tree corresponds exactly to the set

of rules, and in this case there is no difference in effect between the covering and

the divide-and-conquer algorithms.

But in many situations there is a difference between rules and trees in terms

of the perspicuity of the representation. For example, when we described

the replicated subtree problem in Section 3.4, we noted that rules can be

symmetric whereas trees must select one attribute to split on first, and this can

lead to trees that are much larger than an equivalent set of rules. Another dif-

ference is that, in the multiclass case, a decision tree split takes all classes into

account, trying to maximize the purity of the split, whereas the rule-generating

method concentrates on one class at a time, disregarding what happens to the

other classes.

114 CHAPTER 4 Algorithms: the basic methods

A SIMPLE COVERING ALGORITHM

Covering algorithms operate by adding tests to the rule that is under construction,

always striving to create a rule with maximum accuracy. In contrast, divide-and-

conquer algorithms operate by adding tests to the tree that is under construction,

always striving to maximize the separation between the classes. Each of these involves

finding an attribute to split on. But the criterion for the best attribute is different

in each case. Whereas divide-and-conquer algorithms such as ID3 choose an attribute

to maximize the information gain, the covering algorithm we will describe chooses

an attribute�value pair to maximize the probability of the desired classification.

Fig. 4.7 gives a picture of the situation, showing the space containing all the

instances, a partially constructed rule, and the same rule after a new term has been

added. The new term restricts the coverage of the rule: the idea is to include as

many instances of the desired class as possible and exclude as many instances of

other classes as possible. Suppose the new rule will cover a total of t instances, of

which p are positive examples of the class and t�p are in other classes—i.e., they

are errors made by the rule. Then choose the new term to maximize the ratio p/t.

An example will help. For a change, we use the contact lens problem of

Table 1.1. We will form rules that cover each of the three classes, hard, soft, and

none, in turn. To begin, we seek a rule.

If ? then recommendation 5 hard.

For the unknown term “?,” we have nine choices:

age 5 young 2/8
age 5 pre-presbyopic 1/8
age 5 presbyopic 1/8
spectacle prescription 5 myope 3/12
spectacle prescription 5 hypermetrope 1/12
astigmatism 5 no 0/12
astigmatism 5 yes 4/12
tear production rate 5 reduced 0/12
tear production rate 5 normal 4/12

Space of
examples

Rule so far

Rule after
adding new
term

FIGURE 4.7

The instance space during operation of a covering algorithm.

1154.4 Covering Algorithms: Constructing Rules

The numbers on the right show the fraction of “correct” instances in the set

singled out by that choice. In this case, correct means that the recommendation is

hard. For instance, age5 young selects eight instances, two of which recommend

hard contact lenses, so the first fraction is 2/8. (To follow this, you will need to

look back at the contact lens data in Table 1.1 and count up the entries in the

table.) We select the largest fraction, 4/12, arbitrarily choosing between the sev-

enth and the last choice in the list, and create the rule:

If astigmatism 5 yes then recommendation 5 hard

This rule is quite inaccurate, getting only 4 instances correct out of the 12 that

it covers, shown in Table 4.8. So we refine it further:

If astigmatism 5 yes and ? then recommendation 5 hard

Considering the possibilities for the unknown term ? yields the seven choices:

age 5 young 2/4
age 5 pre-presbyopic 1/4
age 5 presbyopic 1/4
spectacle prescription 5 myope 3/6
spectacle prescription 5 hypermetrope 1/6
tear production rate 5 reduced 0/6
tear production rate 5 normal 4/6

Table 4.8 Part of the Contact Lens Data for which Astigmatism5 Yes

Age
Spectacle
Prescription Astigmatism

Tear
Production
Rate

Recommended
Lenses

Young Myope Yes Reduced None
Young Myope Yes Normal Hard
Young Hypermetrope Yes Reduced None
Young Hypermetrope Yes Normal Hard
Prepresbyopic Myope Yes Reduced None
Prepresbyopic Myope Yes Normal Hard
Prepresbyopic Hypermetrope Yes Reduced None
Prepresbyopic Hypermetrope Yes Normal None
Presbyopic Myope Yes Reduced None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope Yes Reduced None
Presbyopic Hypermetrope Yes Normal None

116 CHAPTER 4 Algorithms: the basic methods

(Again, count the entries in Table 4.8.) The last is a clear winner,

getting four instances correct out of the six that it covers, and corresponds to

the rule.

If astigmatism 5 yes and tear production rate 5 normal
then recommendation 5 hard

Should we stop here? Perhaps. But let’s say we are going for exact rules, no

matter how complex they become. Table 4.9 shows the cases that are covered by

the rule so far. The possibilities for the next term are now.

age 5 young 2/2
age 5 pre-presbyopic 1/2
age 5 presbyopic 1/2
spectacle prescription 5 myope 3/3
spectacle prescription 5 hypermetrope 1/3

We need to choose between the first and fourth. So far we have treated the

fractions numerically, but although these two are equal (both evaluate to 1), they

have different coverage: one selects just two correct instances and the other

selects three. In the event of a tie, we choose the rule with the greater coverage,

giving the final rule:

If astigmatism 5 yes and tear production rate 5 normal
and spectacle prescription 5 myope then recommendation 5 hard

This is indeed one of the rules given for the contact lens problem. But

it only covers three out of the four hard recommendations. So we delete

these three from the set of instances and start again, looking for another rule of

the form:

If ? then recommendation 5 hard

Table 4.9 Part of the Contact Lens Data for Which Astigmatism5 Yes and
Tear Production Rate5Normal

Age
Spectacle
Prescription Astigmatism

Tear
Production
Rate

Recommended
Lenses

Young Myope Yes Normal Hard
Young Hypermetrope Yes Normal Hard
Prepresbyopic Myope Yes Normal Hard
Prepresbyopic Hypermetrope Yes Normal None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope Yes Normal None

1174.4 Covering Algorithms: Constructing Rules

Following the same process, we will eventually find that age5 young is the

best choice for the first term. Its coverage is one out of seven; the reason for the

seven is that 3 instances have been removed from the original set, leaving 21

instances altogether. The best choice for the second term is astigmatism5 yes,

selecting 1/3 (actually, this is a tie); tear production rate5 normal is the best for

the third, selecting 1/1.

If age 5 young and astigmatism 5 yes
and tear production rate 5 normal
then recommendation 5 hard

This rule actually covers two of the original set of instances, one of which is

covered by the previous rule—but that’s all right because the recommendation is

the same for each rule.

Now that all the hard-lens cases are covered, the next step is to proceed with

the soft-lens ones in just the same way. Finally, rules are generated for the none

case—unless we are seeking a rule set with a default rule, in which case explicit

rules for the final outcome are unnecessary.

What we have just described is the PRISM method for constructing rules. It

generates only correct or “perfect” rules. It measures the success of a rule by

the accuracy formula p/t. Any rule with accuracy less than 100% is “incorrect”

in that it assigns cases to the class in question that actually do not have that

class. PRISM continues adding clauses to each rule until it is perfect: its accu-

racy is 100%. Fig. 4.8 gives a summary of the algorithm. The outer loop iterates

over the classes, generating rules for each class in turn. Note that we reinitialize

to the full set of examples each time round. Then we create rules for that class

and remove the examples from the set until there are none of that class left.

Whenever we create a rule, start with an empty rule (which covers all the exam-

ples), and then restrict it by adding tests until it covers only examples of the

desired class. At each stage choose the most promising test, i.e., the one that

For each class C
Initialize E to the instance set
While E contains instances in class C

Create a rule R with an empty left-hand side that predicts class C
Until R is perfect (or there are no more attributes to use) do

For each attribute A not mentioned in R, and each value v,
Consider adding the condition A=v to the LHS of R
Select A and v to maximize the accuracy p/t

(break ties by choosing the condition with the largest p)
Add A=v to R

Remove the instances covered by R from E

FIGURE 4.8

Pseudocode for a basic rule learner.

118 CHAPTER 4 Algorithms: the basic methods

maximizes the accuracy of the rule. Finally, break ties by selecting the test with

greatest coverage.

RULES VERSUS DECISION LISTS

Consider the rules produced for a particular class, i.e., the algorithm

in Fig. 4.8 with the outer loop removed. It seems clear from the way that

these rules are produced that they are intended to be interpreted in order, i.e., as a

decision list, testing the rules in turn until one applies and then using that. This is

because the instances covered by a new rule are removed from the instance set as

soon as the rule is completed (in the last line of the code in Fig. 4.8): thus subse-

quent rules are designed for instances that are not covered by the rule. However,

although it appears that we are supposed to check the rules in turn, we do not

have to do so. Consider that any subsequent rules generated for this class will

have the same effect—they all predict the same class. This means that it does not

matter what order they are executed in: either a rule will be found that covers this

instance, in which case the class in question is predicted, or no such rule is found,

in which case the class is not predicted.

Now return to the overall algorithm. Each class is considered in turn, and rules

are generated that distinguish instances in that class from the others. No ordering

is implied between the rules for one class and those for another. Consequently the

rules that are produced can be executed in any order.

As described in Section 3.4, order-independent rules seem to provide more

modularity by acting as independent nuggets of “knowledge,” but they suffer from

the disadvantage that it is not clear what to do when conflicting rules apply. With

rules generated in this way, a test example may receive multiple classifications, i.

e., it may satisfy rules that apply to different classes. Other test examples may

receive no classification at all. A simple strategy to force a decision in ambiguous

cases is to choose, from the classifications that are predicted, the one with the most

training examples or, if no classification is predicted, to choose the category with

the most training examples overall. These difficulties do not occur with decision

lists because they are meant to be interpreted in order and execution stops as soon

as one rule applies: the addition of a default rule at the end ensures that any test

instance receives a classification. It is possible to generate good decision lists for

the multiclass case using a slightly different method, as we shall see in Section 6.2.

Methods such as Prism can be described as separate-and-conquer algorithms:

you identify a rule that covers many instances in the class (and excludes

ones not in the class), separate out the covered instances because they are already

taken care of by the rule, and continue the process on those that are left. This

contrasts with the divide-and-conquer approach of decision trees. The “separate”

step results in an efficient method because the instance set continually shrinks as

the operation proceeds.

1194.4 Covering Algorithms: Constructing Rules

4.5 MINING ASSOCIATION RULES
Association rules are like classification rules. You could find them in the same

way, by executing a separate-and-conquer rule-induction procedure for each pos-

sible expression that could occur on the right-hand side of the rule. But not only

might any attribute occur on the right-hand side with any possible value; a single

association rule often predicts the value of more than one attribute. To find such

rules, you would have to execute the rule induction procedure once for every pos-

sible combination of attributes, with every possible combination of values, on the

right-hand side. That would result in an enormous number of association rules,

which would then have to be pruned down on the basis of their coverage (the

number of instances that they predict correctly) and their accuracy (the same

number expressed as a proportion of the number of instances to which the rule

applies). This approach is quite infeasible. (Note that, as we mentioned in

Section 3.4, what we are calling coverage is often called support and what we are

calling accuracy is often called confidence.)

Instead, we capitalize on the fact that we are only interested in association

rules with high coverage. We ignore, for the moment, the distinction between the

left- and right-hand sides of a rule and seek combinations of attribute�value pairs

that have a prespecified minimum coverage. These are called frequent item sets:

an attribute�value pair is an item. The terminology derives from market basket

analysis, in which the items are articles in your shopping cart and the supermarket

manager is looking for associations among these purchases.

ITEM SETS

The first column of Table 4.10 shows the individual items for the weather data

of Table 1.2, with the number of times each item appears in the dataset given at

the right. These are the one-item sets. The next step is to generate the two-item

sets by making pairs of one-item ones. Of course, there is no point in generating

a set containing two different values of the same attribute (such as out-

look5 sunny and outlook5 overcast), because that cannot occur in any actual

instance.

Assume that we seek association rules with minimum coverage 2: thus we dis-

card any item sets that cover fewer than two instances. This leaves 47 two-item

sets, some of which are shown in the second column along with the number of

times they appear. The next step is to generate the three-item sets, of which 39

have a coverage of 2 or greater. There are 6 four-item sets, and no five-item

sets—for this data, a five-item set with coverage 2 or greater could only corre-

spond to a repeated instance. The first rows of the table, e.g., show that there are

5 days when outlook5 sunny, two of which have temperature5 hot, and, in fact,

on both of those days humidity5 high and play5 no as well.

120 CHAPTER 4 Algorithms: the basic methods

Table 4.10 Item Sets for the Weather Data With Coverage 2 or Greater

One-Item Sets Two-Item Sets Three-Item Sets Four-Item Sets

1 Outlook5 sunny 5 Outlook5 sunny
temperature5mild

2 Outlook5 sunny temperature5 hot
humidity5 high

2 Outlook5 sunny temperature5 hot
humidity5 high play5 no

2

2 Outlook5 overcast 4 Outlook5 sunny
temperature5 hot

2 Outlook5 sunny temperature5 hot
play5 no

2 Outlook5 sunny humidity5 high
windy5 false play5 no

2

3 Outlook5 rainy 5 Outlook5 sunny
humidity5 normal

2 Outlook5 sunny humidity5 normal
play5 yes

2 Outlook5 overcast temperature5 hot
windy5 false play5 yes

2

4 Temperature5 cool 4 Outlook5 sunny
humidity5 high

3 Outlook5 sunny humidity5 high
windy5 false

2 Outlook5 rainy temperature5mild
windy5 false play5 yes

2

5 Temperature5mild 6 Outlook5 sunny
windy5 true

2 Outlook5 sunny humidity5 high
play5 no

3 Outlook5 rainy humidity5 normal
windy5 false play5 yes

2

6 Temperature5 hot 4 Outlook5 sunny
windy5 false

3 Outlook5 sunny windy5 false
play5 no

2 Temperature5 cool humidity5 normal
windy5 false play5 yes

2

7 Humidity5 normal 7 Outlook5 sunny
play5 yes

2 Outlook5overcast
temperature5 hot windy5 false

2

8 Humidity5 high 7 Outlook5 sunny
play5 no

3 Outlook5overcast
temperature5 hot play5 yes

2

9 Windy5 true 6 Outlook5 overcast
temperature5 hot

2 Outlook5overcast
humidity5 normal play5 yes

2

10 Windy5 false 8 Outlook5 overcast
humidity5 normal

2 Outlook5overcast humidity5 high
play5 yes

2

11 Play5 yes 9 Outlook5 overcast
humidity5 high

2 Outlook5overcast windy5 true
play5 yes

2

12 Play5 no 5 Outlook5 overcast
windy5 true

2 Outlook5overcast windy5 false
play5 yes

2

13 Outlook5 overcast
windy5 false

2 Outlook5 rainy temperature5 cool
humidity5 normal

2

.

38 Humidity5 normal
windy5 false

4 Humidity5 normal windy5 false
play5 yes

4

39 Humidity5 normal
play5 yes

6 Humidity5 high windy5 false
play5 no

2

40 Humidity5 high
windy5 true

3

.

47 Windy5 false play5 no 2

ASSOCIATION RULES

Shortly we will explain how to generate these item sets efficiently. But first let us

finish the story. Once all item sets with the required coverage have been gener-

ated, the next step is to turn each into a rule, or set of rules, with at least the spec-

ified minimum accuracy. Some item sets will produce more than one rule; others

will produce none. For example, there is one three-item set with a coverage of 4

(row 38 of Table 4.10):

humidity 5 normal, windy 5 false, play 5 yes

This set leads to seven potential rules:

If humidity 5 normal and windy 5 false then play 5 yes 4/4
If humidity 5 normal and play 5 yes then windy 5 false 4/6
If windy 5 false and play 5 yes then humidity 5 normal 4/6
If humidity 5 normal then windy 5 false and play 5 yes 4/7
If windy 5 false then humidity 5 normal and play 5 yes 4/8
If play 5 yes then humidity 5 normal and windy 5 false 4/9
If�then humidity 5 normal and windy 5 false and play 5 yes 4/14

The figures at the right show the number of instances for which all three con-

ditions are true—i.e., the coverage—divided by the number of instances for which

the conditions in the antecedent are true. Interpreted as a fraction, they represent

the proportion of instances on which the rule is correct—i.e., its accuracy.

Assuming that the minimum specified accuracy is 100%, only the first of these

rules will make it into the final rule set. The denominators of the fractions are

readily obtained by looking up the antecedent expression in Table 4.10 (although

some are not shown in the table). The final rule above has no conditions in the

antecedent, and its denominator is the total number of instances in the dataset.

Table 4.11 shows the final rule set for the weather data, with minimum cover-

age 2 and minimum accuracy 100%, sorted by coverage. There are 58 rules, 3

with coverage 4, 5 with coverage 3, and 50 with coverage 2. Only 7 have two

conditions in the consequent, and none has more than two. The first rule comes

from the item set described previously. Sometimes several rules arise from the

same item set. For example, rules 9, 10, and 11 all arise from the four-item set in

row 6 of Table 4.10:

temperature 5 cool, humidity 5 normal, windy 5 false, play 5 yes

which has coverage 2. Three subsets of this item set also have coverage 2:

temperature 5 cool, windy 5 false
temperature 5 cool, humidity 5 normal, windy 5 false
temperature 5 cool, windy 5 false, play 5 yes

122 CHAPTER 4 Algorithms: the basic methods

Table 4.11 Association Rules for the Weather Data

Association Rule Coverage Accuracy (%)

1 Humidity5 normal
windy5 false

. Play5 yes 4 100

2 Temperature5 cool . Humidity5 normal 4 100
3 Outlook5 overcast . Play5 yes 4 100
4 Temperature5 cool

play5 yes
. Humidity5 normal 3 100

5 Outlook5 rainy
windy5 false

. Play5 yes 3 100

6 Outlook5 rainy
play5 yes

. Windy5 false 3 100

7 Outlook5 sunny
humidity5 high

. Play5 no 3 100

8 Outlook5 sunny
play5 no

. Humidity5 high 3 100

9 Temperature5 cool
windy5 false

. Humidity5 normal
play5 yes

2 100

10 Temperature5 cool
humidity5 normal
windy5 false.

. Play5 yes 2 100

11 Temperature5 cool
windy5 false play5 yes

. Humidity5 normal 2 100

12 Outlook5 rainy
humidity5 normal
windy5 false

. Play5 yes 2 100

13 Outlook5 rainy
humidity5 normal
play5 yes

. Windy5 false 2 100

14 Outlook5 rainy
temperature5mild
windy5 false

. Play5 yes 2 100

15 Outlook5 rainy
temperature5mild
play5 yes

. Windy5 false 2 100

16 Temperature5mild
windy5 false play5 yes

. Outlook5 rainy 2 100

17 Outlook5 overcast
temperature5 hot

. Windy5 false
play5 yes

2 100

18 Outlook5 overcast
windy5 false

. Temperature5 hot
play5 yes

2 100

19 Temperature5 hot
play5 yes

. Outlook5 overcast
windy5 false

2 100

20 Outlook5 overcast
temperature5 hot
windy5 false .

. Play5 yes 2 100

(Continued)

1234.5 Mining Association Rules

and these lead to rules 9, 10, and 11, all of which are 100% accurate (on the train-

ing data).

GENERATING RULES EFFICIENTLY

We now consider in more detail an algorithm for producing association rules with

specified minimum coverage and accuracy. There are two stages: generating item

sets with the specified minimum coverage, and from each item set determining

the rules that have the specified minimum accuracy.

The first stage proceeds by generating all one-item sets with the given mini-

mum coverage (the first column of Table 4.10) and then using this to generate

the two-item sets (second column), three-item sets (third column), and so on.

Table 4.11 Association Rules for the Weather Data Continued

Association Rule Coverage Accuracy (%)

21 Outlook5 overcast
temperature5 hot
play5 yes

. Windy5 false 2 100

22 Outlook5overcast
windy5 false play5 yes

. Temperature5hot 2 100

23 Temperature5 hot
windy5 false
play5 yes

. Outlook5 overcast 2 100

24 Windy5 false play5 no . Outlook5 sunny
humidity5 high

2 100

25 Outlook5 sunny
humidity5 high
windy5 false

. Play5 no 2 100

26 Outlook5 sunny
windy5 false play5 no

. Humidity5 high 2 100

27 Humidity5 high
windy5 false play5 no

. Outlook5 sunny 2 100

28 Outlook5 sunny
temperature5hot

. Humidity5 high
play5 no

2 100

29 Temperature5 hot
play5no

. Outlook5 sunny
humidity5high

2 100

30 Outlook5 sunny
temperature5 hot
humidity5 high

. Play5 no 2 100

31 Outlook5 sunny
temperature5hot
play5no

. Humidity5 high 2 100

.

58 Outlook5 sunny
temperature5hot

. Humidity5 high 2 100

124 CHAPTER 4 Algorithms: the basic methods

Each operation involves a pass through the dataset to count the items in each

set, and after the pass the surviving item sets are stored in a hash table—a

standard data structure that allows elements stored in it to be found very

quickly. From the one-item sets, candidate two-item sets are generated, and then

a pass is made through the dataset, counting the coverage of each two-item set;

at the end the candidate sets with less than minimum coverage are removed

from the table. The candidate two-item sets are simply all of the one-item sets

taken in pairs, because a two-item set cannot have the minimum coverage unless

both its constituent one-item sets have the minimum coverage, too. This applies

in general: a three-item set can only have the minimum coverage if all three

of its two-item subsets have minimum coverage as well, and similarly for four-

item sets.

An example will help to explain how candidate item sets are generated.

Suppose there are five three-item sets: (A B C), (A B D), (A C D), (A C E),

and (B C D)—where, e.g., A is a feature such as outlook5 sunny. The union of

the first two, (A B C D), is a candidate four-item set because its other three-item

subsets (A C D) and (B C D) have greater than minimum coverage. If the three-

item sets are sorted into lexical order, as they are in this list, then we need only

consider pairs whose first two members are the same. For example, we do not

consider (A C D) and (B C D) because (A B C D) can also be generated from (A

B C) and (A B D), and if these two are not three-item sets with minimum cover-

age then (A B C D) cannot be a candidate four-item set. This leaves the pairs (A

B C) and (A B D), which we have already explained, and (A C D) and (A C E).

This second pair leads to the set (A C D E) whose three-item subsets do not all

have the minimum coverage, so it is discarded. The hash table assists with this

check: we simply remove each item from the set in turn and check that the

remaining three-item set is indeed present in the hash table. Thus in this example

there is only one candidate four-item set, (A B C D). Whether or not it actually

has minimum coverage can only be determined by checking the instances in the

dataset.

The second stage of the procedure takes each item set and generates rules

from it, checking that they have the specified minimum accuracy. If only rules

with a single test on the right-hand side were sought, it would be simply a matter

of considering each condition in turn as the consequent of the rule, deleting it

from the item set, and dividing the coverage of the entire item set by the coverage

of the resulting subset—obtained from the hash table—to yield the accuracy of

the corresponding rule. Given that we are also interested in association rules with

multiple tests in the consequent, it looks like we have to evaluate the effect of

placing each subset of the item set on the right-hand side, leaving the remainder

of the set as the antecedent.

This brute-force method will be excessively computation intensive unless

item sets are small, because the number of possible subsets grows exponen-

tially with the size of the item set. However, there is a better way. We

1254.5 Mining Association Rules

observed when describing association rules in Section 3.4 that if the double-

consequent rule

If windy 5 false and play 5 no
then outlook 5 sunny and humidity 5 high

holds with a given minimum coverage and accuracy, then both single-consequent

rules formed from the same item set must also hold:

If humidity 5 high and windy 5 false and play 5 no
then outlook 5 sunny

If outlook 5 sunny and windy 5 false and play 5 no
then humidity 5 high

Conversely, if one or other of the single-consequent rules does not hold, there

is no point in considering the double-consequent one. This gives a way of build-

ing up from single-consequent rules to candidate double-consequent ones, from

double-consequent rules to candidate triple-consequent ones, and so on. Of

course, each candidate rule must be checked against the hash table to see if it

really does have more than the specified minimum accuracy. But this generally

involves checking far fewer rules than the brute force method. It is interesting

that this way of building up candidate (n1 1)-consequent rules from actual n-con-

sequent ones is really just the same as building up candidate (n1 1)-item sets

from actual n-item sets, described earlier.

Fig. 4.9 shows pseudocode for the two parts of the association rule mining

process. Fig. 4.9A shows how to find all item sets of sufficient coverage. In an

actual implementation, the minimum coverage (or support) would be specified by

a parameter whose value the user can specify. Fig. 4.9B shows how to find all

rules that are sufficiently accurate, for a particular item set found by the previous

algorithm. Again, in practice, minimum accuracy (or confidence) would be deter-

mined by a user-specified parameter.

To find all rules for a particular dataset, the process shown in the second part would

be applied to all the item sets found using the algorithm in the first part. Note that the

code in the second part requires access to the hash tables established by the first part,

which contain all the sufficiently frequent item sets that have been found, along with

their coverage. In this manner, the algorithm in Fig. 4.9B does not need to revisit the

original data at all: accuracy can be estimated based on the information in these tables.

Association rules are often sought for very large datasets, and efficient algo-

rithms are highly valued. The method we have described makes one pass through

the dataset for each different size of item set. Sometimes the dataset is too large to

read in to main memory and must be kept on disk; then it may be worth reducing

the number of passes by checking item sets of two consecutive sizes in one go. For

example, once sets with two items have been generated, all sets of three items

could be generated from them before going through the instance set to count the

actual number of items in the sets. More three-item sets than necessary would be

considered, but the number of passes through the entire dataset would be reduced.

126 CHAPTER 4 Algorithms: the basic methods

In practice, the amount of computation needed to generate association rules

depends critically on the minimum coverage specified. The accuracy has less

influence because it does not affect the number of passes that must be made

through the dataset. In many situations we would like to obtain a certain number

of rules—say 50—with the greatest possible coverage at a prespecified minimum

accuracy level. One way to do this is to begin by specifying the coverage to be

rather high and to then successively reduce it, reexecuting the entire rule-finding

algorithm for each coverage value and repeating until the desired number of rules

has been generated.

The tabular input format that we use throughout this book, and in particular

the standard ARFF format based on it, is very inefficient for many association-

rule problems. Association rules are often used in situations where attributes are

binary—either present or absent—and most of the attribute values associated with

a given instance are absent. This is a case for the sparse data representation

described in Section 2.4; the same algorithm for finding association rules applies.

Set k to 1

Find all k-item sets with sufficient coverage and store them in hash table #1

While some k-item sets with sufficient coverage have been found

Increment k

Find all pairs of (k–1)-item sets in hash table #(k–1) that differ only in
their last item

Create a k-item set for each pair by combining the two (k–1)-item sets
that are paired

Remove all k-item sets containing any (k–1)-item sets that are not in the
#(k–1)hash table

Scan the data and remove all remaining k-item sets that do not have
sufficient coverage

Store the remaining k-item sets and their coverage in hash table #k,
sorting items in lexical order

(A)

(B)

Set n to 1

Find all sufficiently accurate n-consequent rules for the k-item set and
store them in hash table #1, computing accuracy using the hash tables
found for item sets

While some sufficiently accurate n-consequent rules have been found

Increment n

Find all pairs of (n–1)-consequent rules in hash table #(n–1) whose
consequents differ only in their last item

Create an n-consequent rule for each pair by combining the two (n–1)-
consequent rules that are paired

Remove all n-consequent rules that are insufficiently accurate, computing
accuracy using the hash tables found for item sets

Store the remaining n-consequent rules and their accuracy in hash table
#k, sorting items for each consequent in lexical order

FIGURE 4.9

(A) Finding all item sets with sufficient coverage; (B) finding all sufficiently accurate

association rules for a k-item set.

1274.5 Mining Association Rules

4.6 LINEAR MODELS
The methods we have been looking at for decision trees and rules work most natu-

rally with nominal attributes. They can be extended to numeric attributes either by

incorporating numeric-value tests directly into the decision tree or rule induction

scheme, or by prediscretizing numeric attributes into nominal ones. We will see

how in Chapter 6, Trees and rules, and Chapter 8, Data transformations. However,

there are methods that work most naturally with numeric attributes, namely, the

linear models introduced in Section 3.2; we examine them in more detail here.

They can form components or starting points for more complex learning methods,

which we will investigate later.

NUMERIC PREDICTION: LINEAR REGRESSION

When the outcome, or class, is numeric, and all the attributes are numeric, linear

regression is a natural technique to consider. This is a staple method in statistics.

The idea is to express the class as a linear combination of the attributes, with pre-

determined weights:

x5w0 1w1a1 1w2a2 1?1wkak

where x is the class; a1, a2,. . ., ak are the attribute values; and w0, w1,. . ., wk are

weights.

The weights are calculated from the training data. Here the notation gets a lit-

tle heavy, because we need a way of expressing the attribute values for each

training instance. The first instance will have a class, say x(1), and attribute

values, a
ð1Þ
1 , a

ð1Þ
2 ,. . ., að1Þk , where the superscript denotes that it is the first example.

Moreover, it is notationally convenient to assume an extra attribute a0, whose

value is always 1.

The predicted value for the first instance’s class can be written as

w0a
ð1Þ
0 1w1a

ð1Þ
1 1w2a

ð1Þ
2 1?1wka

ð1Þ
k 5

Xk
j50

wja
ð1Þ
j :

This is the predicted, not the actual, value for the class. Of interest is the dif-

ference between the predicted and actual values. The method of least-squares lin-

ear regression is to choose the coefficients wj—there are k1 1 of them—to

minimize the sum of the squares of these differences over all the training

instances. Suppose there are n training instances: denote the ith one with a super-

script (i). Then the sum of the squares of the differences is

Xn
i51

xðiÞ2
Xk
j50

wja
ðiÞ
j

 !2

128 CHAPTER 4 Algorithms: the basic methods

where the expression inside the parentheses is the difference between the ith

instance’s actual class and its predicted class. This sum of squares is what we

have to minimize by choosing the coefficients appropriately.

This is all starting to look rather formidable. However, the minimization

technique is straightforward if you have the appropriate math background. Suffice

it to say that given enough examples—roughly speaking, more examples than

attributes—choosing weights to minimize the sum of the squared differences is

really not difficult. It does involve a matrix inversion operation, but this is readily

available as prepackaged software.

Once the math has been accomplished, the result is a set of numeric weights,

based on the training data, which can be used to predict the class of new

instances. We saw an example of this when looking at the CPU performance data,

and the actual numeric weights are given in Fig. 3.4A. This formula can be used

to predict the CPU performance of new test instances.

Linear regression is an excellent, simple method for numeric prediction, and it

has been widely used in statistical applications for decades. Of course, basic lin-

ear models suffer from the disadvantage of, well, linearity. If the data exhibits a

nonlinear dependency, the best-fitting straight line will be found, where “best” is

interpreted as the least mean-squared difference. This line may not fit very well.

However, linear models serve well as building blocks or starting points for more

complex learning methods.

LINEAR CLASSIFICATION: LOGISTIC REGRESSION

Linear regression can easily be used for classification in domains with numeric

attributes. Indeed, we can use any regression technique for classification. The

trick is to perform a regression for each class, setting the output equal to one for

training instances that belong to the class and zero for those that do not. The

result is a linear expression for the class. Then, given a test example of unknown

class, calculate the value of each linear expression and choose the one that is larg-

est. When used with linear regression, this scheme is sometimes called multire-

sponse linear regression.

One way of looking at multiresponse linear regression is to imagine that it

approximates a numeric membership function for each class. The membership

function is 1 for instances that belong to that class and 0 for other instances.

Given a new instance we calculate its membership for each class and select the

biggest.

Multiresponse linear regression often yields good results in practice. However,

it has two drawbacks. First, the membership values it produces are not proper

probabilities because they can fall outside the range 0�1. Second, least-squares

regression assumes that the errors are not only statistically independent, but are

also normally distributed with the same standard deviation, an assumption that is

blatantly violated when the method is applied to classification problems because

the observations only ever take on the values 0 and 1.

1294.6 Linear Models

A related statistical technique called logistic regression does not suffer from

these problems. Instead of approximating the 0 and 1 values directly, thereby risk-

ing illegitimate probability values when the target is overshot, logistic regression

builds a linear model based on a transformed target variable.

Suppose first that there are only two classes. Logistic regression replaces the

original target variable

Pr½1ja1; a2; . . .; ak�;
which cannot be approximated accurately using a linear function, by

log½Pr½1ja1; a2; . . .; ak�=ð12Pr½1ja1; a2; . . .; ak�Þ:

The resulting values are no longer constrained to the interval from 0 to 1 but

can lie anywhere between negative infinity and positive infinity. Fig. 4.10A plots

the transformation function, which is often called the logit transformation.

The transformed variable is approximated using a linear function just like the

ones generated by linear regression. The resulting model is

Pr½1ja1; a2; . . .; ak�5 1=ð11 expð2w0 2w1a1 2?2wkakÞÞ;
with weights w. Fig. 4.10B shows an example of this function in one dimension,

with two weights w0521.25 and w15 0.5.

Just as in linear regression, weights must be found that fit the training data

well. Linear regression measures goodness of fit using the squared error. In logis-

tic regression the log-likelihood of the model is used instead. This is given byXn

i51
ð12 xðiÞÞlogð12 Pr½1jaðiÞ1 ; aðiÞ2 ; . . .; aðiÞk �Þ1 xðiÞlogðPr½1jaðiÞ1 ; aðiÞ2 ; . . .; aðiÞk �Þ

where the x(i) are either zero or one.

(A) (B)

–5
–4
–3
–2
–1
0
1
2
3
4
5

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

–10 –5 0 5 10

FIGURE 4.10

Logistic regression: (A) the logit transform; (B) example logistic regression function.

130 CHAPTER 4 Algorithms: the basic methods

The weights wi need to be chosen to maximize the log-likelihood. There are

several methods for solving this maximization problem. A simple one is to itera-

tively solve a sequence of weighted least-squares regression problems until the

log-likelihood converges to a maximum, which usually happens in a few

iterations.

To generalize logistic regression to several classes, one possibility is to pro-

ceed in the way described above for multiresponse linear regression by perform-

ing logistic regression independently for each class. Unfortunately, the resulting

probability estimates will not generally sum to one. To obtain proper probabilities

it is necessary to couple the individual models for each class. This yields a joint

optimization problem, and there are efficient solution methods for this.

The use of linear functions for classification can easily be visualized in

instance space. The decision boundary for two-class logistic regression lies where

the prediction probability is 0.5, i.e.:

Pr½1ja1; a2; . . .; ak�5 1=ð11 expð2w0 2w1a1 2?2wkakÞÞ5 0:5:

This occurs when

2w0 2w1a1 2?2wkak 5 0:

Because this is a linear equality in the attribute values, the boundary is a

plane, or hyperplane, in instance space. It is easy to visualize sets of points that

cannot be separated by a single hyperplane, and these cannot be discriminated

correctly by logistic regression.

Multiresponse linear regression suffers from the same problem. Each class

receives a weight vector calculated from the training data. Focus for the moment

on a particular pair of classes. Suppose the weight vector for class 1 is

w
ð1Þ
0 1w

ð1Þ
1 a1 1w

ð1Þ
2 a2 1?1w

ð1Þ
k ak

and the same for class 2 with appropriate superscripts. Then, an instance will be

assigned to class 1 rather than class 2 if

w
ð1Þ
0 1w

ð1Þ
1 a1 1?1w

ð1Þ
k ak .w

ð2Þ
0 1w

ð2Þ
1 a1 1?1w

ð2Þ
k ak

In other words, it will be assigned to class 1 if

ðwð1Þ
0 2w

ð2Þ
0 Þ1 ðwð1Þ

1 2w
ð2Þ
1 Þa1 1?1 ðwð1Þ

k 2w
ð2Þ
k Þak . 0:

This is a linear inequality in the attribute values, so the boundary between

each pair of classes is a hyperplane.

LINEAR CLASSIFICATION USING THE PERCEPTRON

Logistic regression attempts to produce accurate probability estimates by maxi-

mizing the probability of the training data. Of course, accurate probability esti-

mates lead to accurate classifications. However, it is not necessary to perform

1314.6 Linear Models

probability estimation if the sole purpose of the model is to predict class labels. A

different approach is to learn a hyperplane that separates the instances pertaining

to the different classes—let’s assume that there are only two of them. If the data

can be separated perfectly into two groups using a hyperplane, it is said to be lin-

early separable. It turns out that if the data is linearly separable, there is a very

simple algorithm for finding a separating hyperplane.

The algorithm is called the perceptron learning rule. Before looking at it in

detail, let’s examine the equation for a hyperplane again:

w0a0 1w1a1 1w2a2 1?1wkak 5 0:

Here, a1, a2,. . ., ak are the attribute values, and w0, w1,. . ., wk are the weights

that define the hyperplane. We will assume that each training instance a1, a2,. . .
is extended by an additional attribute a0 that always has the value 1 (as we did in

the case of linear regression). This extension, which is called the bias, just means

that we don’t have to include an additional constant element in the sum. If the

sum is greater than zero, we will predict the first class; otherwise, we will predict

the second class. We want to find values for the weights so that the training data

is correctly classified by the hyperplane.

Fig. 4.11A gives the perceptron learning rule for finding a separating hyper-

plane. The algorithm iterates until a perfect solution has been found, but it will

only work properly if a separating hyperplane exists, i.e., if the data is linearly

Set all weights to zero
Until all instances in the training data are classified correctly

For each instance I in the training data
If I is classified incorrectly by the perceptron

If I belongs to the first class add it to the weight vector
else subtract it from the weight vector

(A)

(B)

Attribute
a1

w0 w1 w2 wk

Attribute
ak

1
("Bias")

Attribute
a2

FIGURE 4.11

The perceptron: (A) learning rule; (B) representation as a neural network.

132 CHAPTER 4 Algorithms: the basic methods

separable. Each iteration goes through all the training instances. If a misclassified

instance is encountered, the parameters of the hyperplane are changed so that the

misclassified instance moves closer to the hyperplane or maybe even across the

hyperplane onto the correct side. If the instance belongs to the first class, this is

done by adding its attribute values to the weight vector; otherwise, they are sub-

tracted from it.

To see why this works, consider the situation after an instance a pertaining to

the first class has been added:

ðw0 1 a0Þa0 1 ðw1 1 a1Þa1 1 ðw2 1 a2Þa2 1?1 ðwk 1 akÞak:
This means the output for a has increased by

a0 3 a0 1 a1 3 a1 1 a2 3 a2 1?1 ak 3 ak :

This number is always positive. Thus the hyperplane has moved in the correct

direction for classifying instance a as positive. Conversely, if an instance belong-

ing to the second class is misclassified, the output for that instance decreases after

the modification, again moving the hyperplane in the correct direction.

These corrections are incremental, and can interfere with earlier updates.

However, it can be shown that the algorithm converges into a finite number of

iterations if the data is linearly separable. Of course, if the data is not linearly sep-

arable, the algorithm will not terminate, so an upper bound needs to be imposed

on the number of iterations when this method is applied in practice.

The resulting hyperplane is called a perceptron, and it’s the grandfather of

neural networks (we return to neural networks in Section 7.2 and chapter: Deep

learning). Fig. 4.11B represents the perceptron as a graph with nodes and

weighted edges, imaginatively termed a “network” of “neurons.” There are two

layers of nodes: input and output. The input layer has one node for every attri-

bute, plus an extra node that is always set to one. The output layer consists of just

one node. Every node in the input layer is connected to the output layer. The con-

nections are weighted, and the weights are those numbers found by the perceptron

learning rule.

When an instance is presented to the perceptron, its attribute values serve to

“activate” the input layer. They are multiplied by the weights and summed up at

the output node. If the weighted sum is greater than 0 the output signal is 1,

representing the first class; otherwise, it is 21, representing the second.

LINEAR CLASSIFICATION USING WINNOW

The perceptron algorithm is not the only method that is guaranteed to find a sepa-

rating hyperplane for a linearly separable problem. For datasets with binary attri-

butes there is an alternative known as Winnow, shown in Fig. 4.12A. The

structure of the two algorithms is very similar. Like the perceptron, Winnow only

updates the weight vector when a misclassified instance is encountered—it is mis-

take driven.

1334.6 Linear Models

The two methods differ in how the weights are updated. The perceptron rule

employs an additive mechanism that alters the weight vector by adding (or sub-

tracting) the instance’s attribute vector. Winnow employs multiplicative updates

and alters weights individually by multiplying them by a user-specified parameter

α (or its inverse). The attribute values ai are either 0 or 1 because we are working

with binary data. Weights are unchanged if the attribute value is 0, because then

they do not participate in the decision. Otherwise, the multiplier is α if that attri-

bute helps to make a correct decision and 1/α if it does not.

Another difference is that the threshold in the linear function is also a user-

specified parameter. We call this threshold θ and classify an instance as belonging

to class 1 if and only if

w0a0 1w1a1 1w2a2 1?1wkak . θ:

The multiplier α needs to be greater than one. The wi are set to a constant at

the start.

The algorithm we have described doesn’t allow for negative weights, which—

depending on the domain—can be a drawback. However, there is a version, called

Balanced Winnow, which does allow them. This version maintains two weight

vectors, one for each class. An instance is classified as belonging to class 1 if:

ðw1
0 2w2

0 Þa0 1 ðw1
1 2w2

1 Þa1 1?1 ðw1
k 2w2

k Þak . θ:

While some instances are misclassified
for every instance a

classify a using the current weights
if the predicted class is incorrect

if a belongs to the first class
for each ai that is 1, multiply wi by
(if ai is 0, leave wi unchanged)

otherwise
for each ai that is 1, divide wi by
(if ai is 0, leave wi unchanged)

(B)

(A)

While some instances are misclassified
for every instance a

classify a using the current weights
if the predicted class is incorrect

if a belongs to the first class
for each ai that is 1,

multiply wi
+ by

divide wi by
(if ai is 0, leave wi

+ and wi
- unchanged)

otherwise
multiply wi by
divide wi

+ by
(if ai is 0, leave wi

+ and wi
- unchanged)

FIGURE 4.12

The Winnow algorithm: (A) unbalanced version; (B) balanced version.

134 CHAPTER 4 Algorithms: the basic methods

Fig. 4.12B shows the balanced algorithm.

Winnow is very effective in homing in on the relevant features in a dataset—

therefore it is called an attribute-efficient learner. That means that it may be a

good candidate algorithm if a dataset has many (binary) features and most of

them are irrelevant. Both Winnow and the perceptron algorithm can be used in an

online setting in which new instances arrive continuously, because they can incre-

mentally update their concept descriptions as new instances arrive.

4.7 INSTANCE-BASED LEARNING
In instance-based learning the training examples are stored verbatim, and a dis-

tance function is used to determine which member of the training set is closest to

an unknown test instance. Once the nearest training instance has been located, its

class is predicted for the test instance. The only remaining problem is defining

the distance function, and that is not very difficult to do, particularly if the attri-

butes are numeric.

THE DISTANCE FUNCTION

Although there are other possible choices, most instance-based learners use

Euclidean distance. The distance between an instance with attribute values a
ð1Þ
1 ,

a
ð1Þ
2 ,. . ., að1Þk (where k is the number of attributes) and one with values a

ð2Þ
1 , a

ð2Þ
2 ,. . .,

a
ð2Þ
k is defined as ffi

ðað1Þ1 2a
ð2Þ
1 Þ2 1 ðað1Þ2 2a

ð2Þ
2 Þ2 1?1 ðað1Þk 2a

ð2Þ
k Þ2

q
:

When comparing distances it is not necessary to perform the square root oper-

ation: the sums of squares can be compared directly. One alternative to the

Euclidean distance is the Manhattan or city-block metric, where the difference

between attribute values is not squared but just added up (after taking the absolute

value). Others are obtained by taking powers higher than the square. Higher

powers increase the influence of large differences at the expense of small differ-

ences. Generally, the Euclidean distance represents a good compromise. Other

distance metrics may be more appropriate in special circumstances. The key is to

think of actual instances and what it means for them to be separated by a certain

distance—What would twice that distance mean, for example?

Different attributes are measured on different scales, so if the Euclidean dis-

tance formula were used directly, the effect of some attributes might be

completely dwarfed by others that had larger scales of measurement.

Consequently, it is usual to normalize all attribute values to lie between 0 and 1,

by calculating

ai 5
vi 2min vi

max vi 2min vi

1354.7 Instance-Based Learning

where vi is the actual value of attribute i, and the maximum and minimum are

taken over all instances in the training set.

These formulae implicitly assume numeric attributes. Here the difference

between two values is just the numerical difference between them, and it is this

difference that is squared and added to yield the distance function. For nominal

attributes that take on values that are symbolic rather than numeric, the difference

between two values that are not the same is often taken to be one, whereas if the

values are the same the difference is zero. No scaling is required in this case

because only the values 0 and 1 are used.

A common policy for handling missing values is as follows: for nominal attri-

butes, assume that a missing feature is maximally different from any other feature

value. Thus if either or both values are missing, or if the values are different, the

difference between them is taken as one; the difference is zero only if they are

not missing and both are the same. For numeric attributes, the difference between

two missing values is also taken as one. However, if just one value is missing, the

difference is often taken as either the (normalized) size of the other value or one

minus that size, whichever is larger. This means that if values are missing, the

difference is as large as it can possibly be.

FINDING NEAREST NEIGHBORS EFFICIENTLY

Although instance-based learning is simple and effective, it is often slow.

The obvious way to find which member of the training set is closest to an unknown

test instance is to calculate the distance from every member of the training set

and select the smallest. This procedure is linear in the number of training instances:

in other words, the time it takes to make a single prediction is proportional to the

number of training instances. Processing an entire test set takes time proportional

to the product of the number of instances in the training and test sets.

Nearest neighbors can be found more efficiently by representing the training

set as a tree, although it is not quite obvious how. One suitable structure is a kD-

tree. This is a binary tree that divides the input space with a hyperplane and then

splits each partition again, recursively. All splits are made parallel to one of the

axes, either vertically or horizontally, in the two-dimensional case. The data struc-

ture is called a kD-tree because it stores a set of points in k-dimensional space, k

being the number of attributes.

Fig. 4.13A gives a small example with k5 2, and Fig. 4.13B shows the four

training instances it represents, along with the hyperplanes that constitute the tree.

Note that these hyperplanes are not decision boundaries: decisions are made on

a nearest-neighbor basis as explained later. The first split is horizontal (h),

through the point (7,4)—this is the tree’s root. The left branch is not split further:

it contains the single point (2,2), which is a leaf of the tree. The right branch

is split vertically (v) at the point (6,7). Its right child is empty, and its left

child contains the point (3,8). As this example illustrates, each region contains

just one point—or, perhaps, no points. Sibling branches of the tree—e.g., the two

136 CHAPTER 4 Algorithms: the basic methods

daughters of the root in Fig. 4.13A—are not necessarily developed to the same

depth. Every point in the training set corresponds to a single node, and up to half

are leaf nodes.

How do you build a kD-tree from a dataset? Can it be updated efficiently as

new training examples are added? And how does it speed up nearest-neighbor cal-

culations? We tackle the last question first.

To locate the nearest neighbor of a given target point, follow the tree down

from its root to locate the region containing the target. Fig. 4.14 shows a space

like that of Fig. 4.13B but with a few more instances and an extra boundary. The

target, which is not one of the instances in the tree, is marked by a star. The leaf

node of the region containing the target is colored black. This is not necessarily

the target’s closest neighbor, as this example illustrates, but it is a good first

FIGURE 4.14

Using a kD-tree to find the nearest neighbor of the star.

(2,2)

(7,4); h

(A) (B)

(6,7); v

(3,8) a1

a2

(2,2)

(7,4)

(6,7)

(3,8)

FIGURE 4.13

A kD-tree for four training instances: (A) the tree; (B) instances and splits.

1374.7 Instance-Based Learning

approximation. In particular, any nearer neighbor must lie closer—within the

dashed circle in Fig. 4.14. To determine whether one exists, first check whether it

is possible for a closer neighbor to lie within the node’s sibling. The black node’s

sibling is shaded in Fig. 4.14, and the circle does not intersect it, so the sibling

cannot contain a closer neighbor. Then back up to the parent node and check its

sibling—which here covers everything above the horizontal line. In this case it

must to be explored, because the area it covers intersects with the best circle so

far. To explore it, find its daughters (the original point’s two aunts), check

whether they intersect the circle (the left one does not, but the right one does),

and descend to see if it contains a closer point (it does).

In a typical case, this algorithm is far faster than examining all points to find

the nearest neighbor. The work involved in finding the initial approximate nearest

neighbor—the black point in Fig. 4.14—depends on the depth of the tree, given

by the logarithm log2n of the number of nodes n, if the tree is well balanced. The

amount of work involved in backtracking to check whether this really is the near-

est neighbor depends a bit on the tree, and on how good the initial approximation

is. But for a well-constructed tree whose nodes are approximately square, rather

than long skinny rectangles, it can also be shown to be logarithmic in the number

of nodes (if the number of attributes in the dataset is not too large).

How do you build a good tree for a set of training examples? The problem

boils down to selecting the first training instance to split at and the direction of

the split. Once you can do that, apply the same method recursively to each child

of the initial split to construct the entire tree.

To find a good direction for the split, calculate the variance of the data points

along each axis individually, select the axis with the greatest variance, and create

a splitting hyperplane perpendicular to it. To find a good place for the hyperplane,

locate the median value along that axis and select the corresponding point. This

makes the split perpendicular to the direction of greatest spread, with half the

points lying on either side. This produces a well-balanced tree. To avoid long

skinny regions it is best for successive splits to be along different axes, which is

likely because the dimension of greatest variance is chosen at each stage.

However, if the distribution of points is badly skewed, choosing the median value

may generate several successive splits in the same direction, yielding long, skinny

hyperrectangles. A better strategy is to calculate the mean rather than the median

and use the point closest to that. The tree will not be perfectly balanced, but its

regions will tend to be squarish because there is a greater chance that different

directions will be chosen for successive splits.

An advantage of instance-based learning over most other machine learning

methods is that new examples can be added to the training set at any time. To

retain this advantage when using a kD-tree, we need to be able to update it incre-

mentally with new data points. To do this, determine which leaf node contains

the new point and find its hyperrectangle. If it is empty, simply place the new

point there. Otherwise split the hyperrectangle, splitting it along its longest

dimension to preserve squareness. This simple heuristic does not guarantee that

138 CHAPTER 4 Algorithms: the basic methods

adding a series of points will preserve the tree’s balance, nor that the hyperrectan-

gles will be well shaped for nearest-neighbor search. It is a good idea to rebuild

the tree from scratch occasionally—e.g., when its depth grows to twice the best

possible depth.

As we have seen, kD-trees are good data structures for finding nearest neigh-

bors efficiently. However, they are not perfect. Skewed datasets present a basic

conflict between the desire for the tree to be perfectly balanced and the desire for

regions to be squarish. More importantly, rectangles—even squares—are not the

best shape to use anyway, because of their corners. If the dashed circle in Fig. 4.14

were any bigger, which it would be if the black instance were a little further from

the target, it would intersect the lower right-hand corner of the rectangle at the top

left and then that rectangle would have to be investigated, too—despite the fact

that the training instances that define it are a long way from the corner in question.

The corners of rectangular regions are awkward.

The solution? Use hyperspheres, not hyperrectangles. Neighboring spheres

may overlap whereas rectangles can abut, but this is not a problem because the

nearest-neighbor algorithm for kD-trees does not depend on the regions being dis-

joint. A data structure called a ball tree defines k-dimensional hyperspheres

(balls) that cover the data points, and arranges them into a tree.

Fig. 4.15A shows 16 training instances in two-dimensional space, overlaid by

a pattern of overlapping circles, and Fig. 4.15B shows a tree formed from these

circles. Circles at different levels of the tree are indicated by different styles of

dash, and the smaller circles are drawn in shades of gray. Each node of the tree

represents a ball, and the node is dashed or shaded according to the same conven-

tion so that you can identify which level the balls are at. To help you understand

the tree, numbers are placed on the nodes to show how many data points are

16

(B)(A)

106

462

2 2 2 2

2 2

2

4

4

FIGURE 4.15

Ball tree for 16 training instances: (A) instances and balls; (B) the tree.

1394.7 Instance-Based Learning

deemed to be inside that ball. But be careful: this is not necessarily the same as

the number of points falling within the spatial region that the ball represents. The

regions at each level sometimes overlap, but points that fall into the overlap area

are assigned to only one of the overlapping balls (the diagram does not show

which one). Instead of the occupancy counts in Fig. 4.15B the nodes of actual

ball trees store the center and radius of their ball; leaf nodes record the points

they contain as well.

To use a ball tree to find the nearest neighbor to a given target, start by travers-

ing the tree from the top down to locate the leaf that contains the target and find

the closest point to the target in that ball. (If no ball contains the instance, pick the

closest ball.) This gives an upper bound for the target’s distance from its nearest

neighbor. Then, just as for the kD-tree, examine the sibling node. If the distance

from the target to the sibling’s center exceeds its radius plus the current upper

bound, it cannot possibly contain a closer point; otherwise the sibling must be

examined by descending the tree further. In Fig. 4.16 the target is marked with a

star and the black dot is its closest currently known neighbor. The entire contents

of the gray ball can be ruled out: it cannot contain a closer point because its center

is too far away. Proceed recursively back up the tree to its root, examining any

ball that may possibly contain a point nearer than the current upper bound.

Ball trees are built from the top down, and as with kD-trees the basic problem

is to find a good way of splitting a ball containing a set of data points into two.

In practice you do not have to continue until the leaf balls contain just two points:

you can stop earlier, once a predetermined minimum number is reached—and the

same goes for kD-trees. Here is one possible splitting method. Choose the point

in the ball that is farthest from its center, and then a second point that is farthest

from the first one. Assign all data points in the ball to the closest one of these

two provisional cluster centers, then compute the centroid of each cluster and the

FIGURE 4.16

Ruling out an entire ball (gray) based on a target point (star) and its current nearest

neighbor.

140 CHAPTER 4 Algorithms: the basic methods

minimum radius required for it to enclose all the data points it represents. This

method has the merit that the cost of splitting a ball containing n points is only

linear in n. There are more elaborate algorithms that produce tighter balls, but

they require more computation. We will not describe sophisticated algorithms for

constructing ball trees or updating them incrementally as new training instances

are encountered.

REMARKS

Nearest-neighbor instance-based learning is simple and often works very well. In

the scheme we have described each attribute has exactly the same influence on

the decision, just as it does in the Naı̈ve Bayes method. Another problem is that

the database can easily become corrupted by noisy exemplars. One solution is to

adopt the k-nearest neighbor strategy, where some fixed, small, number k of near-

est neighbors—say five—are located and used together to determine the class of

the test instance through a simple majority vote. (Note that earlier we used k to

denote the number of attributes; this is a different, independent usage.) Another

way of proofing the database against noise is to choose the exemplars that are

added to it selectively and judiciously. Improved procedures, described in

Section 7.1, address these shortcomings.

The nearest-neighbor method originated many decades ago, and statisticians

analyzed k-nearest-neighbor schemes in the early 1950s. If the number of training

instances is large, it makes intuitive sense to use more than one nearest neighbor,

but clearly this is dangerous if there are few instances. It can be shown that when

k and the number n of instances both become infinite in such a way that k/n-0,

the probability of error approaches the theoretical minimum for the dataset. The

nearest-neighbor method was adopted as a classification scheme in the early

1960s and has been widely used in the field of pattern recognition for almost half

a century.

Nearest-neighbor classification was notoriously slow until kD-trees began to

be applied in the early 1990s, although the data structure itself was developed

much earlier. In practice, these trees become inefficient when the dimension of

the space increases and are only worthwhile when the number of attributes is rela-

tively small. Ball trees were developed much more recently and are an instance

of a more general structure called a metric tree.

4.8 CLUSTERING
Clustering techniques apply when there is no class to be predicted but rather

when the instances are to be divided into natural groups. These clusters presum-

ably reflect some mechanism at work in the domain from which instances are

drawn, a mechanism that causes some instances to bear a stronger resemblance to

1414.8 Clustering

each other than they do to the remaining instances. Clustering naturally requires

different techniques to the classification and association learning methods that we

have considered so far.

As we saw in Section 3.6, there are different ways in which the result of clus-

tering can be expressed. The groups that are identified may be exclusive: any

instance belongs in only one group. Or they may be overlapping: an instance may

fall into several groups. Or they may be probabilistic: an instance belongs to each

group with a certain probability. Or they may be hierarchical: a rough division of

instances into groups at the top level and each group refined further—perhaps all

the way down to individual instances. Really, the choice among these possibilities

should be dictated by the nature of the mechanisms that are thought to underlie

the particular clustering phenomenon. However, because these mechanisms are

rarely known—the very existence of clusters is, after all, something that we’re

trying to discover—and for pragmatic reasons too, the choice is usually dictated

by the clustering tools that are available.

We will begin by examining an algorithm that works in numeric domains, par-

titioning instances into disjoint clusters. Like the basic nearest-neighbor method

of instance-based learning, it is a simple and straightforward technique that has

been used for several decades. The algorithm is known as k-means and many var-

iations of the procedure have been developed.

In the basic formulation k initial points are chosen to represent initial cluster

centers, all data points are assigned to the nearest one, the mean value of the

points in each cluster is computed to form its new cluster center, and iteration

continues until there are no changes in the clusters. This procedure only works

when the number of clusters is known in advance. This leads to the natural ques-

tion: How do you choose k? Often nothing is known about the likely number of

clusters, and the whole point of clustering is to find out. We therefore go on to

discuss what to do when the number of clusters is not known in advance.

Some techniques produce a hierarchical clustering by applying the algorithm

with k5 2 to the overall dataset and then repeating, recursively, within each clus-

ter. We go on to look at techniques for creating a hierarchical clustering structure

by “agglomeration,” i.e., starting with the individual instances and successively

joining them up into clusters. Then we look at a method that works incrementally,

processing each new instance as it appears. This method was developed in the late

1980s and embodied in a pair of systems called Cobweb (for nominal attributes)

and Classit (for numeric attributes). Both come up with a hierarchical grouping of

instances, and use a measure of cluster “quality” called category utility.

ITERATIVE DISTANCE-BASED CLUSTERING

The classic clustering technique is called k-means. First, you specify in advance

how many clusters are being sought: this is the parameter k. Then k points are

chosen at random as cluster centers. All instances are assigned to their closest

cluster center according to the ordinary Euclidean distance metric. Next the

142 CHAPTER 4 Algorithms: the basic methods

centroid, or mean, of the instances in each cluster is calculated—this is the

“means” part. These centroids are taken to be new center values for their respec-

tive clusters. Finally, the whole process is repeated with the new cluster centers.

Iteration continues until the same points are assigned to each cluster in consecu-

tive rounds, at which stage the cluster centers have stabilized and will remain the

same forever.

Fig. 4.17 shows an example of how this process works, based on scatter plots

of a simple dataset with 15 instances and 2 numeric attributes. Each of the four

columns corresponds to one iteration of the k-means algorithm. This example

assumes we are seeing three clusters; thus we set k5 3. Initially, at the top left,

three cluster centers, represented by different geometric shapes, are placed ran-

domly. Then, in the plot, instances are tentatively assigned to clusters by finding

the closest cluster center for each instance. This completes the first iteration

of the algorithm. So far, the clustering looks messy—which is not surprising

because the initial cluster centers were random. The key is to update the centers

based on the assignment that has just been created. In the next iteration, the clus-

ter centers are recalculated based on the instances that have been assigned to each

cluster, to obtain the upper plot in the second column. Then instances are reas-

signed to these new centers to obtain the plot below. This produces a much nicer

set of clusters. However, the centers are still not in the middle of their clusters;

moreover, one triangle is still incorrectly clustered as a circle. Thus, the two

steps—center recalculation and instance reassignment—need to be repeated. This

yields Step 2, in which the clusters look very plausible. But the two top-most

cluster centers still need to be updated, because they are based on the old

Initial step Step 1 Step 2 Final step

FIGURE 4.17

Iterative distance-based clustering.

1434.8 Clustering

assignment of instances to clusters. Recomputing the assignments in the next and

final iteration shows that all instances remain assigned to the same cluster centers.

The algorithm has converged.

This clustering method is simple and effective. It is easy to prove that choos-

ing the cluster center to be the centroid minimizes the total squared distance from

each of the cluster’s points to its center. Once the iteration has stabilized, each

point is assigned to its nearest cluster center, so the overall effect is to minimize

the total squared distance from all points to their cluster centers. But the mini-

mum is a local one: there is no guarantee that it is the global minimum. The final

clusters are quite sensitive to the initial cluster centers. Completely different

arrangements can arise from small changes in the initial random choice. In fact,

this is true of all practical clustering techniques: it is almost always infeasible to

find globally optimal clusters. To increase the chance of finding a global mini-

mum people often run the algorithm several times with different initial choices

and choose the best final result—the one with the smallest total squared distance.

It is easy to imagine situations in which k-means fails to find a good clustering.

Consider four instances arranged at the vertices of a rectangle in two-dimensional

space. There are two natural clusters, formed by grouping together the two vertices

at either end of a short side. But suppose the two initial cluster centers happen to

fall at the midpoints of the long sides. This forms a stable configuration. The two

clusters each contain the two instances at either end of a long side—no matter how

great the difference between the long and the short sides.

k-means clustering can be dramatically improved by careful choice of the ini-

tial cluster centers, often called “seeds.” Instead of beginning with an arbitrary set

of seeds, here is a better procedure. Choose the initial seed at random from the

entire space, with a uniform probability distribution. Then choose the second seed

with a probability that is proportional to the square of the distance from the first.

Proceed, at each stage choosing the next seed with a probability proportional to

the square of the distance from the closest seed that has already been chosen.

This procedure, called k-means11, improves both speed and accuracy over the

original algorithm with random seeds.

FASTER DISTANCE CALCULATIONS

The k-means clustering algorithm usually requires several iterations, each involv-

ing finding the distance of k cluster centers from every instance to determine its

cluster. There are simple approximations that speed this up considerably. For

example, you can project the dataset and make cuts along selected axes, instead of

using the arbitrary hyperplane divisions that are implied by choosing the nearest

cluster center. But this inevitably compromises the quality of the resulting clusters.

Here’s a better way of speeding things up. Finding the closest cluster center

is not so different from finding nearest neighbors in instance-based learning. Can

the same efficient solutions—kD-trees and ball trees—be used? Yes! Indeed

they can be applied in an even more efficient way, because in each iteration of

144 CHAPTER 4 Algorithms: the basic methods

k-means all the data points are processed together, whereas in instance-based

learning test instances are processed individually.

First, construct a kD-tree or ball tree for all the data points, which will remain

static throughout the clustering procedure. Each iteration of k-means produces a

set of cluster centers, and all data points must be examined and assigned to the

nearest center. One way of processing the points is to descend the tree from the

root until reaching a leaf, and then check each individual point in the leaf to find

its closest cluster center. But it may be that the region represented by a higher

interior node falls entirely within the domain of a single cluster center. In that

case all the data points under that node can be processed in one blow!

The aim of the exercise, after all, is to find new positions for the cluster cen-

ters by calculating the centroid of the points they contain. The centroid can be

calculated by keeping a running vector sum of the points in the cluster, and a

count of how many there are so far. At the end, just divide one by the other to

find the centroid. Suppose that with each node of the tree we store the vector sum

of the points within that node and a count of the number of points. If the whole

node falls within the ambit of a single cluster, the running totals for that cluster

can be updated immediately. If not, look inside the node by proceeding recur-

sively down the tree.

Fig. 4.18 shows the same instances and ball tree as Fig. 4.15, but with two

cluster centers marked as black stars. Because all instances are assigned to the

closest center, the space is divided into two by the thick line shown in

Fig. 4.18A. Begin at the root of the tree in Fig. 4.18B, with initial values for the

vector sum and counts for each cluster; all initial values are zero. Proceed recur-

sively down the tree. When node A is reached, all points within it lie in cluster 1,

16(B)(A)

6

462

4

2 2

222 2 2

A B

C 10

4

FIGURE 4.18

A ball tree: (A) two cluster centers and their dividing line; (B) corresponding tree.

1454.8 Clustering

so cluster 1’s sum and count can be updated with the sum and count for node A,

and we need descend no further. Recursing back to node B, its ball straddles the

boundary between the clusters, so its points must be examined individually.

When node C is reached, it falls entirely within cluster 2; again, we can update

cluster 2 immediately and need descend no further. The tree is only examined

down to the frontier marked by the dashed line in Fig. 4.18B, and the advantage

is that the nodes below need not be opened—at least, not on this particular itera-

tion of k-means. Next time, the cluster centers will have changed and things may

be different.

CHOOSING THE NUMBER OF CLUSTERS

Suppose you are using k-means but do not know the number of clusters in

advance. One solution is to try out different possibilities and see which is best. A

simple strategy is to start from a given minimum, perhaps k5 1, and work up to a

small fixed maximum. Note that on the training data the “best” clustering accord-

ing to the total squared distance criterion will always be to choose as many clus-

ters as there are data points! To penalize solutions with many clusters you will

have to apply something like the minimum description length (MDL) criterion of

Section 5.10.

Another possibility is to begin by finding a few clusters and determining

whether it is worth splitting them. You could choose k5 2, perform k-means clus-

tering until it terminates, and then consider splitting each cluster. Computation

time will be reduced considerably if the initial two-way clustering is considered

irrevocable and splitting is investigated for each component independently. One

way to split a cluster is to make a new seed, one standard deviation away from

the cluster’s center in the direction of its greatest variation, and make a second

seed the same distance in the opposite direction. (Alternatively, if this is too slow,

choose a distance proportional to the cluster’s bounding box and a random direc-

tion.) Then apply k-means to the points in the cluster with these two new seeds.

Having tentatively split a cluster, is it worthwhile retaining the split or is the

original cluster equally plausible by itself? It’s no good looking at the total

squared distance of all points to their cluster center—this is bound to be smaller

for two subclusters. A penalty should be incurred for inventing an extra cluster,

and this is a job for the MDL criterion. That principle can be applied to see

whether the information required to specify the two new cluster centers, along

with the information required to specify each point with respect to them, exceeds

the information required to specify the original center and all the points with

respect to it. If so, the new clustering is unproductive and should be abandoned.

If the split is retained, try splitting each new cluster further. Continue the pro-

cess until no worthwhile splits remain.

Additional implementation efficiency can be achieved by combining this itera-

tive clustering process with kD-tree or ball tree data structures. Then, the data

points are reached by working down the tree from the root. When considering

146 CHAPTER 4 Algorithms: the basic methods

splitting a cluster, there is no need to consider the whole tree, just look at those

parts of it that are needed to cover the cluster. For example, when deciding

whether to split the lower left cluster in Fig. 4.18A (below the thick line), it is

only necessary to consider nodes A and B of the tree in Fig. 4.18B, because node

C is irrelevant to that cluster.

HIERARCHICAL CLUSTERING

Forming an initial pair of clusters and then recursively considering whether it is

worth splitting each one further produces a hierarchy that can be represented as a

binary tree called a dendrogram. In fact, we illustrated a dendrogram in

Fig. 3.11D (there, some of the branches were three-way). The same information

could be represented as a Venn diagram of sets and subsets: the constraint that

the structure is hierarchical corresponds to the fact that although subsets can

include one another, they cannot intersect. In some cases there exists a measure

of the degree of dissimilarity between the clusters in each set; then, the height of

each node in the dendrogram can be made proportional to the dissimilarity

between its children. This provides an easily interpretable diagram of a hierarchi-

cal clustering.

An alternative to the top-down method for forming a hierarchical structure of

clusters is to use a bottom-up approach, which is called agglomerative clustering.

This idea was proposed many years ago and has recently enjoyed a resurgence in

popularity. The basic algorithm is simple. All you need is a measure of distance

(or alternatively, a similarity measure) between any two clusters. You begin by

regarding each instance as a cluster in its own right, find the two closest clusters,

merge them, and keep on doing this until only one cluster is left. The record of

mergings forms a hierarchical clustering structure—a binary dendrogram.

There are numerous possibilities for the distance measure. One is the mini-

mum distance between the clusters—the distance between their two closest mem-

bers. This yields what is called the single-linkage clustering algorithm. Since this

measure takes into account only the two closest members of a pair of clusters, the

procedure is sensitive to outliers: the addition of just a single new instance can

radically alter the entire clustering structure. Also, if we define the diameter of a

cluster to be the greatest distance between its members, single-linkage clustering

can produce clusters with very large diameters. Another measure is the maximum

distance between the clusters, instead of the minimum. Two clusters are consid-

ered close only if all instances in their union are relatively similar—sometimes

called the complete-linkage method. This measure, which is also sensitive to out-

liers, seeks compact clusters with small diameters. However, some instances may

end up much closer to other clusters than they are to the rest of their own cluster.

There are other measures that represent a compromise between the extremes

of minimum and maximum distance between cluster members. One is to represent

clusters by the centroid of their members, as the k-means algorithm does, and use

the distance between centroids—the centroid-linkage method. This works well

1474.8 Clustering

when the instances are positioned in multidimensional Euclidean space and the

notion of centroid is clear, but not if all we have is a pairwise similarity measure

between instances, because centroids are not instances and the similarity between

them may be impossible to define. Another measure, which avoids this problem,

is to calculate the average distance between each pair of members of the two

clusters—the average-linkage method. Although this seems like a lot of work,

you would have to calculate all pairwise distances in order to find the maximum

or minimum anyway, and averaging them isn’t much additional burden. Both

these measures have a technical deficiency: their results depend on the numerical

scale on which distances are measured. The minimum and maximum distance

measures produce a result that depends only on the ordering between the

distances involved. In contrast, the result of both centroid-based and average-

distance clustering can be altered by a monotonic transformation of all distances,

even though it preserves their relative ordering.

Another method, called group-average clustering, uses the average distance

between all members of the merged cluster. This differs from the “average”

method just described because it includes in the average pairs from the same orig-

inal cluster. Finally, Ward’s clustering method calculates the increase in the sum

of squares of the distances of the instances from the centroid before and after fus-

ing two clusters. The idea is to minimize the increase in this squared distance at

each clustering step.

All these measures will produce the same hierarchical clustering result if the

clusters are compact and well separated. However, in other cases they can yield

quite different structures.

EXAMPLE OF HIERARCHICAL CLUSTERING

Fig. 4.19 shows displays of the result of agglomerative hierarchical clustering.

(These visualizations have been generated using the FigTree program. (http://tree.

bio.ed.ac.uk/software/figtree/)) In this case the dataset contained 50 examples of

different kinds of creatures, from dolphin to mongoose, from giraffe to lobster.

There was one numeric attribute (number of legs, ranging from 0 to 6, but scaled

to the range [0, 1]) and fifteen Boolean attributes such as has feathers, lays eggs,

and venomous, which are treated as binary attributes with values 0 and 1 in the

distance calculation.

Two kinds of display are shown: a standard dendrogram and a polar plot.

Fig. 4.19A and B shows the output from an agglomerative clusterer plotted in two

different ways, and Fig. 4.19C and D shows the result of a different agglomera-

tive clusterer plotted in the same two ways. The difference is that the pair at the

top was produced using the complete-linkage measure and the pair beneath was

produced using the single-linkage measure. You can see that the complete-linkage

method tends to produce compact clusters while the single-linkage method pro-

duces clusters with large diameters at fairly low levels of the tree.

148 CHAPTER 4 Algorithms: the basic methods

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/

In all four methods the height of each node in the dendrogram is proportional

to the dissimilarity between its children, measured as the Euclidean distance

between instances. A numeric scale is provided beneath Fig. 4.19A and C. The

total dissimilarity from root to leaf is far greater for the complete-linkage method

at the top than for the single-linkage method at the bottom since the former

involves the maximum distance and the latter the minimum distance between

instances in each cluster. In the first case the total dissimilarity is a little less than

3.75, which is almost the maximum possible distance between instances—the dis-

tance between two instances that differ in 14 of the 15 attributes is
ffiffiffiffiffi
14

p � 3.74.

In the second it is a little greater than 2 (i.e.,
ffiffiffi
4

p
), which is what a difference in

four Boolean attributes would produce.

For the complete-linkage method (Fig. 4.19A), many elements join together at

a dissimilarity of 1, which corresponds to a difference in a single Boolean attri-

bute. Only one pair has a smaller dissimilarity: this is crab and crayfish, which

differ only in the number of legs (4/6 and 6/6, respectively, after scaling). Other

FIGURE 4.19

Hierarchical clustering displays.

1494.8 Clustering

popular dissimilarities are
ffiffiffi
2

p
,
ffiffiffi
3

p
,
ffiffiffi
4

p
, and so on, corresponding to differences

in two, three, and four Boolean attributes. For the single-linkage method

(Fig. 4.19C) that uses the minimum distance between clusters, even more ele-

ments join together at a dissimilarity of 1.

Which of the two display methods—the standard dendrogram and the polar

plot—is more useful is a matter of taste. Although more unfamiliar at first, the

polar plot spreads the visualization more evenly over the space available.

INCREMENTAL CLUSTERING

Whereas the k-means algorithm iterates over the whole dataset until convergence

is reached and the hierarchical method examines all the clusters present so far at

each stage of merging, the clustering methods we examine next work incremen-

tally, instance by instance. At any stage the clustering forms a tree with instances

at the leaves and a root node that represents the entire dataset. In the beginning

the tree consists of the root alone. Instances are added one by one, and the tree is

updated appropriately at each stage. Updating may merely be a case of finding

the right place to put a leaf representing the new instance, or it may involve a rad-

ical restructuring of the part of the tree that is affected by the new instance. The

key to deciding how and where to update is a quantity called category utility,

which measures the overall quality of a partition of instances into clusters. We

defer detailed consideration of how this is defined until Category Utility section

and look first at how the clustering algorithm works.

The procedure is best illustrated by an example. We will use the familiar

weather data again, but without the play attribute. To track progress, the 14

instances are labeled a, b, c,. . ., n (as in Table 4.6), and for interest we include

the class yes or no in the label—although it should be emphasized that for this

artificial dataset there is little reason to suppose that the two classes of instance

should fall into separate categories. Fig. 4.20 shows the situation at salient points

throughout the clustering procedure.

At the beginning, when new instances are absorbed into the structure, they

each form their own subcluster under the overall top-level cluster. Each new

instance is processed by tentatively placing it into each of the existing leaves and

evaluating the category utility of the resulting set of the top-level node’s children

to see if the leaf is a good “host” for the new instance. For each of the first five

instances, there is no such host: it is better, in terms of category utility, to form a

new leaf for each instance. With the sixth it finally becomes beneficial to form a

cluster, joining the new instance f with the old one—the host—e. If you look at

Table 4.6 you will see that the fifth and sixth instances are indeed very similar,

differing only in the windy attribute (and play, which is being ignored here). The

next example, g, is placed in the same cluster (it differs from f only in outlook).

This involves another call to the clustering procedure. First, g is evaluated to see

which of the five children of the root makes the best host: it turns out to be the

rightmost, the one that is already a cluster. Then the clustering algorithm is

150 CHAPTER 4 Algorithms: the basic methods

invoked with this as the root, and its two children are evaluated to see which

would make the better host. In this case it proves best, according to the category

utility measure, to add the new instance as a subcluster in its own right.

If we were to continue in this vein, there would be no possibility of any radi-

cal restructuring of the tree, and the final clustering would be excessively depen-

dent on the ordering of examples. To avoid this, there is provision for

restructuring, and you can see it come into play when instance h is added in the

next step shown in Fig. 4.20. In this case two existing nodes are merged into a

single cluster: nodes a and d are merged before the new instance h is added. One

way of accomplishing this would be to consider all pairs of nodes for merging

and evaluate the category utility of each pair. However, that would be computa-

tionally expensive, and would involve a lot of repeated work if it were undertaken

whenever a new instance was added.

Instead, whenever the nodes at a particular level are scanned for a

suitable host, both the best-matching node—the one that produces the greatest

category utility for the split at that level—and the runner-up are noted. The best

one will form the host for the new instance (unless that new instance is better off

a:no a:no b:no c:yes d:yes e:yes

a:no b:no c:yes d:yes

e:yes

k:yes

c:yes m:yes

l:yes

e:yes

f:no

i:yes

g:yes j:yes

d:yes

f:no

a:no b:no

b:no

h:noa:no

n:no

c:yes d:yes

e:yes f:no g:yes

b:no c:yes

a:no d:yes h:no e:yes f:no g:yes

FIGURE 4.20

Clustering the weather data.

1514.8 Clustering

in a cluster of its own). However, before setting to work on putting the new

instance in with the host, consideration is given to merging the host and the

runner-up. In this case, a is the preferred host and d is the runner-up. When a

merge of a and d is evaluated, it turns out that it would improve the category util-

ity measure. Consequently, these two nodes are merged, yielding a version of the

fifth hierarchy before h is added. Then, consideration is given to the placement of

h in the new, merged node; and it turns out to be best to make it a subcluster in

its own right, as shown.

An operation converse to merging is also implemented, called splitting.

Whenever the best host is identified, and merging has not proved beneficial, con-

sideration is given to splitting the host node. Splitting has exactly the opposite

effect of merging, taking a node and replacing it with its children. For example,

splitting the rightmost node in the fourth hierarchy of Fig. 4.20 would raise the e,

f, and g leaves up a level, making them siblings of a, b, c, and d. Merging and

splitting provide an incremental way of restructuring the tree to compensate for

incorrect choices caused by infelicitous ordering of examples.

The final hierarchy for all 14 examples is shown at the end of Fig. 4.20. There

are three major clusters, each of which subdivides further into its own subclusters.

If the play/don’t play distinction really represented an inherent feature of the data,

a single cluster would be expected for each outcome. No such clean structure is

observed, although a (very) generous eye might discern a slight tendency at lower

levels for yes instances to group together, and likewise with no instances.

Exactly the same scheme works for numeric attributes. Category utility is

defined for these as well, based on an estimate of the mean and standard deviation

of the value of that attribute. Details are deferred to the Category Utility section.

However, there is just one problem that we must attend to here: when estimating

the standard deviation of an attribute for a particular node, the result will be zero

if the node contains only one instance, as it does more often than not.

Unfortunately, zero variances produce infinite values in the category utility for-

mula. A simple heuristic solution is to impose a minimum variance on each attri-

bute. It can be argued that because no measurement is completely precise, it is

reasonable to impose such a minimum: it represents the measurement error in a

single sample. This parameter is called acuity.

Fig. 4.21 shows, at the top, a hierarchical clustering produced by the incre-

mental algorithm for part of the iris dataset (30 instances, 10 from each class).

At the top level there are two clusters (i.e., subclusters of the single node

representing the whole dataset). The first contains both Iris virginicas and Iris

versicolors, and the second contains only Iris setosas. The I. setosas themselves

split into two subclusters, one with four cultivars and the other with six. The other

top-level cluster splits into three subclusters, each with a fairly complex structure.

Both the first and second contain only I. versicolors, with one exception, a stray

I. virginica, in each case; the third contains only I. virginicas. This represents a

fairly satisfactory clustering of the iris data: it shows that the three genera are

not artificial at all but reflect genuine differences in the data. This is, however a

152 CHAPTER 4 Algorithms: the basic methods

Versicolor Versicolor Versicolor Virginica Versicolor

Virginica

Versicolor Versicolor Versicolor

Versicolor Versicolor Versicolor

Virginica

Virginica Virginica

Virginica Virginica Virginica Virginica Virginica

Setosa Setosa Setosa Setosa Setosa Setosa Setosa

Setosa Setosa Setosa

Versicolor
Versicolor
Versicolor
Versicolor
Versicolor
Versicolor
Virginica
Virginica

Versicolor

Versicolor

Versicolor

Versicolor

Virginica
Virginica
Virginica
Virginica
Virginica
Virginica

Virginica
Virginica

Setosa
Setosa
Setosa
Setosa

Setosa

Setosa

Setosa
Setosa Setosa

Setosa

FIGURE 4.21

Hierarchical clusterings of the iris data.

slightly overoptimistic conclusion, because quite a bit of experimentation with the

acuity parameter was necessary to obtain such a nice division.

The clusterings produced by this scheme contain one leaf for every instance.

This produces an overwhelmingly large hierarchy for datasets of any reasonable

size, corresponding, in a sense, to overfitting the particular dataset. Consequently

a second numerical parameter called cutoff is used to suppress growth. Some

instances are deemed to be sufficiently similar to others to not warrant formation

of their own child node, and this parameter governs the similarity threshold.

Cutoff is specified in terms of category utility: when the increase in category util-

ity from adding a new node is sufficiently small, that node is cut off.

Fig. 4.21B shows the same iris data, clustered with cutoff in effect. Many leaf

nodes contain several instances: these are children of the parent node that have

been cut off. The division into the three types of iris is a little easier to see from

this hierarchy because some of the detail is suppressed. Again, however, some

experimentation with the cutoff parameter was necessary to get this result, and in

fact a sharper cutoff leads to much less satisfactory clusters.

Similar clusterings are obtained if the full iris dataset of 150 instances is used.

However, the results depend on the ordering of examples: Fig. 4.21 was obtained

by alternating the three varieties of iris in the input file. If all I. setosas are pre-

sented first, followed by all I. versicolors and then all I. virginicas, the resulting

clusters are quite unsatisfactory.

CATEGORY UTILITY

Now we look at how the category utility, which measures the overall quality of a

partition of instances into clusters, is calculated. In Section 5.9 we will see how

the MDL measure could, in principle, be used to evaluate the quality of cluster-

ing. Category utility is not MDL-based but rather resembles a kind of quadratic

loss function defined on conditional probabilities.

The definition of category utility is rather formidable:

CUðC1;C2; . . .;CkÞ5
P

‘PðC‘Þ
P

i

P
jðPðai5vijjC‘Þ2 2Pðai5vijÞ2Þ

k
;

where C1, C2,. . ., Ck are the k clusters; the outer summation is over these clusters;

the next inner one sums over the attributes; ai is the ith attribute; and it takes on

values vi1, vi2,. . ., which are dealt with by the sum over j. Note that the probabili-

ties themselves are obtained by summing over all instances: thus there is a further

implied level of summation.

This expression makes a great deal of sense if you take the time to examine it.

The point of having a cluster is that it will give some advantage in predicting the

values of attributes of instances in that cluster—i.e., Pðai 5 vijjC‘Þ is a better esti-

mate of the probability that attribute ai has value vij, for an instance in cluster C‘,

than Pðai 5 vijÞ because it takes account of the cluster the instance is in. If that

information doesn’t help, the clusters aren’t doing much good! So what the

154 CHAPTER 4 Algorithms: the basic methods

measure calculates, inside the multiple summation, is the amount by which that

information does help in terms of the differences between squares of probabilities.

This is not quite the standard squared-difference metric, because that sums the

squares of the differences (which produces a symmetric result), and the present

measure sums the difference of the squares (which, appropriately, does not pro-

duce a symmetric result). The differences between squares of probabilities are

summed over all attributes, and all their possible values, in the inner double sum-

mation. Then it is summed over all clusters, weighted by their probabilities, in the

outer summation.

The overall division by k is a little hard to justify because the squared differ-

ences have already been summed over the categories. It essentially provides a “per

cluster” figure for the category utility that discourages overfitting. Otherwise,

because the probabilities are derived by summing over the appropriate instances,

the very best category utility would be obtained by placing each instance in its

own cluster. Then, Pðai 5 vijjC‘Þ would be 1 for the value that attribute ai actually

has for the single instance in category C‘ and 0 for all other values; and the numer-

ator of the category utility formula will end up as

n2
X

i

X
j
Pðai5vijÞ2;

where n is the total number of attributes. This is the greatest value that the numer-

ator can have; and so if it were not for the additional division by k in the category

utility formula, there would never be any incentive to form clusters containing

more than one member. This extra factor is best viewed as a rudimentary

overfitting-avoidance heuristic.

This category utility formula applies only to nominal attributes. However, it

can easily be extended to numeric attributes by assuming that their distribution is

normal with a given (observed) mean μ and standard deviation σ. The probability

density function for an attribute a is

f ðaÞ5 1ffiffiffiffiffiffi
2π

p
σ
exp 2

ða2μÞ2
2σ2

� �
:

The analog of summing the squares of attribute�value probabilities is

X
j
Pðai5vijÞ23

ð
f ðaiÞ2dai 5 1

2
ffiffiffi
π

p
σi

;

where σi is the standard deviation of the attribute ai. Thus for a numeric attribute,

we estimate the standard deviation from the data, both within the cluster (σ
0
i) and

for the data over all clusters (σi), and use these in the category utility formula:

CUðC1;C2; . . .;CkÞ5 1

k

X
‘
PðC‘Þ 1

2
ffiffiffi
π

p
X

i

1

σ0
i

2
1

σi

� �
:

Now the problem mentioned above that occurs when the standard deviation

estimate is zero becomes apparent: a zero standard deviation produces an infinite

1554.8 Clustering

value of the category utility formula. Imposing a prespecified minimum variance

on each attribute, the acuity, is a rough-and-ready solution to the problem.

REMARKS

Many of the concepts and techniques presented above are easily adapted to the

probabilistic setting, where the task of clustering can be viewed as that of probabil-

ity density estimation. In Chapter 9, Probabilistic methods, we revisit clustering

and examine a statistical clustering based on a mixture model of different probabil-

ity distributions, one for each cluster. It does not partition instances into disjoint

clusters as k-means does, but instead assigns them to classes probabilistically, not

deterministically. We explain the basic technique and sketch the working of a

comprehensive clustering scheme called AutoClass.

The clustering methods that have been described produce different kinds of

output. All are capable of taking new data in the form of a test set and classifying

it according to clusters that were discovered by analyzing a training set. However,

the hierarchical and incremental clustering methods are the only ones that gener-

ate an explicit knowledge structure that describes the clustering in a way that can

be visualized and reasoned about. The other algorithms produce clusters that can

be visualized in instance space if the dimensionality is not too high.

If a clustering method were used to label the instances of the training set with

cluster numbers, that labeled set could then be used to train a rule or decision tree

learner. The resulting rules or tree would form an explicit description of the clas-

ses. A probabilistic clustering scheme could be used for the same purpose, except

that each instance would have multiple weighted labels and the rule or decision

tree learner would have to be able to cope with weighted instances—as many can.

Another application of clustering is to fill in any values of the attributes that

may be missing. For example, it is possible to make a statistical estimate of the

value of unknown attributes of a particular instance, based on the class distribution

for the instance itself and the values of the unknown attributes for other examples.

We will return to these types of ideas in Chapter 9, Probabilistic methods.

4.9 MULTI-INSTANCE LEARNING
In Chapter 2, Input: concepts, instances, attributes, we introduced multi-instance

learning, where each example in the data comprises several different instances.

We call these examples “bags” (in mathematics, a bag is the same as a set except

that particular elements can appear more than once, whereas sets cannot contain

duplicates). In supervised multi-instance learning, a class label is associated with

each bag, and the goal of learning is to determine how the class can be inferred

from the instances that make up the bag. While advanced algorithms have been

devised to tackle such problems, it turns out that the “simplicity first”

156 CHAPTER 4 Algorithms: the basic methods

methodology can be applied here with surprisingly good results. A simple but

effective approach is to manipulate the input data in such a fashion as to trans-

form it to a single-instance learning problem, and then apply standard learning

methods—such as the ones described in this chapter. Two such approaches are

described below.

AGGREGATING THE INPUT

You can convert a multiple-instance problem to a single-instance one by calculat-

ing values such as mean, mode, minimum, and maximum that summarize the

instances in the bag and adding these as new attributes. Each “summary” instance

retains the class label of the bag it was derived from. To classify a new bag the

same process is used: a single aggregated instance is created with attributes that

summarize the instances in the bag. Surprisingly, for the original drug activity data-

set that spurred the development of multi-instance learning, results comparable

with special-purpose multi-instance learners can be obtained using just the mini-

mum and maximum values of each attribute for each bag, combined with a support

vector machine classifier (see Section 7.2). One potential drawback of this

approach is that the best summary statistics to compute depend on the problem at

hand. However, the additional computational cost associated with exploring combi-

nations of different summary statistics is offset by the fact that the summarizing

process means that fewer instances are processed by the learning algorithm.

AGGREGATING THE OUTPUT

Instead of aggregating the instances in each bag, another approach is to learn a

classifier directly from the original instances that comprise the bag. To achieve

this, the instances in a given bag are all assigned the bag’s class label. At classifi-

cation time, a prediction is produced for each instance in the bag to be predicted,

and the predictions are aggregated in some fashion to form a prediction for the

bag as a whole. One approach is to treat the predictions as votes for the various

class labels. If the classifier is capable of assigning probabilities to the class

labels, these could be averaged to yield an overall probability distribution for the

bag’s class label. This method treats the instances independently, and gives them

equal influence on the predicted class label.

One problem is that the bags in the training data can contain different numbers

of instances. Ideally, each bag should have the same influence on the final model

that is learned. If the learning algorithm can accept instance-level weights this

can be achieved by assigning each instance in a given bag a weight inversely pro-

portional to the bag’s size. If a bag contains n instances, giving each one a weight

of 1/n ensures that the instances contribute equally to the bag’s class label and

each bag receives a total weight of 1.

Both these ways of tackling multi-instance problems disregard the original

assumption of supervised multi-instance learning that a bag is positive if and only

1574.9 Multi-instance Learning

if at least one of its instances is positive. Instead, making each instance in a bag

contribute equally to its label is the key element that allows standard learning

algorithms to be applied. Otherwise, it is necessary to try to identify the “special”

instances that are the key to determining the bag’s label.

4.10 FURTHER READING AND BIBLIOGRAPHIC NOTES
The 1R scheme was proposed and thoroughly investigated by Holte (1993). It

was never really intended as a machine learning “method”: the point was more to

demonstrate that very simple structures underlie most of the practical datasets

being used to evaluate machine learning schemes at the time and that putting

high-powered inductive inference schemes to work on simple datasets was like

using a sledgehammer to crack a nut. Why grapple with a complex decision tree

when a simple rule will do?

Bayes (1763) was an 18th century English philosopher who set out his theory

of probability in an “Essay towards solving a problem in the doctrine of chances,”

published in the Philosophical Transactions of the Royal Society of London ; the

rule that bears his name has been a cornerstone of probability theory ever since.

The difficulty with the application of Bayes’ rule in practice is the assignment of

prior probabilities. With a particular dataset, prior probabilities for Naı̈ve Bayes

are usually reasonably easy to estimate, which encourages a Bayesian approach to

learning.

The fact that Naı̈ve Bayes performs well in classification tasks even when the

independence assumption that it rests upon is violated was explored by Domingos

and Pazzani (1997). Nevertheless, the assumption is a great stumbling block, and

there are ways to apply Bayes’ rule without assuming independence. The resulting

models are called Bayesian networks (Heckerman, Geiger, & Chickering, 1995),

and we describe them in Section 9.2.

Bayesian techniques had been used in the field of pattern recognition (Duda &

Hart, 1973) for 20 years before they were adopted by machine learning researchers

(e.g., see Langley, Iba, & Thompson, 1992) and made to work on datasets with

redundant attributes (Langley & Sage, 1994) and numeric attributes (John &

Langley, 1995). The label Naı̈ve Bayes is unfortunate because it is hard to use this

method without feeling simpleminded. However, there is nothing naı̈ve about its use

in appropriate circumstances. The multinomial Naı̈ve Bayes model, which is partic-

ularly useful for text classification, was investigated by McCallum and Nigam

(1998).

The classic paper on decision tree induction was written by Quinlan (1986),

who described the basic ID3 procedure developed in this chapter. A comprehensive

description of the method, including the improvements that are embodied in C4.5,

appears in a classic book by Quinlan (1993), which gives a listing of the complete

C4.5 system, written in the C programming language. Prism was developed by

Cendrowska (1987), who also introduced the contact lens dataset.

158 CHAPTER 4 Algorithms: the basic methods

Association rules are introduced and described in the database literature rather

than in the machine learning literature. Here the emphasis is very much on deal-

ing with huge amounts of data rather than on sensitive ways of testing and evalu-

ating algorithms on limited datasets. The algorithm introduced in this chapter is

the Apriori method developed by Agrawal and his associates (Agrawal,

Imielinski, & Swami, 1993a, 1993b; Agrawal & Srikant, 1994). A survey of

association-rule mining appears in an article by Chen, Jan, and Yu (1996).

Linear regression is described in most standard statistical texts, and a particu-

larly comprehensive treatment can be found in Lawson and Hanson (1995). The use

of linear models for classification enjoyed a great deal of popularity in the 1960s;

Nilsson (1965) is an excellent reference. He defined a linear threshold unit as a

binary test of whether a linear function is greater or less than zero and a linear

machine as a set of linear functions, one for each class, whose value for an unknown

example was compared and the largest chosen as its predicted class. In the distant

past, perceptrons fell out of favor on publication of an influential book that showed

that they had fundamental limitations (Minsky & Papert, 1969); however, more

complex systems of linear functions have enjoyed a resurgence in recent years in

the form of neural networks, described in Section 7.2 and Chapter 10, Deep learn-

ing. The Winnow algorithms were introduced by Nick Littlestone in his PhD thesis

(Littlestone, 1988, 1989). Multiresponse linear classifiers have found application in

an operation called stacking that combines the output of other learning algorithms,

described in Chapter 12, Ensemble learning (see Wolpert, 1992).

Fix and Hodges (1951) performed the first analysis of the nearest-neighbor

method, and Johns (1961) pioneered its use in classification problems. Cover and

Hart (1967) obtained the classic theoretical result that, for large enough datasets, its

probability of error never exceeds twice the theoretical minimum; Devroye, Györfi,

and Lugosi (1996) showed that k-nearest neighbor is asymptotically optimal for

large k and n with k/n-0. Nearest-neighbor methods gained popularity in machine

learning through the work of Aha (1992), who showed that instance-based learning

can be combined with noisy exemplar pruning and attribute weighting and that

the resulting methods perform well in comparison with other learning methods.

We take this up again in Chapter 7, Extending instance-based and linear models.

The kD-tree data structure was developed by Friedman, Bentley, and Finkel

(1977). Our description closely follows an explanation given by Andrew Moore

in his PhD thesis (Moore, 1991), who, along with Omohundro (1987), pioneered

its use in machine learning. Moore (2000) described sophisticated ways of con-

structing ball trees that perform well even with thousands of attributes. We took

our ball tree example from lecture notes by Alexander Gray of Carnegie-Mellon

University.

The k-means algorithm is a classic technique, and many descriptions and var-

iations are available (e.g., Hartigan, 1975). The k-means11 variant, which yields

a significant improvement by choosing the initial seeds more carefully, was intro-

duced as recently as 2007 by Arthur and Vassilvitskii (2007). Our description of

how to modify k-means to find a good value of k by repeatedly splitting clusters

1594.10 Further Reading and Bibliographic Notes

and seeing whether the split is worthwhile follows the X-means algorithm of

Moore and Pelleg (2000). However, instead of the MDL principle they use a

probabilistic scheme called the Bayes Information Criterion (Kass & Wasserman,

1995). Efficient agglomerative methods for hierarchical clustering were developed

by Day and Edelsbrünner (1984), and the ideas are described in recent books

(Duda et al., 2001; Hastie et al., 2009). The incremental clustering procedure,

based on the merging and splitting operations, was introduced in systems called

Cobweb for nominal attributes (Fisher, 1987) and Classit for numeric attributes

(Gennari, Langley, & Fisher, 1990). Both are based on a measure of category util-

ity that had been defined previously (Gluck & Corter, 1985).

A hierarchical clustering method called BIRCH (for “balanced iterative reduc-

ing and clustering using hierarchies”) has been developed specifically for large

multidimensional datasets, where it is necessary for efficient operation to minimize

input�output costs (Zhang, Ramakrishnan, & Livny, 1996). It incrementally and

dynamically clusters multidimensional metric data points, seeking the best cluster-

ing within given memory and time constraints. It typically finds a good clustering

with a single scan of the data, which can then be improved by further scans.

The method of dealing with multi-instance learning problems by applying

standard single instance learners to summarize bag-level data was applied in con-

junction with support vector machines by Gärtner, Flach, Kowalczyk, and Smola

(2002). The alternative approach of aggregating the output was explained by

Frank and Xu (2003).

4.11 WEKA IMPLEMENTATIONS
• Inferring rudimentary rules: OneR

• Statistical modeling

NaiveBayes and many variants, including NaiveBayesMultinomial

• Decision trees: Id3 (in the simpleEducationalLearningSchemes package)

• Decision rules: Prism (in the simpleEducationalLearningSchemes package)

• Association rules: Apriori

• Linear models

SimpleLinearRegression, LinearRegression, Logistic (regression),

Winnow (in the Winnow package)

• Instance-based learning:

IB1 (in the simpleEducationalLearningSchemes package)

• Clustering:

SimpleKMeans

Cobweb (which includes Classit)

HierarchicalClusterer (hierarchical clustering using various link functions)

• Multi-instance learning:

SimpleMI, MIWrapper (available in the multi-InstanceLearning package)

160 CHAPTER 4 Algorithms: the basic methods

5Credibility: evaluating what’s
been learned

CHAPTER OUTLINE

5.1 Training and Testing ..163

5.2 Predicting Performance ..165

5.3 Cross-Validation ..167

5.4 Other Estimates..169

Leave-One-Out ...169

The Bootstrap ..169

5.5 Hyperparameter Selection ..171

5.6 Comparing Data Mining Schemes ..172

5.7 Predicting Probabilities ..176

Quadratic Loss Function ...177

Informational Loss Function ..178

Remarks ..179

5.8 Counting the Cost...179

Cost-Sensitive Classification..182

Cost-Sensitive Learning...183

Lift Charts ...183

ROC Curves ...186

Recall-Precision Curves...190

Remarks ..190

Cost Curves..192

5.9 Evaluating Numeric Prediction ..194

5.10 The MDL Principle..197

5.11 Applying the MDL Principle to Clustering...200

5.12 Using a Validation Set for Model Selection..201

5.13 Further Reading and Bibliographic Notes ...202

Evaluation is the key to making real progress in data mining. There are lots of

ways of inferring structure from data: we have encountered many already and

will see further refinements, and new methods, throughout the rest of this book.

But to determine which ones to use on a particular problem we need systematic

ways to evaluate how well different methods work and to compare one with

another. But evaluation is not as simple as it might appear at first sight.

What’s the problem? We have the training set; surely we can just look at how

well different methods do on that. Well, no: as we will see very shortly, perfor-

mance on the training set is definitely not a good indicator of performance on an

independent test set. We need ways of predicting performance bounds in practice,

based on experiments with whatever data can be obtained.

When a vast supply of data is available, this is no problem: just make a

model based on a large training set, and try it out on another large test set. But

although data mining sometimes involves “big data”—particularly in marketing,

sales, and customer support applications—it is often the case that labeled data,

quality data, is scarce. The oil slicks mentioned in Chapter 1, What’s it all

about?, had to be detected and marked manually—a skilled and labor-intensive

process—before being used as training data. Even in the credit card application,

there turned out to be only 1000 training examples of the appropriate type. The

electricity supply data went back 15 years, 5000 days—but only 15 Christmas

days and Thanksgivings, and just 4 February 29s and presidential elections. The

electromechanical diagnosis application was able to capitalize on 20 years of

recorded experience, but this yielded only 300 usable examples of faults.

Marketing and sales applications certainly involve big data, but many others do

not: training data frequently relies on specialist human expertise—and that is

always in short supply.

The question of predicting performance based on limited data is an interest-

ing one. We will encounter many different techniques, of which one—repeated

cross-validation—is probably the method of choice in most practical limited-

data situations. Comparing the performance of different machine learning

schemes on a given problem is another matter that is not so easy as it sounds: to

be sure that apparent differences are not caused by chance effects, statistical

tests are needed.

So far we have tacitly assumed that what is being predicted is the ability to

classify test instances accurately; however, some situations involve predicting

class probabilities rather than the classes themselves, and others involve predict-

ing numeric rather than nominal values. Different methods are needed in each

case. Then we look at the question of cost. In most practical machine learning

situations the cost of a misclassification error depends on the type of error it is—

whether, e.g., a positive example was erroneously classified as negative or vice

versa. When doing machine learning, and evaluating its performance, it is often

essential to take these costs into account. Fortunately, there are simple techniques

to make most learning schemes cost sensitive without grappling with the internals

of the algorithm. Finally, the whole notion of evaluation has fascinating philo-

sophical connections. For 2000 years philosophers have debated the question of

how to evaluate scientific theories, and the issues are brought into sharp focus by

machine learning because what is extracted is essentially a “theory” of the data.

162 CHAPTER 5 Credibility: evaluating what’s been learned

5.1 TRAINING AND TESTING
For classification problems, it is natural to measure a classifier’s performance in

terms of the error rate. The classifier predicts the class of each instance: if it is

correct, that is counted as a success; if not, it is an error. The error rate is just the

proportion of errors made over a whole set of instances, and it measures the over-

all performance of the classifier.

Of course, what we are interested in is the likely future performance on new

data, not the past performance on old data. We already know the classifications

of each instance in the training set, which after all is why we can use it for train-

ing. We are not generally interested in learning about those classifications—

although we might be if our purpose is data cleansing rather than prediction. So

the question is, is the error rate on old data likely to be a good indicator of the

error rate on new data? The answer is a resounding no—not if the old data was

used during the learning process to train the classifier.

This is a surprising fact, and a very important one. Error rate on the training

set is not likely to be a good indicator of future performance. Why? Because the

classifier has been learned from the very same training data, any estimate of per-

formance based on that data will be optimistic, and may be hopelessly optimistic.

We have already seen an example of this in the labor relations dataset.

Fig. 1.3B was generated directly from the training data, and Fig. 1.3A was obtained

from it by a process of pruning. The former is potentially more accurate on the data

that was used to train the classifier, but may perform less well on independent test

data because it may be overfitted to the training data. The first tree will look good

according to the error rate on the training data, better than the second tree. But this

does not necessarily reflect how they will perform on independent test data.

The error rate on the training data is called the resubstitution error, because it

is calculated by resubstituting the training instances into a classifier that was con-

structed from them. Although it is not a reliable predictor of the true error rate on

new data, it is nevertheless often useful to know.

To predict the performance of a classifier on new data, we need to assess its

error rate on a dataset that played no part in the formation of the classifier. This

independent dataset is called the test set. We assume that both the training data

and the test data are representative samples of the underlying problem.

In some cases the test data might be distinct in nature from the training data.

Consider, e.g., the credit risk problem from Section 1.3. Suppose the bank had

training data from branches in New York City and Florida and wanted to know

how well a classifier trained on one of these datasets would perform in a new

branch in Nebraska. It should probably use the Florida data as test data for evalu-

ating the New York�trained classifier and the New York data to evaluate the

Florida-trained classifier. If the datasets were amalgamated before training, per-

formance on the test data would probably not be good indicator of performance

on future data in a completely different state.

1635.1 Training and Testing

It is important that the test data is not used in any way to create the classi-

fier. For example, some learning schemes involve two stages, one to come up

with a basic structure and the second to optimize parameters involved in that

structure, and separate sets of data may be needed in the two stages. Or you

might try out several learning schemes on the training data and then evaluate

them—on a fresh dataset, of course—to see which one works best. But none of

this data may be used to determine an estimate of the future error rate. In such

situations people often talk about three datasets: the training data, the validation

data, and the test data. The training data is used by one or more learning

schemes to come up with classifiers. The validation data is used to optimize

parameters of those classifiers, or to select a particular one. Then the test data is

used to calculate the error rate of the final, optimized, method. Each of the three

sets must be chosen independently: the validation set must be different from the

training set to obtain good performance in the optimization or selection stage,

and the test set must be different from both to obtain a reliable estimate of the

true error rate.

It may be that once the error rate has been determined, the test data is bundled

back into the training data to produce a new classifier for actual use. There is

nothing wrong with this: it is just a way of maximizing the amount of data used

to generate the classifier that will actually be employed in practice. With well-

behaved learning schemes, this should not decrease predictive performance. Also,

once the validation data has been used—maybe to determine the best type of

learning scheme to use—then it can be bundled back into the training data to

retrain that learning scheme, maximizing the use of data.

If lots of data is available, there is no problem: we take a large sample

and use it for training; then another, independent large sample of different

data and use it for testing. Provided both samples are representative, the error

rate on the test set will give a good indication of future performance.

Generally, the larger the training sample the better the classifier, although

the returns begin to diminish once a certain volume of training data is

exceeded. And the larger the test sample, the more accurate the error esti-

mate. The accuracy of the error estimate can be quantified statistically, as we

will see in Section 5.2.

The real problem occurs when there is not a vast supply of data available. In

many situations the training data must be classified manually—and so must the

test data, of course, to obtain error estimates. This limits the amount of data that

can be used for training, validation, and testing, and the problem becomes how to

make the most of a limited dataset. From this dataset, a certain amount is held

over for testing—this is called the holdout procedure—and the remainder used for

training (and, if necessary, part of that is set aside for validation). There’s a

dilemma here: to find a good classifier, we want to use as much of the data as

possible for training; to obtain a good error estimate, we want to use as much of

it as possible for testing. Sections 5.3 and 5.4 review widely used methods for

dealing with this dilemma.

164 CHAPTER 5 Credibility: evaluating what’s been learned

5.2 PREDICTING PERFORMANCE
Suppose we measure the error of a classifier on a test set and obtain a certain

numerical error rate—say 25%. Actually, in this section we talk about success

rate rather than error rate, so this corresponds to a success rate of 75%. Now, this

is only an estimate. What can you say about the true success rate on the target

population? Sure, it’s expected to be close to 75%. But how close?—within 5%?

10%? It must depend on the size of the test set. Naturally we would be more con-

fident of the 75% figure if it was based on a test set of 10,000 instances than a

test set of 100 instances. But how much more confident would we be?

To answer these questions, we need some statistical reasoning. In statistics, a

succession of independent events that either succeed or fail is called a Bernoulli

process. The classic example is coin tossing. Each toss is an independent event.

Let’s say we always predict heads; but rather than “heads” or “tails,” each toss is

considered a “success” or a “failure.” Let’s say the coin is biased, but we don’t

know what the probability of heads is. Then, if we actually toss the coin 100

times and 75 of them are heads, we have a situation very like the one described

above for a classifier with an observed 75% success rate on a test set. What can

we say about the true success probability? In other words, imagine that there is a

Bernoulli process—a biased coin—whose true (but unknown) success rate is p.

Suppose that out of N trials, S are successes: thus the observed success rate is

f5 S/N. The question is, what does this tell you about the true success rate p?

The answer to this question is usually expressed as a confidence interval;

i.e., p lies within a certain specified interval with a certain specified confidence.

For example, if S5 750 successes are observed out of N5 1000 trials, this indi-

cates that the true success rate must be around 75%. But how close to 75%? It turns

out that with 80% confidence, the true success rate p lies between 73.2% and

76.7%. If S5 75 successes are observed out of N5 100 trials, this also indicates

that the true success rate must be around 75%. But the experiment is smaller, and

so the 80% confidence interval for p is wider, stretching from 69.1% to 80.1%.

These figures are easy to relate to qualitatively, but how are they derived

quantitatively? We reason as follows: the mean and variance of a single Bernoulli

trial with success rate p are p and pð12 pÞ, respectively. If N trials are taken from

a Bernoulli process, the expected success rate f5 S/N is a random variable with

the same mean p; the variance is reduced by a factor of N to pð12 pÞ=N. For
large N, the distribution of this random variable approaches the normal distribu-

tion. These are all facts of statistics: we will not go into how they are derived.

The probability that a random variable X, with zero mean, lies within a certain

confidence range of width 2z is

Pð2z#X# zÞ5 c:

For a normal distribution, values of c and corresponding values of z are given

in tables printed at the back of most statistical texts. However, the tabulations

1655.2 Predicting Performance

conventionally take a slightly different form: they give the confidence that X will

lie outside the range, and they give it for the upper part of the range only:

PðX$ zÞ:
This is called a one-tailed probability because it refers only to the upper “tail”

of the distribution. Normal distributions are symmetric, so the probabilities for

the lower tail.

PðX#2zÞ
are just the same.

Table 5.1 gives an example. Like other tables for the normal distribution, this

assumes that the random variable X has a mean of 0 and a variance of 1.

Alternatively, you might say that the z figures are measured in standard devia-

tions from the mean. Thus the figure for PðX$ zÞ5 5% implies that there is a 5%

chance that X lies more than 1.65 standard deviations above the mean. Because

the distribution is symmetric, the chance that X lies more than 1.65 standard

deviations from the mean (above or below) is 10%, or

Pð21:65#X# 1:65Þ5 90%:

All we need do now is reduce the random variable f to have zero mean and

unit variance. We do this by subtracting the mean p and dividing by the standard

deviation
ffi
pð12 pÞ=N

p
. This leads to

P 2z,
f 2 pffi

pð12 pÞ=N
p , z

 !
5 c:

Now here is the procedure for finding confidence limits. Given a particular

confidence figure c, consult Table 5.1 for the corresponding z value. To use the

table you will first have to subtract c from 1 and then halve the result, so that for

c5 90% you use the table entry for 5%. Linear interpolation can be used for

intermediate confidence levels. Then write the inequality in the preceding expres-

sion as an equality and invert it to find an expression for p.

Table 5.1 Confidence Limits for the Normal
Distribution

PðX$ zÞ (%) z

0.1 3.09
0.5 2.58
1 2.33
5 1.65
10 1.28
20 0.84
40 0.25

166 CHAPTER 5 Credibility: evaluating what’s been learned

The final step involves solving a quadratic equation. Although not hard to do,

it leads to an unpleasantly formidable expression for the confidence limits:

p5 f 1
z2

2N
6 z

ffi
f

N
2

f 2

N
1

z2

4N2

r !,
11

z2

N

� �
:

The 6 in this expression gives two values for p that represent the upper and

lower confidence boundaries. Although the formula looks complicated, it is not

hard to work out in particular cases.

This result can be used to obtain the values in the numeric example given ear-

lier. Setting f5 75%, N5 1000, and c5 80% (so that z5 1.28) leads to the inter-

val [0.732, 0.767] for p, and N5 100 leads to [0.691, 0.801] for the same level of

confidence. Note that the normal distribution assumption is only valid for large N

(say, N.100). Thus f5 75% and N5 10 leads to confidence limits [0.549,

0.881]—but these should be taken with a grain of salt.

5.3 CROSS-VALIDATION
Now consider what to do when the amount of data for training and testing is lim-

ited. The holdout method reserves a certain amount for testing, and uses the

remainder for training (and sets part of that aside for validation, if required). In

practical terms, it is common to hold one-third of the data out for testing and use

the remaining two-thirds for training.

Of course, you may be unlucky: the sample used for training (or testing) might

not be representative. In general, you cannot tell whether a sample is representative

or not. But there is one simple check that might be worthwhile: each class in the full

dataset should be represented in about the right proportion in the training and testing

sets. If, by bad luck, all examples with a certain class were omitted from the training

set, you could hardly expect a classifier learned from that data to perform well on

examples of that class—and the situation would be exacerbated by the fact that the

class would necessarily be overrepresented in the test set, because none of its

instances made it into the training set! Instead, you should ensure that the random

sampling is done in a way that guarantees that each class is properly represented in

both training and test sets. This procedure is called stratification, and we might speak

of stratified holdout. While it is generally well worth doing, stratification provides

only a primitive safeguard against uneven representation in training and test sets.

A more general way to mitigate any bias caused by the particular sample cho-

sen for holdout is to repeat the whole process, training and testing, several times

with different random samples. In each iteration a certain proportion—say two-

thirds—of the data is randomly selected for training, possibly with stratification,

and the remainder used for testing. The error rates on the different iterations are

averaged to yield an overall error rate. This is the repeated holdout method of

error rate estimation.

1675.3 Cross-Validation

In a single holdout procedure, you might consider swapping the roles of the test-

ing and training data—i.e., train the system on the test data and test it on the training

data—and average the two results, thus reducing the effect of uneven representation

in training and test sets. Unfortunately, this is only really plausible with a 50:50 split

between training and test data, which is generally not ideal—it is better to use more

than half the data for training even at the expense of test data. However, a simple var-

iant forms the basis of an important statistical technique called cross-validation. In

cross-validation, you decide on a fixed number of folds, or partitions of the data.

Suppose we use three. Then the data is split into three approximately equal partitions:

each in turn is used for testing and the remainder is used for training. That is, use

two-thirds for training and one-third for testing, and repeat the procedure three times

so that in the end, every instance has been used exactly once for testing. This is

called threefold cross-validation, and if stratification is adopted as well—which it

often is—it is stratified threefold cross-validation.

The standard way of predicting the error rate of a learning technique given a

single, fixed sample of data is to use stratified 10-fold cross-validation. The data

is divided randomly into 10 parts in which the class is represented in approxi-

mately the same proportions as in the full dataset. Each part is held out in turn

and the learning scheme trained on the remaining nine-tenths; then its error rate is

calculated on the holdout set. Thus the learning procedure is executed a total of

10 times on different training sets (each of which have a lot in common). Finally,

the 10 error estimates are averaged to yield an overall error estimate.

Why 10? Extensive tests on numerous different datasets, with different learn-

ing techniques, have shown that 10 is about the right number of folds to get the

best estimate of error, and there is also some theoretical evidence that backs this

up. Although these arguments are by no means conclusive, 10-fold cross-valida-

tion has become the standard method in practical terms. Tests have also shown

that the use of stratification improves results slightly. Thus the standard evalua-

tion technique in situations where only limited data is available is stratified

10-fold cross-validation. Note that neither the stratification nor the division into

10 folds has to be exact: it is enough to divide the data into 10 approximately

equal sets in which the various class values are represented in approximately the

right proportion. Moreover, there is nothing magic about the exact number 10:

5-fold or 20-fold cross-validation is likely to be almost as good.

A single 10-fold cross-validation might not be enough to get a reliable error

estimate if the data is limited. Different 10-fold cross-validation experiments with

the same learning scheme and dataset often produce different results, because of

the effect of random variation in choosing the folds themselves. Stratification

reduces the variation, but it certainly does not eliminate it entirely. When seeking

an accurate error estimate with limited data, it is standard procedure to repeat the

cross-validation process 10 times—i.e., 10 times 10-fold cross-validation—and

average the results. This involves invoking the learning algorithm 100 times on

datasets that are all nine-tenths the size of the original. Getting a good measure of

performance is a computation-intensive undertaking.

168 CHAPTER 5 Credibility: evaluating what’s been learned

5.4 OTHER ESTIMATES
Tenfold cross-validation is the standard way of measuring the error rate of a

learning scheme on limited data; for reliable results, 10 times 10-fold

cross-validation. But many other methods are used instead. Two that are

particularly prevalent are leave-one-out cross-validation and the bootstrap.

LEAVE-ONE-OUT

Leave-one-out cross-validation is simply n-fold cross-validation, where n is the

number of instances in the dataset. Each instance in turn is left out, and the learn-

ing scheme is trained on all the remaining instances. It is judged by its correctness

on the remaining instance—1or 0 for success or failure. The results of all n judg-

ments, one for each member of the dataset, are averaged, and that average repre-

sents the final error estimate.

This procedure is an attractive one for two reasons. First, the greatest possible

amount of data is used for training in each case, which presumably increases the

chance that the classifier is an accurate one. Second, the procedure is determin-

istic: no random sampling is involved. There is no point in repeating it 10 times,

or repeating it at all: the same result will be obtained each time. Set against this

is the high computational cost, because the entire learning procedure must be exe-

cuted n times and this is usually quite infeasible for large datasets. Nevertheless,

leave-one-out seems to offer a chance of squeezing the maximum out of a small

dataset and getting as accurate an estimate as possible.

But there is a disadvantage to leave-one-out cross-validation, apart from the

computational expense. By its very nature, it cannot be stratified—worse than

that, it guarantees a nonstratified sample. Stratification involves getting the cor-

rect proportion of examples in each class into the test set, and this is impossible

when the test set contains only a single example. A dramatic, although highly arti-

ficial, illustration of the problems this might cause is to imagine a completely ran-

dom dataset that contains exactly the same number of instances of each of two

classes. The best that an inducer can do with random data is to predict the major-

ity class, giving a true error rate of 50%. But in each fold of leave-one-out, the

opposite class to the test instance is in the majority—and therefore the predictions

will always be incorrect, leading to an estimated error rate of 100%!

THE BOOTSTRAP

The second estimation method we describe, the bootstrap, is based on the statisti-

cal procedure of sampling with replacement. Previously, whenever a sample was

taken from the dataset to form a training or test set, it was drawn without replace-

ment. That is, the same instance, once selected, could not be selected again. It is

like picking teams for football: you cannot choose the same person twice. But

1695.4 Other Estimates

dataset instances are not like people. Most learning schemes can use the same

instance twice, and it makes a difference in the result of learning if it is present in

the training set twice. (Mathematical sticklers will notice that we should not really

be talking about “sets” at all if the same object can appear more than once.)

The idea of the bootstrap is to sample the dataset with replacement to form a

training set. We will describe a particular variant, mysteriously (but for a reason

that will soon become apparent) called the 0.632 bootstrap. For this, a dataset of

n instances is sampled n times, with replacement, to give another dataset of n

instances. Because some elements in this second dataset will (almost certainly) be

repeated, there must be some instances in the original dataset that have not been

picked: we will use these as test instances.

What is the chance that a particular instance will not be picked for the training

set? It has a 1/n probability of being picked each time, and so a 12 1/n probabil-

ity of not being picked. Multiply these probabilities together for a sufficient

number of picking opportunities, n, and the result is a figure of

12
1

n

� �n

� e21 5 0:368

(where e is the base of natural logarithms, 2.7183, not the error rate!). This gives

the chance of a particular instance not being picked at all. Thus for a reasonably

large dataset, the test set will contain about 36.8% of the instances and the train-

ing set will contain about 63.2% of them (now you can see why it’s called the

0.632 bootstrap). Some instances will be repeated in the training set, bringing it

up to a total size of n, the same as in the original dataset.

The figure obtained by training a learning system on the training set and cal-

culating its error over the test set will be a pessimistic estimate of the true error

rate, because the training set, although its size is n, nevertheless contains only

63% of the instances, which is not a great deal compared, e.g., with the 90% used

in 10-fold cross-validation. To compensate for this, we combine the test-set error

rate with the resubstitution error on the instances in the training set. The resubsti-

tution figure, as we warned earlier, gives a very optimistic estimate of the true

error and should certainly not be used as an error figure on its own. But the boot-

strap procedure combines it with the test error rate to give a final estimate e as

follows:

e5 0:632Uetest instances 1 0:368Uetraining instances:

Then, the whole bootstrap procedure is repeated several times, with different

replacement samples for the training set, and the results averaged.

The bootstrap procedure may be the best way of estimating error for very

small datasets. However, like leave-one-out cross-validation, it has disadvantages

that can be illustrated by considering a special, artificial situation. In fact, the

very dataset we considered above will do: a completely random dataset with two

classes of equal size. The true error rate is 50% for any prediction rule. But a

scheme that memorized the training set would give a perfect resubstitution score

170 CHAPTER 5 Credibility: evaluating what’s been learned

of 100%, so that etraining instances 5 0, and the 0.632 bootstrap will mix this in with

a weight of 0.368 to give an overall error rate of only 31.6% (0.6323 50%1
0.3683 0%), which is misleadingly optimistic.

5.5 HYPERPARAMETER SELECTION
Many learning algorithms have parameters that can be tuned to optimize their

behavior. These are called “hyperparameters” to distinguish them from basic para-

meters such as the coefficients in linear regression models. An example is the

parameter k that determines the number of neighbors used in a k-nearest-neighbor

classifier. Normally, best performance on a test set is achieved by adjusting the

value of this hyperparameter to suit the characteristics of the data. However, frus-

tratingly, it is very important not to use performance on the test data to choose the

best value for k! This is because peeking at the test data to make choices automati-

cally introduces optimistic bias in the performance score obtained from this same

data. Performance on future new data will very likely be worse than the estimate.

What to do? The trick, as mentioned earlier in this chapter, is to split the origi-

nal training set into a smaller, new training set and a validation set. (The split is

normally done randomly.) Then the algorithm is run several times with different

hyperparameter values on this reduced training set, and each of the resulting mod-

els is evaluated on the validation set. Once the hyperparameter value that gives

best performance on the validation set has been determined, a final model is built

by running the algorithm with that hyperparameter value on the original, full

training set. Note that the test data is not involved in any of this! Only after the

final model is fixed are we allowed to use the test data to obtain an estimate of

the performance of this model on new, unseen data. Basically, the test data can

only be used once, to establish the final performance score.

This also applies when using methods, such as cross-validation, with multiple

training and testing splits. Hyperparameter choice must be based on the training set

only. When applying the above parameter selection process multiple times within a

cross-validation, once for each fold, it is entirely possible that the hyperparameter

values will be slightly different from fold to fold. This does not matter: hyperpara-

meter selection is part of the overall process of learning a model, and these models

will normally differ from fold to fold anyway. In other words, what is being evalu-

ated with cross-validation is the learning process, not one particular model.

There is a drawback to this process for hyperparameter selection: if the origi-

nal training data is small—and the training folds in a cross-validation often are—

then splitting off a validation set will further reduce the size of the set available

for training; and the validation set will be small too. This means that the choice

of hyperparameter may not be reliable. This is analogous to the problem with the

simple holdout estimate we encountered earlier in this chapter, and the same rem-

edy applies: use cross-validation instead. This means that a so-called “inner”

1715.5 Hyperparameter Selection

cross-validation is applied to determine the best value of the hyperparameter for

each fold of the “outer” cross-validation used to obtain the final performance esti-

mate for the learning algorithm.

This kind of nested cross-validation process is expensive, particularly consid-

ering that the inner cross-validation must be run for each value of the hyper-

parameter that we want to evaluate. Things become worse with multiple

hyperparameters. If a grid search is used to find the best parameter value, then

with two hyperparameters and a 103 10 grid 100 inner cross-validations are

needed, and this must be done for each fold of the outer cross-validation.

Assuming that 10 folds are used for both the inner and outer cross-validation, the

learning algorithm must be run 10 times 10 times 100 times—10,000 times! And

then we might want to repeat the outer cross-validation 10 times to get a more

reliable final performance estimate.

Fortunately, this process can easily be distributed across multiple computers.

Nevertheless, it may be infeasible, at least with the above configuration, and it is

common practice to use a smaller number of folds for the internal cross-

validation, perhaps just twofolds.

5.6 COMPARING DATA MINING SCHEMES
We often need to compare two different learning schemes on the same problem

to see which is the better one to use. It seems simple: estimate the error using

cross-validation (or any other suitable estimation procedure), perhaps repeated

several times, and choose the scheme whose estimate is smaller. And this is quite

sufficient in many practical applications: if one scheme has a lower estimated

error than another on a particular dataset, the best we can do is to use the former

scheme’s model. However, it may be that the difference is simply caused by esti-

mation error, and in some circumstances it is important to determine whether one

scheme is really better than another on a particular problem. This is a standard

challenge for machine learning researchers. If a new learning algorithm is pro-

posed, its proponents must show that it improves on the state of the art for the

problem at hand and demonstrate that the observed improvement is not just a

chance effect in the estimation process.

This is a job for a statistical test that is based on confidence bounds, the kind

we met previously when trying to predict true performance from a given test-set

error rate. If there were unlimited data, we could use a large amount for training

and evaluate performance on a large independent test set, obtaining confidence

bounds just as before. However, if the difference turns out to be significant we

must ensure that this is not just because of the particular dataset we happened to

base the experiment on. What we want to determine is whether one scheme is bet-

ter or worse than another on average, across all possible training and test datasets

that can be drawn from the domain. Because the amount of training data naturally

172 CHAPTER 5 Credibility: evaluating what’s been learned

affects performance, all datasets should be the same size: indeed, the experiment

might be repeated with different sizes to obtain a learning curve.

For the moment, assume that the supply of data is unlimited. For definiteness,

suppose that cross-validation is being used to obtain the error estimates (other esti-

mators, such as repeated cross-validation, are equally viable). For each learning

scheme we can draw several datasets of the same size, obtain an accuracy estimate

for each dataset using cross-validation, and compute the mean of the estimates.

Each cross-validation experiment yields a different, independent error estimate.

What we are interested in is the mean accuracy across all possible datasets of the

same size, and whether this mean is greater for one scheme or the other.

From this point of view, we are trying to determine whether the mean of a set

of samples—cross-validation estimates for the various datasets that we sampled

from the domain—is significantly greater than, or significantly less than, the

mean of another. This is a job for a statistical device known as the t-test, or

Student’s t-test. Because the same cross-validation experiment can be used for

both learning schemes to obtain a matched pair of results for each dataset, a more

sensitive version of the t-test known as a paired t-test can be used.

We need some notation. There is a set of samples x1, x2, . . ., xk obtained by suc-

cessive 10-fold cross-validations using one learning scheme, and a second set of

samples y1, y2, . . ., yk obtained by successive 10-fold cross-validations using the

other. Each cross-validation estimate is generated using a different dataset (but all

datasets are of the same size and from the same domain). We will get best results if

exactly the same cross-validation partitions are used for both schemes, so that x1
and y1 are obtained using the same cross-validation split, as are x2 and y2, and so

on. Denote the mean of the first set of samples by x and the mean of the second set

by y. We are trying to determine whether x is significantly different from y.

If there are enough samples, the mean (x) of a set of independent samples

(x1, x2, . . ., xk) has a normal (i.e., Gaussian) distribution, regardless of the distri-

bution underlying the samples themselves. Call the true value of the mean μ. If
we knew the variance of that normal distribution, so that it could be reduced to

have zero mean and unit variance, we could obtain confidence limits on μ given

the mean of the samples (x). However, the variance is unknown, and the only

way we can obtain it is to estimate it from the set of samples.

That is not hard to do. The variance of x can be estimated by dividing the var-

iance calculated from the samples x1, x2, . . ., xk—call it σ2
x—by k. We can reduce

the distribution of x to have zero mean and unit variance by using

x2μffiffiffiffiffiffiffiffiffiffi
σ2
x=k

p :

The fact that we have to estimate the variance changes things somewhat.

Because the variance is only an estimate, this does not have a normal distribution

(although it does become normal for large values of k). Instead, it has what is

called a Student’s distribution with k2 1 degrees of freedom. What this means in

practice is that we have to use a table of confidence intervals for Student’s

1735.6 Comparing Data Mining Schemes

distribution rather than the confidence table for the normal distribution given

earlier. For 9 degrees of freedom (which is the correct number if we are using the

average of 10 cross-validations) the appropriate confidence limits are shown in

Table 5.2. If you compare them with Table 5.1 you will see that the Student’s

figures are slightly more conservative—for a given degree of confidence, the

interval is slightly wider—and this reflects the additional uncertainty caused by

having to estimate the variance. Different tables are needed for different numbers

of degrees of freedom, and if there are more than 100 degrees of freedom the con-

fidence limits are very close to those for the normal distribution. Like Table 5.1,

the figures in Table 5.2 are for a “one-sided” confidence interval.

To decide whether the means x and y, each an average of the same number k

of samples, are the same or not, we consider the differences di between corre-

sponding observations, di 5 xi 2 yi. This is legitimate because the observations

are paired. The mean of this difference is just the difference between the two

means, d5 x2 y, and, like the means themselves, it has a Student’s distribution

with k2 1 degrees of freedom. If the means are the same, the difference is zero

(this is called the null hypothesis); if they’re significantly different, the difference

will be significantly different from zero. So for a given confidence level, we will

check whether the actual difference exceeds the confidence limit.

First, reduce the difference to a zero-mean, unit-variance variable called the

t-statistic:

t5
dffiffiffiffiffiffiffiffiffiffi
σ2
d=k

q
where σ2

d is the variance of the difference samples. Then, decide on a confidence

level—generally, 5% or 1% is used in practice. From this the confidence limit z

is determined using Table 5.2 if k is 10; if it is not, a confidence table of the

Student distribution for the k value in question is used. A two-tailed test is appro-

priate because we do not know in advance whether the mean of the x’s is likely

to be greater than that of the y’s or vice versa: thus for a 1% test we use the value

corresponding to 0.5% in Table 5.2. If the value of t according to the formula

above is greater than z, or less than 2z, we reject the null hypothesis that the

Table 5.2 Confidence Limits for Student’s
Distribution With 9 Degrees of Freedom

Pr X$ z½ � (%) z

0.1 4.30
0.5 3.25
1 2.82
5 1.83
10 1.38
20 0.88

174 CHAPTER 5 Credibility: evaluating what’s been learned

means are the same and conclude that there really is a significant difference

between the two learning methods on that domain for that dataset size.

Two observations are worth making on this procedure. The first is technical:

what if the observations were not paired? That is, what if we were unable, for

some reason, to assess the error of each learning scheme on the same datasets?

What if the number of datasets for each scheme was not even the same? These

conditions could arise if someone else had evaluated one of the schemes and pub-

lished several different estimates for a particular domain and dataset size—or per-

haps just their mean and variance—and we wished to compare this with a

different learning scheme. Then it is necessary to use a regular, nonpaired t-test.

Instead of taking the mean of the difference, d, we use the difference of the

means, x2 y. Of course, that’s the same thing: the mean of the difference is the

difference of the means. But the variance of the difference d is not the same. If

the variance of the samples x1, x2, . . ., xk is σ2
x and the variance of the samples

y1, y2, . . ., y‘ is σ2
y ,

σ2
x

k
1

σ2
y

‘
:

is a good estimate of the variance of the difference of the means. It is this vari-

ance (or rather, its square root) that should be used as the denominator of the

t-statistic given previously. The degrees of freedom, necessary for consulting

Student’s confidence tables, should be taken conservatively to be the minimum of

the degrees of freedom of the two samples. Essentially, knowing that the observa-

tions are paired allows the use of a better estimate for the variance, which will

produce tighter confidence bounds.

The second observation concerns the assumption that there is essentially

unlimited data so that several independent datasets of the right size can be

used. In practice there is usually only a single dataset of limited size. What

can be done? We could split the data into subsets (perhaps 10) and perform a

cross-validation on each one. However, the overall result will only tell us

whether a learning scheme is preferable for that particular size—one-tenth of

the original dataset. Alternatively, the original dataset could be reused—e.g.,

with different randomizations of the dataset for each cross-validation.

However, the resulting cross-validation estimates will not be independent

because they are not based on independent datasets. In practice, this means

that a difference may be judged to be significant when in fact it is not. Indeed,

just increasing the number of samples k, i.e., the number of cross-validation

runs, will eventually yield an apparently significant difference because the

value of the t-statistic increases without bound.

Various modifications of the standard t-test have been proposed to circumvent

this problem, all of them heuristic and somewhat lacking in theoretical justifica-

tion. One that appears to work well in practice is the corrected resampled t-test.

Assume for the moment that the repeated holdout method is used instead of

cross-validation, repeated k times on different random splits of the same dataset

1755.6 Comparing Data Mining Schemes

to obtain accuracy estimates for two learning schemes. Each time, n1 instances

are used for training and n2 for testing, and differences di are computed from per-

formance on the test data. The corrected resampled t-test uses the modified

statistic.

t5
dffi

1
k
1 n2

n1

� �
σ2
d

r
in exactly the same way as the standard t-statistic. A closer look at the formula

shows that its value cannot be increased simply by increasing k. The same modi-

fied statistic can be used with repeated cross-validation, which is just a special

case of repeated holdout in which the individual test sets for one cross-validation

do not overlap. For 10-fold cross-validation repeated 10 times, k5 100,

n2/n15 0.1/0.9, and σ2
d is based on 100 differences.

5.7 PREDICTING PROBABILITIES
Throughout this section we have tacitly assumed that the goal is to maximize the

success rate of the predictions. The outcome for each test instance is either cor-

rect, if the prediction agrees with the actual value for that instance, or incorrect,

if it does not. There are no grays: everything is black or white, correct or incor-

rect. In many situations, this is the most appropriate perspective. If the learning

scheme, when it is actually applied, results in either a correct or an incorrect pre-

diction, success is the right measure to use. This is sometimes called a 02 1 loss

function: the “loss” is either zero if the prediction is correct or one if it is not.

The use of loss is conventional, although a more optimistic terminology might

couch the outcome in terms of profit instead.

Other situations are softer edged. Most learning schemes can associate a prob-

ability with each prediction (as the Naı̈ve Bayes scheme does). It might be more

natural to take this probability into account when judging correctness. For exam-

ple, a correct outcome predicted with a probability of 99% should perhaps weigh

more heavily than one predicted with a probability of 51%, and, in a two-class sit-

uation, perhaps the latter is not all that much better than an incorrect outcome

predicted with probability 51%. Whether it is appropriate to take prediction prob-

abilities into account depends on the application. If the ultimate application really

is just a prediction of the outcome, and no prizes are awarded for a realistic

assessment of the likelihood of the prediction, it does not seem appropriate to use

probabilities. If the prediction is subject to further processing, however—perhaps

involving assessment by a person, or a cost analysis, or maybe even serving as

input to a second-level learning process—then it may well be appropriate to take

prediction probabilities into account.

176 CHAPTER 5 Credibility: evaluating what’s been learned

QUADRATIC LOSS FUNCTION

Suppose for a single instance there are k possible outcomes, or classes, and for a

given instance the learning scheme comes up with a probability vector p1, p2, . . .,
pk for the classes (where these probabilities sum to 1). The actual outcome for

that instance will be one of the possible classes. However, it is convenient to

express it as a vector a1, a2, . . ., ak whose ith component, where i is the actual

class, is 1 and all other components are 0. We can express the penalty associated

with this situation as a loss function that depends on both the p vector and the a

vector.

One criterion that is frequently used to evaluate probabilistic prediction is the

quadratic loss function: X
j
ðpj2ajÞ2:

Note that this is for a single instance: the summation is over possible outputs

not over different instances. Just one of the a’s will be 1 and the rest 0, so the

sum contains contributions of p2j for the incorrect predictions and (12 pi)
2 for the

correct one: consequently it can be written.

12 2pi 1
X

j
p2j ;

where i is the correct class. When the test set contains several instances, the loss

function is summed over them all.

It is an interesting theoretical fact that if you seek to minimize the value of

the quadratic loss function in a situation where the actual class is generated proba-

bilistically, the best strategy is to choose for the p vector the actual probabilities

of the different outcomes, i.e., pi5P(class5 i). If the true probabilities are

known, they will be the best values for p. If they are not, a system that strives to

minimize the quadratic loss function will be encouraged to use its best estimate

of P(class5 i) as the value for pi.

This is quite easy to see. Denote the true probabilities by p�1, p
�
2, . . ., p

�
k so that

p�i 5P(class5 i). The expected value of the quadratic loss function over test

instances can be rewritten as follows:

E
X

j
ðpj2ajÞ2

h i
5
X

j
ðE½p2j �2 2E½pjaj�1E½a2j �Þ

5
X

j
ðp2j 2 2pjp

�
j 1 p�j Þ5

X
j
ððpj2p�j Þ2 1 p�j ð12 p�j ÞÞ:

The first stage just involves bringing the expectation inside the sum and

expanding the square. For the second, pj is just a constant and the expected value

of aj is simply p�j ; moreover, because aj is either 0 or 1, a2j 5 aj and its expected

value is p�j too. The third stage is straightforward algebra. To minimize the result-

ing sum, it is clear that it is best to choose pj 5 p�j so that the squared term disap-

pears and all that is left is a term that is just the variance of the true distribution

governing the actual class.

1775.7 Predicting Probabilities

Minimizing the squared error has a long history in prediction problems. In the

present context, the quadratic loss function forces the predictor to be honest about

choosing its best estimate of the probabilities—or, rather, it gives preference to

predictors that are able to make the best guess at the true probabilities. Moreover,

the quadratic loss function has some useful theoretical properties that we will not

go into here. For all these reasons it is frequently used as the criterion of success

in probabilistic prediction situations.

INFORMATIONAL LOSS FUNCTION

Another popular criterion for the evaluation of probabilistic prediction is the

informational loss function:

2log2pi

where the ith prediction is the correct one. This is in fact identical to the negative

of the log-likelihood function that is optimized by logistic regression, described in

Section 4.6 (modulo a constant factor, which is determined by the base of the

logarithm). It represents the information (in bits) required to express the actual

class i with respect to the probability distribution p1, p2, . . . ,pk. In other words, if

you were given the probability distribution and someone had to communicate to

you which class was the one that actually occurred, this is the number of bits they

would need to encode the information if they did it as effectively as possible. (Of

course, it is always possible to use more bits.) Because probabilities are always

less than one, their logarithms are negative, and the minus sign makes the out-

come positive. For example, in a two-class situation—heads or tails—with an

equal probability of each class, the occurrence of a head would take 1 bit to trans-

mit, because 2log21=2 is 1.

The expected value of the informational loss function, if the true probabilities

are p�1, p
�
2, . . ., p

�
k , is

2p�1log2p1 2 p�2log2p2 2 . . .2 p�k log2pk:

Like the quadratic loss function, this expression is minimized by choosing

pj 5 p�j , in which case the expression becomes the entropy of the true distribution:

2p�1log2p
�
1 2 p�2log2p

�
2 2 . . .2 p�k log2p

�
k :

Thus the informational loss function also rewards honesty in predictors that

know the true probabilities, and encourages predictors that do not to put forward

their best guess.

One problem with the informational loss function is that if you assign a proba-

bility of zero to an event that actually occurs, the function’s value is infinity. This

corresponds to losing your shirt when gambling. Prudent predictors operating

under the informational loss function do not assign zero probability to any out-

come. This does lead to a problem when no information is available about that

178 CHAPTER 5 Credibility: evaluating what’s been learned

outcome on which to base a prediction: i.e., called the zero-frequency problem,

and various plausible solutions have been proposed, such as the Laplace estimator

discussed earlier for Naı̈ve Bayes.

REMARKS

If you are in the business of evaluating predictions of probabilities, which of the

two loss functions should you use? That’s a good question, and there is no univer-

sally agreed-upon answer—it’s really a matter of taste. They both do the funda-

mental job expected of a loss function: they give maximum reward to predictors

that are capable of predicting the true probabilities accurately. However, there are

some objective differences between the two that may help you form an opinion.

The quadratic loss function takes account not only of the probability assigned

to the event that actually occurred, but also the other probabilities. For example,

in a four-class situation, suppose you assigned 40% to the class that actually

came up, and distributed the remainder among the other three classes. The qua-

dratic loss will depend on how you distributed it because of the sum of the p2j
that occurs in the expression given earlier for the quadratic loss function. The loss

will be smallest if the 60% was distributed evenly among the three classes: an

uneven distribution will increase the sum of the squares. The informational loss

function, on the other hand, depends solely on the probability assigned to the

class that actually occurred. If you’re gambling on a particular event coming up,

and it does, who cares about potential winnings from other events?

If you assign a very small probability to the class that actually occurs, the

information loss function will penalize you massively. The maximum penalty, for

a zero probability, is infinite. The quadratic loss function, on the other hand, is

milder, being bounded by

11
X

j
p2j ;

which can never exceed 2.

Finally, proponents of the informational loss function point to a general theory

of performance assessment in learning called the minimum description length

(MDL) principle. They argue that the size of the structures that a scheme learns

can be measured in bits of information, and if the same units are used to measure

the loss, the two can be combined in useful and powerful ways. We return to this

in Section 5.10.

5.8 COUNTING THE COST
The evaluations that have been discussed so far do not take into account the cost of

making wrong decisions, wrong classifications. Optimizing classification rate with-

out considering the cost of the errors often leads to strange results. In one case,

1795.8 Counting the Cost

machine learning was being used to determine the exact day that each cow in a

dairy herd was in estrus, or “in heat.” Cows were identified by electronic ear tags,

and various attributes were used such as milk volume and chemical composition

(recorded automatically by a high-tech milking machine), and milking order—for

cows are regular beasts and generally arrive in the milking shed in the same order,

except in unusual circumstances such as estrus. In a modern dairy operation it’s

important to know when a cow is ready: animals are fertilized by artificial insemi-

nation and missing a cycle will delay calving unnecessarily, causing complications

down the line. In early experiments, machine learning schemes stubbornly pre-

dicted that each cow was never in estrus. Like humans, cows have a menstrual

cycle of approximately 30 days, so this “null” rule is correct about 97% of the

time—an impressive degree of accuracy in any agricultural domain! What was

wanted, of course, were rules that predicted the “in estrus” situation more accu-

rately than the “not in estrus” one: the costs of the two kinds of error were different.

Evaluation by classification accuracy tacitly assumes equal error costs.

Other examples where errors cost different amounts include loan decisions:

the cost of lending to a defaulter is far greater than the lost-business cost of refus-

ing a loan to a nondefaulter. And oil-slick detection: the cost of failing to detect

an environment-threatening real slick is far greater than the cost of a false alarm.

And load forecasting: the cost of gearing up electricity generators for a storm that

doesn’t hit is far less than the cost of being caught completely unprepared. And

diagnosis: the cost of misidentifying problems with a machine that turns out to be

free of faults is less than the cost of overlooking problems with one that is about

to fail. And promotional mailing: the cost of sending junk mail to a household

that doesn’t respond is far less than the lost-business cost of not sending it to a

household that would have responded. Why—these are all the examples of

Chapter 1, What’s it all about?! In truth, you’d be hard pressed to find an applica-

tion in which the costs of different kinds of error were the same.

In the two-class case with classes yes and no, lend or not lend, mark a suspi-

cious patch as an oil-slick or not, and so on, a single prediction has the four dif-

ferent possible outcomes shown in Table 5.3. The true positives (TP) and true

negatives (TN) are correct classifications. A false positive (FP) is when the out-

come is incorrectly predicted as yes (or positive) when it is actually no (negative).

A false negative (FN) is when the outcome is incorrectly predicted as negative

when it is actually positive. The TP rate is TP divided by the total number of

positives, which is TP1 FN; the FP rate is FP divided by the total number of

Table 5.3 Different Outcomes of a Two-Class Prediction

Predicted Class

Yes No
Actual class Yes True positive False negative

No False positive True negative

180 CHAPTER 5 Credibility: evaluating what’s been learned

negatives, FP1TN. The overall success rate is the number of correct classifica-

tions divided by the total number of classifications:

TP1TN

TP1TN1 FP1 FN
:

Finally, the error rate is one minus this.

In a multiclass prediction, the result on a test set is often displayed as a two-

dimensional confusion matrix with a row and column for each class. Each matrix

element shows the number of test examples for which the actual class is the row

and the predicted class is the column. Good results correspond to large numbers

down the main diagonal and small, ideally zero, off-diagonal elements.

Table 5.4A shows a numeric example with three classes. In this case the test set

has 200 instances (the sum of the nine numbers in the matrix), and

881 401 125 140 of them are predicted correctly, so the success rate is 70%.

But is this a fair measure of overall success? How many agreements would

you expect by chance? This predictor predicts a total of 120 a’s, 60 b’s, and

20 c’s; What if you had a random predictor that predicted the same total numbers

of the three classes? The answer is shown in Table 5.4B. Its first row divides the

100 a’s in the test set into these overall proportions, and the second and third

rows do the same thing for the other two classes. Of course, the row and column

totals for this matrix are the same as before—the number of instances hasn’t

changed, and we have ensured that the random predictor predicts the same num-

ber of a’s, b’s and c’s as the actual predictor.

This random predictor gets 601 181 45 82 instances correct. A measure

called the Kappa statistic takes this expected figure into account by deducting it

from the predictor’s successes and expressing the result as a proportion of the total

for a perfect predictor, to yield 1402 825 58 extra successes out of a possible total

of 2002 825 118, or 49.2%. The maximum value of Kappa is 100%, and the

expected value for a random predictor with the same column totals is zero. In sum-

mary, the Kappa statistic is used to measure the agreement between predicted and

observed categorizations of a dataset, while correcting for agreement that occurs

by chance. However, like the plain success rate, it does not take costs into account.

Table 5.4 Different Outcomes of a Three-Class Prediction: (A) Actual;
(B) Expected

Predicted Class Predicted Class

(A) a b c total (B) a b c total
Actual
class

a 88 10 2 100 Actual
Class

a 60 30 10 100
b 14 40 6 60 b 36 18 6 60
c 18 10 12 40 c 24 12 4 40
total 120 60 20 total 120 60 20

1815.8 Counting the Cost

COST-SENSITIVE CLASSIFICATION

If the costs are known, they can be incorporated into a financial analysis of the

decision-making process. In the two-class case, in which the confusion matrix is

like that of Table 5.3, the two kinds of error—FPs and FNs—will have different

costs; likewise, the two types of correct classification may have different benefits.

In the two-class case, costs can be summarized in the form of a 23 2 matrix in

which the diagonal elements represent the two types of correct classification and

the off-diagonal elements represent the two types of error. In the multiclass case

this generalizes to a square matrix whose size is the number of classes, and again

the diagonal elements represent the cost of correct classification. Table 5.5A and

5.5B shows default cost matrixes for the two- and three-class cases whose values

simply give the number of errors: misclassification costs are all 1.

Taking the cost matrix into account replaces the success rate by the average

cost (or, thinking more positively, profit) per decision. Although we will not do

so here, a complete financial analysis of the decision-making process might also

take into account the cost of using the machine-learning tool—including the cost

of gathering the training data—and the cost of using the model, or decision struc-

ture, that it produces—including the cost of determining the attributes for the test

instances. If all costs are known, and the projected number of the four different

outcomes in the cost matrix can be estimated—say, using cross-validation—it is

straightforward to perform this kind of financial analysis.

Given a cost matrix, you can calculate the cost of a particular learned model

on a given test set just by summing the relevant elements of the cost matrix for

the model’s prediction for each test instance. Here, the costs are ignored when

making predictions, but taken into account when evaluating them.

If the model outputs the probability associated with each prediction, it can be

adjusted to minimize the expected cost of the predictions. Given a set of predicted

probabilities for each outcome on a certain test instance, one normally selects the

most likely outcome. Instead, the model could predict the class with the smallest

expected misclassification cost. For example, suppose in a three-class situation

the model assigns the classes a, b, and c to a test instance with probabilities pa,

pb, and pc, and the cost matrix is that in Table 5.5B. If it predicts a, the expected

cost of the prediction is obtained by multiplying the first column of the matrix,

Table 5.5 Default Cost Matrixes: (A) Two-Class Case; (B) Three-Class Case

Predicted Class Predicted Class

(A) Yes No (B) a b c
Actual class Yes 0 1 Actual class a 0 1 1

No 1 0 b 1 0 1
c 1 1 0

182 CHAPTER 5 Credibility: evaluating what’s been learned

[0,1,1], by the probability vector, [pa, pb, pc], yielding pb1 pc, or 12 pa because

the three probabilities sum to 1. Similarly, the costs for predicting the other two

classes are 12 pb and 12 pc. For this cost matrix, choosing the prediction with

the lowest expected cost is the same as choosing the one with the greatest proba-

bility. For a different cost matrix it might be different.

We have assumed that the learning scheme outputs probabilities, as Naı̈ve

Bayes does. Even if they do not normally output probabilities, most classifiers

can easily be adapted to compute them. In a decision tree, e.g., the probability

distribution for a test instance is just the distribution of classes at the correspond-

ing leaf.

COST-SENSITIVE LEARNING

We have seen how a classifier, built without taking costs into consideration, can be

used to make predictions that are sensitive to the cost matrix. In this case, costs are

ignored at training time but used at prediction time. An alternative is to do just the

opposite: take the cost matrix into account during the training process and ignore

costs at prediction time. In principle, better performance might be obtained if the

classifier were tailored by the learning algorithm to the cost matrix.

In the two-class situation, there is a simple and general way to make any learn-

ing scheme cost sensitive. The idea is to generate training data with a different pro-

portion of yes and no instances. Suppose you artificially increase the number of no

instances by a factor of 10 and use the resulting dataset for training. If the learning

scheme is striving to minimize the number of errors, it will come up with a decision

structure that is biased toward avoiding errors on the no instances, because such

errors are effectively penalized 10-fold. If data with the original proportion of no

instances is used for testing, fewer errors will be made on these than on yes

instances—i.e., there will be fewer FPs than FNs—because FPs have been

weighted 10 times more heavily than FNs. Varying the proportion of instances in

the training set is a general technique for building cost-sensitive classifiers.

One way to vary the proportion of training instances is to duplicate instances

in the dataset. However, many learning schemes allow instances to be weighted.

(As we mentioned in Section 3.3, this is a common technique for handling miss-

ing values.) Instance weights are normally initialized to one. To build cost-

sensitive classifiers the weights can be initialized to the relative cost of the two

kinds of error, FPs, and FNs.

LIFT CHARTS

In practice, costs are rarely known with any degree of accuracy, and people will

want to ponder various different scenarios. Imagine you’re in the direct mailing

business and are contemplating a mass mail-out of a promotional offer to

1,000,000 households—most of whom won’t respond, of course. Let us say that,

based on previous experience, the proportion who normally respond is known to

1835.8 Counting the Cost

be 0.1% (1000 respondents). Suppose a data mining tool is available that, based

on known information about the households, identifies a subset of 100,000 for

which the response rate is 0.4% (400 respondents). It may well pay off to restrict

the mail-out to these 100,000 households—that depends on the mailing cost com-

pared with the return gained for each response to the offer. In marketing terminol-

ogy, the increase in response rate, a factor of four in this case, is known as the lift

factor yielded by the learning tool. If you knew the costs, you could determine

the payoff implied by a particular lift factor.

But you probably want to evaluate other possibilities too. The same data min-

ing scheme, with different parameter settings, may be able to identify 400,000

households for which the response rate will be 0.2% (800 respondents), corre-

sponding to a lift factor of two. Again, whether this would be a more

profitable target for the mail-out can be calculated from the costs involved. It

may be necessary to factor in the cost of creating and using the model—including

collecting the information that is required to come up with the attribute values.

After all, if developing the model is very expensive, a mass mailing may be more

cost effective than a targeted one.

Given a learning scheme that outputs probabilities for the predicted class of

each member of the set of test instances (as Naı̈ve Bayes does), your job is to

find subsets of test instances that have a high proportion of positive instances,

higher than in the test set as a whole. To do this, the instances should be sorted in

descending order of predicted probability of yes. Then, to find a sample of a given

size with the greatest possible proportion of positive instances, just read the requi-

site number of instances off the list, starting at the top. If each test instance’s

class is known, you can calculate the lift factor by simply counting the number of

positive instances that the sample includes, dividing by the sample size to obtain

a success proportion and dividing by the success proportion for the complete test

set to determine the lift factor.

Table 5.6 shows an example, for a small dataset with 120 instances, of which

60 are yes responses—an overall success proportion of 50%. The instances have

Table 5.6 Data for a Lift Chart

Rank Predicted Actual Rank Predicted Actual Class

1 0.95 Yes 11 0.77 No
2 0.93 Yes 12 0.76 Yes
3 0.93 No 13 0.73 Yes
4 0.88 Yes 14 0.65 No
5 0.86 Yes 15 0.63 Yes
6 0.85 Yes 16 0.58 No
7 0.82 Yes 17 0.56 Yes
8 0.80 Yes 18 0.49 No
9 0.80 No 19 0.48 Yes
10 0.79 Yes

184 CHAPTER 5 Credibility: evaluating what’s been learned

been sorted in descending probability order according to the predicted probability

of a yes response. The first instance is the one that the learning scheme thinks is

most likely to be positive, the second is the next most likely, and so on. The

numeric values of the probabilities are unimportant: rank is the only thing that

matters. With each rank is given the actual class of the instance. Thus the learning

scheme was right about items 1 and 2—they are indeed positives—but wrong

about item 3, which turned out to be a negative. Now, if you were seeking the

most promising sample of size 10 but only knew the predicted probabilities and

not the actual classes, your best bet would be the top ten ranking instances. Eight

of these are positive, so the success proportion for this sample is 80%, corre-

sponding to a lift factor of about 2.4.

If you knew the different costs involved, you could work them out for each

sample size and choose the most profitable. But a graphical depiction of the vari-

ous possibilities will often be far more revealing than presenting a single “opti-

mal” decision. Repeating the operation for different-sized samples allows you to

plot a lift chart like that of Fig. 5.1. The horizontal axis shows the sample size as

a proportion of the total possible mail-out. The vertical axis shows the number of

responses obtained. The lower left and upper right points correspond to no mail-

out at all, with a response of 0, and a full mail-out, with a response of 1000. The

diagonal line gives the expected result for different-sized random samples. But

we do not choose random samples, we choose those instances that, according to

the data mining tool, are most likely to generate a positive response. These corre-

spond to the upper line, which is derived by summing the actual responses over

the corresponding percentage of the instance list sorted in probability order. The

two particular scenarios described previously are marked: a 10% mail-out that

yields 400 respondents and a 40% one that yields 800.

0

200

400

600

800

1000

0 20% 40% 60% 80% 100%

Sample size

N
um

be
r

of
re

sp
on

de
nt

s

FIGURE 5.1

A hypothetical lift chart.

1855.8 Counting the Cost

Where you’d like to be in a lift chart is near the upper left-hand corner: at the

very best, 1000 responses from a mail-out of just 1000, where you send only to

those households that will respond and are rewarded with a 100% success rate.

Any selection procedure worthy of the name will keep you above the diagonal—

otherwise, you’d be seeing a response that was worse than for random sampling.

So the operating part of the diagram is the upper triangle, and the farther to the

northwest the better.

Fig. 5.2A shows a visualization that allows various cost scenarios to be

explored in an interactive fashion (called the “cost/benefit analyzer,” it forms part

of the Weka workbench described in Appendix B). Here it is displaying results

for predictions generated by the Naı̈ve Bayes classifier on a real-world direct-

mail dataset. In this example, 47,706 instances were used for training and a fur-

ther 47,706 for testing. The test instances were ranked according to the predicted

probability of a response to the mail-out. The graphs show a lift chart on the left

and the total cost (or benefit), plotted against sample size, on the right. At the

lower left is a confusion matrix; at the lower right a cost matrix. Cost or benefit

values associated with incorrect or correct classifications can be entered into the

matrix and affect the shape of the curve above. The horizontal slider in the middle

allows users to vary the percentage of the population that is selected from the

ranked list. Alternatively, one can determine the sample size by adjusting the

recall level (the proportion of positives to be included in the sample) or by adjust-

ing a threshold on the probability of the positive class, which here corresponds to

a response to the mail-out. When the slider is moved, a large cross shows the cor-

responding point on both graphs. The total cost or benefit associated with the

selected sample size is shown at the lower right, along with the expected response

to a random mail-out of the same size.

In the cost matrix in Fig. 5.2A, a cost of $0.50—the cost of mailing—has

been associated with nonrespondents and a benefit of $15.00 with respondents

(after deducting the mailing cost). Under these conditions, and using the Naı̈ve

Bayes classifier, there it is no subset from the ranked list of prospects that yields

a greater profit than mailing to the entire population. However, a slightly higher

mailing cost changes the situation dramatically, and Fig. 5.2B shows what hap-

pens when it is increased to $0.80. Assuming the same profit of $15.00 per

respondent, a maximum profit of $4,560.60 is achieved by mailing to the top

46.7% of the population. In this situation, a random sample of the same size

achieves a loss of $99.59.

ROC CURVES

Lift charts are a valuable tool, widely used in marketing. They are closely related

to a graphical technique for evaluating data mining schemes known as ROC

curves, which are used in just the same situation, where the learner is trying to

select samples of test instances that have a high proportion of positives. The acro-

nym stands for receiver operating characteristic (ROC), a term used in signal

186 CHAPTER 5 Credibility: evaluating what’s been learned

(A)

(B)

FIGURE 5.2

Analyzing the expected benefit of a mailing campaign when the cost of mailing is

(A) $0.50 and (B) $0.80.

1875.8 Counting the Cost

detection to characterize the tradeoff between hit rate and false alarm rate over a

noisy channel. ROC curves depict the performance of a classifier without regard

to class distribution or error costs. They plot the “true positive” rate on the verti-

cal axis against the “false positive” rate on the horizontal axis. The former is the

number of positives included in the sample, expressed as a percentage of the total

number of positives (TP Rate5 1003TP/(TP1 FN)); the latter is the number of

negatives included in the sample, expressed as a percentage of the total number

of negatives (FP Rate5 1003 FP/(FP1TN)). The vertical axis is the same as the

lift chart’s except that it is expressed as a percentage. The horizontal axis is

slightly different—number of negatives rather than sample size. However, in

direct marketing situations where the proportion of positives is very small anyway

(like 0.1%), there is negligible difference between the size of a sample and the

number of negatives it contains, so the ROC curve and lift chart look very similar.

As with lift charts, the northwest corner is the place to be.

Fig. 5.3 shows an example ROC curve—the jagged line—for the sample of

test data in Table 5.6. You can follow it along with the table. From the origin: go

up two (two positives), along one (one negative), up five (five positives), along

(negative), up one, along one, up two, and so on. Each point corresponds to draw-

ing a line at a certain position on the ranked list, counting the yes’s and no’s

above it, and plotting them vertically and horizontally, respectively. As you go

farther down the list, corresponding to a larger sample, the number of positives

and negatives both increase.

The jagged ROC line in Fig. 5.3 depends intimately on the details of the par-

ticular sample of test data. This sample dependence can be reduced by applying

cross-validation. For each different number of no’s—i.e., each position along the

horizontal axis—take just enough of the highest-ranked instances to include that

number of no’s, and count the number of yes’s they contain. Finally, average that

0

20%

40%

60%

80%

100%

0 20% 40% 60% 80% 100%

False positives

T
ru

e
po

si
tiv

es

FIGURE 5.3

A sample ROC curve.

188 CHAPTER 5 Credibility: evaluating what’s been learned

number over different folds of the cross-validation. The result is a smooth curve

like that in Fig. 5.3—although in reality such curves do not generally look quite

so smooth.

This is just one way of using cross-validation to generate ROC curves. A sim-

pler approach is to collect the predicted probabilities for all the various test sets

(of which there are 10 in a 10-fold cross-validation), along with the true class

labels of the corresponding instances, and generate a single ranked list based on

this data. This assumes that the probability estimates from the classifiers built

from the different training sets are all based on equally sized random samples of

the data. It is not clear which method is preferable. However, the latter method is

easier to implement.

If the learning scheme does not allow the instances to be ordered, you can first

make it cost-sensitive as described earlier. For each fold of a 10-fold cross-validation,

weigh the instances for a selection of different cost ratios, train the scheme on each

weighted set, count the TPs and FPs in the test set, and plot the resulting point on the

ROC axes. (It doesn’t matter whether the test set is weighted or not because the axes

in the ROC diagram are expressed as the percentage of true and FPs.)

It is instructive to look at ROC curves obtained using different learning

schemes. For example, in Fig. 5.4, method A excels if a small, focused sample

is sought; i.e., if you are working toward the left-hand side of the graph.

Clearly, if you aim to cover just 40% of the TPs you should choose method A,

which gives a FP rate of around 5%, rather than method B, which gives more

than 20% FPs. But method B excels if you are planning a large sample: if you

are covering 80% of the TPs, B will give a FP rate of 60% as compared with

method A’s 80%. The shaded area is called the convex hull of the two curves,

and you should always operate at a point that lies on the upper boundary of the

convex hull.

0

20%

40%

60%

80%

100%

0 20% 40% 60% 80% 100%

False positives

T
ru

e
po

si
tiv

es

A

B

FIGURE 5.4

ROC curves for two learning schemes.

1895.8 Counting the Cost

What about the region in the middle where neither method A nor method B

lies on the convex hull? It is a remarkable fact that you can get anywhere in the

shaded region by combining methods A and B and using them at random with

appropriate probabilities. To see this, choose a particular probability cutoff for

method A that gives true and FP rates of tA and fA, respectively, and another cut-

off for method B that gives tB and fB. If you use these two schemes at random

with probability p and q, where p1 q5 1, then you will get true and FP rates of

p � tA1 q � tB and p � fA1 q � fB. This represents a point lying on the straight line

joining the points (tA, fA) and (tB, fB), and by varying p and q you can trace out

the whole line between these two points. By this device, the entire shaded region

can be reached. Only if a particular scheme generates a point that lies on the con-

vex hull should it be used alone: otherwise, it would always be better to use a

combination of classifiers corresponding to a point that lies on the convex hull.

RECALL-PRECISION CURVES

People have grappled with the fundamental tradeoff illustrated by lift charts and

ROC curves in a wide variety of domains. Information retrieval is a good exam-

ple. Given a query, a Web search engine produces a list of hits that represent

documents supposedly relevant to the query. Compare one system that locates

100 documents, 40 of which are relevant, with another that locates 400 docu-

ments, 80 of which are relevant. Which is better? The answer should now be

obvious: it depends on the relative cost of FPs, documents returned that aren’t rel-

evant, and FNs, documents that are relevant but aren’t returned. Information

retrieval researchers define parameters called recall and precision:

Recall5
Number of documents retrieved that are relevant

Total number of documents that are relevant

Precision5
Number of documents retrieved that are relevant

Total number of documents that are retrieved
:

For example, if the list of yes’s and no’s in Table 5.6 represented a ranked list

of retrieved documents and whether they were relevant or not, and the entire col-

lection contained a total of 40 relevant documents, then “recall at 10” would refer

to recall for the top ten documents, i.e., 8/405 20%; while “precision at 10”

would be 8/105 80%. Information retrieval experts use recall�precision curves

that plot one against the other, for different numbers of retrieved documents, in

just the same way as ROC curves and lift charts—except that because the axes

are different, the curves are hyperbolic in shape and the desired operating point is

toward the upper right.

REMARKS

Table 5.7 summarizes the three different ways we have met of evaluating the

same basic tradeoff: TP, FP, TN, and FN are the number of TPs, FPs, TNs, and

190 CHAPTER 5 Credibility: evaluating what’s been learned

FNs, respectively. You want to choose a set of instances with a high proportion

of yes instances and a high coverage of the yes instances: you can increase the

proportion by (conservatively) using a smaller coverage, or (liberally) increase

the coverage at the expense of the proportion. Different techniques give different

tradeoffs, and can be plotted as different lines on any of these graphical charts.

People also seek single measures that characterize performance. Two that are

used in information retrieval are 3-point average recall, which gives the average

precision obtained at recall values of 20%, 50%, and 80%, and 11-point average

recall, which gives the average precision obtained at recall values of 0%, 10%,

20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. Also used in informa-

tion retrieval is the F-measure, which is

23 recall3 precision

recall1 precision
5

2UTP
2UTP1 FP1FN

:

Different terms are used in different domains. Medics, e.g., talk about the

sensitivity and specificity of diagnostic tests. Sensitivity refers to the proportion of

people with disease who have a positive test result, i.e., tp. Specificity refers to

the proportion of people without disease who have a negative test result, which is

1�fp. Sometimes the product of these is used as an overall measure:

sensitivity3 specificity5 tpð1� fpÞ5 TPUTN
ðTP1 FNÞUðFP1TNÞ

Finally, of course, there is our old friend the success rate:

TP1TN

TP1FP1TN1FN
:

To summarize ROC curves in a single quantity, people use the area under the

curve because, roughly speaking, the larger the area the better the model. The

area also has a nice interpretation as the probability that the classifier ranks a ran-

domly chosen positive instance above a randomly chosen negative one. Although

such measures may be useful if costs and class distributions are unknown and one

Table 5.7 Different Measures Used to Evaluate the False Positive Versus
False Negative Tradeoff

Domain Plot Axes

Lift chart Marketing TP vs
subset size

TP number of true positives subset size
TP1 FP

TP1 FP1 TN1 FN
3 100%

ROC curve Communications TP rate vs
FP rate TP rate tp5

TP
TP1 FN

3 100%

FP rate fp5
FP

FP1 TN
3 100%

Recall-
precision
curve

Information
retrieval

Recall vs
precision

Recall same as TP rate tp above

precision
TP

TP1 FP
3 100%

1915.8 Counting the Cost

scheme must be chosen to handle all situations, no single number is able to cap-

ture the tradeoff. That can only be done by two-dimensional depictions such as

lift charts, ROC curves, and recall-precision diagrams.

Several methods are commonly employed for computing the area under the

ROC curve. One, corresponding to a geometric interpretation, is to approximate it

by fitting several trapezoids under the curve and summing up their area. Another is

to compute the probability that the classifier ranks a randomly chosen positive

instance above a randomly chosen negative one. This can be accomplished by cal-

culating the Mann�Whitney U statistic, or, more specifically, the ρ statistic from

the U statistic. This value is easily obtained from a list of test instances sorted in

descending order of predicted probability of the positive class. For each positive

instance, count how many negative ones are ranked below it (increase the count by
1/2 if positive and negative instances tie in rank). The U statistic is simply the total

of these counts. The ρ statistic is obtained by dividing U by the product of the num-

ber of positive and negative instances in the test set—in other words, the U value

that would result if all positive instances were ranked above the negative ones.

The area under the precision-recall curve is an alternative summary statistic that

is preferred by some practitioners, particularly in the information retrieval area.

COST CURVES

ROC curves and their relatives are very useful for exploring the tradeoffs among

different classifiers over a range of scenarios. However, they are not ideal for

evaluating machine learning models in situations with known error costs. For

example, it is not easy to read off the expected cost of a classifier for a fixed cost

matrix and class distribution. Neither can you easily determine the ranges of

applicability of different classifiers. For example, from the crossover point

between the two ROC curves in Fig. 5.4 it is hard to tell for what cost and class

distributions classifier A outperforms classifier B.

Cost curves are a different kind of display on which a single classifier corre-

sponds to a straight line that shows how the performance varies as the class distri-

bution changes. Again, they work best in the two-class case, although you can

always make a multiclass problem into a two-class one by singling out one class

and evaluating it against the remaining ones.

Fig. 5.5A plots the expected error against the probability of one of the classes.

You could imagine adjusting this probability by resampling the test set in a non-

uniform way. We denote the two classes by 1 and 2. The diagonals show the

performance of two extreme classifiers: one always predicts 1, giving an

expected error of one if the dataset contains no 1 instances and zero if all its

instances are 1; the other always predicts 2, giving the opposite performance.

The dashed horizontal line shows the performance of the classifier that is always

wrong, and the x-axis itself represents the classifier that is always correct. In prac-

tice, of course, neither of these is realizable. Good classifiers have low error rates,

so where you want to be is as close to the bottom of the diagram as possible.

192 CHAPTER 5 Credibility: evaluating what’s been learned

The line marked A represents the error rate of a particular classifier. If you

calculate its performance on a certain test set, its FP rate fp is its expected error

on a subsample of the test set that contains only negative examples (P(1)5 0),

and its FN rate fn is the error on a subsample that contains only positive examples

(P(1)5 1). These are the values of the intercepts at the left and right, respec-

tively. You can see immediately from the plot that if P(1) is smaller than about

0.2, predictor A is outperformed by the extreme classifier that always predicts 2,

while if it is larger than about 0.65, the other extreme classifier is better.

So far we have not taken costs into account, or rather we have used the default

cost matrix in which all errors cost the same. Cost curves, which do take cost into

account, look very similar—very similar indeed—but the axes are different.

Fig. 5.5B shows a cost curve for the same classifier A (note that the vertical scale

has been enlarged, for convenience, and ignore the gray lines for now). It plots

the expected cost of using A against the probability cost function, which is a dis-

torted version of P(1) that retains the same extremes: zero when P(1)5 0 and

one when P(1)5 1. Denote by C[1|2] the cost of predicting1 when the instance

is actually 2, and the reverse by C[2|1]. Then the axes of Fig. 5.5B are

Normalized expected cost5 fn3PCð1Þ1 fp3 ð12PCð1ÞÞ

Probability cost function PCð1Þ5
Pð1ÞC½2 j1 �

Pð1ÞC½2 j1 �1Pð2ÞC½1 j2 � :

We are assuming here that correct predictions have no cost: C[1 |1]5C

[2 |2]5 0. If that is not the case the formulas are a little more complex.

The maximum value that the normalized expected cost can have is 1—i.e.,

why it is “normalized.” One nice thing about cost curves is that the extreme cost

values at the left and right sides of the graph are fp and fn, just as they are for the

error curve, so you can draw the cost curve for any classifier very easily.

Fig. 5.5B also shows classifier B, whose expected cost remains the same

across the range—i.e., its FP and FN rates are equal. As you can see, it

Always wrong

Always pick +

Expected
error

Normalized
expected

cost

Always right

Probability p [+] Probability cost function pc [+]

0.5

0.5

1

(A) (B)

0.25

0.5

1
0

0 0.5 1
0

0

Always pick –

A

A

B

fn

fn

fp
fp

FIGURE 5.5

Effect of varying the probability threshold: (A) error curve; (B) cost curve.

1935.8 Counting the Cost

outperforms classifier A if the probability cost function exceeds about 0.45, and

knowing the costs we could easily work out what this corresponds to in terms of

class distribution. In situations that involve different class distributions, cost

curves make it easy to tell when one classifier will outperform another.

In what circumstances might this be useful? To return to our example of pre-

dicting when cows will be in estrus, their 30-day cycle, or 1/30 prior probability,

is unlikely to vary greatly (barring a genetic cataclysm!). But a particular herd

may have different proportions of cows that are likely to reach estrus in any given

week, perhaps synchronized with—Who knows?—the phase of the moon. Then,

different classifiers would be appropriate at different times. In the oil spill exam-

ple, different batches of data may have different spill probabilities. In these situa-

tions cost curves can help to show which classifier to use when.

Each point on a lift chart, ROC curve, or recall-precision curve represents a

classifier, typically obtained by using different threshold values for a method such

as Naı̈ve Bayes. Cost curves represent each classifier by a straight line, and a

suite of classifiers will sweep out a curved envelope whose lower limit shows

how well that type of classifier can do if the parameter is well chosen. Fig. 5.5B

indicates this with a few gray lines. If the process were continued, it would sweep

out the dotted parabolic curve.

The operating region of classifier B ranges from a probability cost value of

about 0.25 to a value of about 0.75. Outside this region, classifier B is outper-

formed by the trivial classifiers represented by dashed lines. Suppose we decide

to use classifier B within this range and the appropriate trivial classifier below

and above it. All points on the parabola are certainly better than this scheme. But

how much better? It is hard to answer such questions from an ROC curve, but the

cost curve makes them easy. The performance difference is negligible if the prob-

ability cost value is around 0.5, and below a value of about 0.2 and above 0.8 it

is barely perceptible. The greatest difference occurs at probability cost values of

0.25 and 0.75 and is about 0.04, or 4% of the maximum possible cost figure.

5.9 EVALUATING NUMERIC PREDICTION
All the evaluation measures we have described pertain to classification rather

than numeric prediction. The basic principles—using an independent test set

rather than the training set for performance evaluation, the holdout method,

cross-validation—apply equally well to numeric prediction. But the basic quality

measure offered by the error rate is no longer appropriate: errors are not simply

present or absent, they come in different sizes.

Several alternative measures, some of which are summarized in Table 5.8, can

be used to evaluate the success of numeric prediction. The predicted values on

the test instances are p1, p2, . . ., pn; the actual values are a1, a2, . . ., an. Notice
that pi means something very different here to what it did in the last section: there

194 CHAPTER 5 Credibility: evaluating what’s been learned

it was the probability that a particular prediction was in the ith class; here it refers

to the numerical value of the prediction for the ith test instance.

Mean-squared error is the principal and most commonly used measure; some-

times the square root is taken to give it the same dimensions as the predicted value

itself. Many mathematical techniques (such as linear regression, explained in chapter:

Algorithms: the basic methods) use the mean-squared error because it tends to be the

easiest measure to manipulate mathematically: it is, as mathematicians say, “well

behaved.” However, here we are considering it as a performance measure: all the

performance measures are easy to calculate, so mean-squared error has no particular

advantage. The question is, is it an appropriate measure for the task at hand?

Mean absolute error is an alternative: just average the magnitude of the indi-

vidual errors without taking account of their sign. Mean-squared error tends to

exaggerate the effect of outliers—instances whose prediction error is larger than

the others—but absolute error does not have this effect: all sizes of error are trea-

ted evenly according to their magnitude.

Sometimes it is the relative rather than absolute error values that are of impor-

tance. For example, if a 10% error is equally important whether it is an error of

50 in a prediction of 500 or an error of 0.2 in a prediction of 2, then averages of

absolute error will be meaningless: relative errors are appropriate. This effect

would be taken into account by using the relative errors in the mean-squared error

calculation or the mean absolute error calculation.

Relative squared error in Table 5.8 refers to something quite different. The

error is made relative to what it would have been if a simple predictor had been

Table 5.8 Performance Measures for Numeric Prediction

Mean-squared error ðp12a1Þ2 1?1 ðpn2anÞ2
n

Root mean-squared
error

ffi
ðp12a1Þ2 1?1 ðpn2anÞ2

n

r
Mean absolute error p1 2 a1j j1?1 pn 2 anj j

n
Relative squared error ðp12a1Þ2 1?1 ðpn2anÞ2

ða12aÞ2 1?1 ðan2aÞ2

(in this formula and the following two, a is the mean value
over the training data)

Root relative squared
error

ffi
ðp12a1Þ2 1?1 ðpn2anÞ2
ða12aÞ2 1?1 ðan2aÞ2

s
Relative absolute error p1 2 a1j j1?1 pn 2 anj j

a1 2 aj j1?1 an 2 aj j
Correlation coefficient SPAffiffiffiffiffiffiffiffiffiffiffi

SPSA
p , where SPA 5

P
iðpi 2pÞðai 2 aÞ

n2 1
, SP 5

P
iðpi2pÞ2
n2 1

,

SA 5

P
iðai2aÞ2
n2 1

(here, a is the mean value over the test data)

1955.9 Evaluating Numeric Prediction

used. The simple predictor in question is just the average of the actual values

from the training data, denoted by a. Thus relative squared error takes the total

squared error and normalizes it by dividing by the total squared error of the

default predictor. The root relative squared error is obtained in the obvious way.

The next error measure goes by the glorious name of relative absolute error

and is just the total absolute error, with the same kind of normalization. In these

three relative error measures, the errors are normalized by the error of the simple

predictor that predicts average values.

The final measure in Table 5.8 is the correlation coefficient, which measures

the statistical correlation between the a’s and the p’s. The correlation coefficient

ranges from 1 for perfectly correlated results, through 0 when there is no correla-

tion, to 21 when the results are perfectly correlated negatively. Of course, nega-

tive values should not occur for reasonable prediction methods. Correlation is

slightly different from the other measures because it is scale independent in that,

if you take a particular set of predictions, the error is unchanged if all the predic-

tions are multiplied by a constant factor and the actual values are left unchanged.

This factor appears in every term of SPA in the numerator and in every term of SP
in the denominator, thus canceling out. (This is not true for the relative error fig-

ures, despite normalization: if you multiply all the predictions by a large constant,

then the difference between the predicted and actual values will change dramati-

cally, as will the percentage errors.) It is also different in that good performance

leads to a large value of the correlation coefficient, whereas because the other

methods measure error, good performance is indicated by small values.

Which of these measures is appropriate in any given situation is a matter that

can only be determined by studying the application itself. What are we trying to

minimize? What is the cost of different kinds of error? Often it is not easy to

decide. The squared error measures and root squared error measures weigh large

discrepancies much more heavily than small ones, whereas the absolute error

measures do not. Taking the square root (root mean-squared error) just reduces

the figure to have the same dimensionality as the quantity being predicted. The

relative error figures try to compensate for the basic predictability or unpredict-

ability of the output variable: if it tends to lie fairly close to its average value,

then you expect prediction to be good and the relative figure compensates for

this. Otherwise, if the error figure in one situation is far greater than in another

situation, it may be because the quantity in the first situation is inherently more

variable and therefore harder to predict, not because the predictor is any worse.

Fortunately, it turns out that in most practical situations the best numerical

prediction method is still the best no matter which error measure is used. For

example, Table 5.9 shows the result of four different numeric prediction techni-

ques on a given dataset, measured using cross-validation. Method D is the best

according to all five metrics: it has the smallest value for each error measure and

the largest correlation coefficient. Method C is the second best by all five metrics.

The performance of A and B is open to dispute: they have the same correlation

coefficient, A is better than B according to mean-squared and relative squared

196 CHAPTER 5 Credibility: evaluating what’s been learned

errors, and the reverse is true for absolute and relative absolute error. It is likely

that the extra emphasis that the squaring operation gives to outliers accounts for

the differences in this case.

When comparing two different learning schemes that involve numeric predic-

tion, the methodology developed in Section 5.5 still applies. The only difference

is that success rate is replaced by the appropriate performance measure (e.g., root

mean-squared error) when performing the significance test.

5.10 THE MDL PRINCIPLE
What is learned by a machine learning scheme is a kind of “theory” of the

domain from which the examples are drawn, a theory that is predictive in that it

is capable of generating new facts about the domain—in other words, the class of

unseen instances. Theory is rather a grandiose term: we are using it here only in

the sense of a predictive model. Thus theories might comprise decision trees, or

sets of rules—they don’t have to be any more “theoretical” than that.

There is a long-standing tradition in science that, other things being equal,

simple theories are preferable to complex ones. This is known as Occam’s Razor

after the medieval philosopher William of Occam (or Ockham). Occam’s Razor

shaves philosophical hairs off a theory. The idea is that the best scientific theory

is the smallest one that explains all the facts. As Einstein is reputed to have said,

“Everything should be made as simple as possible, but no simpler.” Of course,

quite a lot is hidden in the phrase “other things being equal,” and it can be hard

to assess objectively whether a particular theory really does “explain” all the facts

on which it is based—that’s what controversy in science is all about.

In our case, in machine learning, most theories make errors. And if what is

learned is a theory, then the errors it makes are like exceptions to the theory. One

way to ensure that other things are equal is to insist that the information embodied

in the exceptions is included as part of the theory when its “simplicity” is judged.

Imagine an imperfect theory for which there are a few exceptions. Not all the

data is explained by the theory, but most is. What we do is simply adjoin the

exceptions to the theory, specifying them explicitly as exceptions. This new

theory is larger: i.e., a price that, quite justifiably, has to be paid for its inability

Table 5.9 Performance Measures for Four Numeric Prediction Models

A B C D

Root mean-squared error 67.8 91.7 63.3 57.4
Mean absolute error 41.3 38.5 33.4 29.2
Root relative squared error 42.2% 57.2% 39.4% 35.8%
Relative absolute error 43.1% 40.1% 34.8% 30.4%
Correlation coefficient 0.88 0.88 0.89 0.91

1975.10 The MDL Principle

to explain all the data. However, it may be that the simplicity—Is it too much to

call it elegance?—of the original theory is sufficient to outweigh the fact that it

does not quite explain everything compared with a large, baroque theory that is

more comprehensive and accurate.

For example, if Kepler’s three laws of planetary motion did not at the time

account for the known data quite so well as Copernicus’s latest refinement of the

Ptolemaic theory of epicycles, they had the advantage of being far less complex,

and that would have justified any slight apparent inaccuracy. Kepler was well

aware of the benefits of having a theory that was compact, despite the fact that

his theory violated his own esthetic sense because it depended on “ovals” rather

than pure circular motion. He expressed this in a forceful metaphor: “I have

cleared the Augean stables of astronomy of cycles and spirals, and left behind me

only a single cartload of dung.”

The MDL principle takes the stance that the best theory for a body of data is

one that minimizes the size of the theory plus the amount of information neces-

sary to specify the exceptions relative to the theory—the smallest cartload of

dung. In statistical estimation theory, this has been applied successfully to various

parameter-fitting problems. It applies to machine learning as follows: given a set

of instances, a learning scheme infers a theory—be it ever so simple; unworthy,

perhaps, to be called a “theory”—from them. Using a metaphor of communica-

tion, imagine that the instances are to be transmitted through a noiseless channel.

Any similarity that is detected among them can be exploited to give a more com-

pact coding. According to the MDL principle, the best theory is the one that mini-

mizes the number of bits required to communicate the theory, along with the

labels of the examples from which it was made.

Now the connection with the informational loss function introduced in

Section 5.7 should be starting to emerge. That function measures the error in

terms of the number of bits required to transmit the instances’ class labels, given

the probabilistic predictions made by the theory. According to the MDL principle

we need to add to this the “size” of the theory in bits, suitably encoded, to obtain

an overall figure for complexity. However, the MDL principle refers to the infor-

mation required to transmit the examples from which the theory was formed, i.e.,

the training instances—not a test set. The overfitting problem is avoided because

a complex theory that overfits will be penalized relative to a simple one by virtue

of the fact that it takes more bits to encode. At one extreme is a very complex,

highly overfitted theory that makes no errors on the training set. At the other is a

very simple theory—the null theory—which does not help at all when transmit-

ting the training set. And in between are theories of intermediate complexity,

which make probabilistic predictions that are imperfect and need to be corrected

by transmitting some information about the training set. The MDL principle pro-

vides a means of comparing all these possibilities on an equal footing to see

which is the best. We have found the Holy Grail: an evaluation scheme that

works on the training set alone and does not need a separate test set. But the devil

is in the details, as we will see.

198 CHAPTER 5 Credibility: evaluating what’s been learned

Suppose a learning scheme comes up with a theory T, based on a training set

E of examples, that requires a certain number of bits L(T) to encode (L for

length). We are only interested in predicting class labels correctly, so we assume

that E stands for the collection of class labels in the training set. Given the theory,

the training set itself can be encoded in a certain number of bits, L(E|T). L(E|T) is

in fact given by the informational loss function summed over all members of the

training set. Then the total description length of theory plus training set is

LðTÞ1LðEjTÞ
and the MDL principle recommends choosing the theory T that minimizes this

sum.

There is a remarkable connection between the MDL principle and basic proba-

bility theory. Given a training set E, we seek the “most likely” theory T, i.e., the

theory for which the a posteriori probability P(T|E)—the probability after the

examples have been seen—is maximized. Bayes’ rule of conditional probability,

the very same rule that we encountered in Section 4.2, dictates that

PðTjEÞ5 PðEjTÞPðTÞ
PðEÞ :

Taking negative logarithms,

2log PðT jEÞ52log PðEjTÞ2 log PðTÞ1 log PðEÞ:
Maximizing the probability is the same as minimizing its negative logarithm.

Now (as we saw in Section 5.7) the number of bits required to code something is

just the negative logarithm of its probability. Furthermore, the final term, log P(E),

depends solely on the training set and not on the learning method. Thus choosing

the theory that maximizes the probability P(T|E) is tantamount to choosing the the-

ory that minimizes.

LðEjTÞ1LðTÞ

—in other words, the MDL principle!

This astonishing correspondence with the notion of maximizing the a poster-

iori probability of a theory after the training set has been taken into account gives

credence to the MDL principle. But it also points out where the problems will

sprout when the principle is applied in practice. The difficulty with applying

Bayes’ rule directly is in finding a suitable prior probability distribution P(T) for

the theory. In the MDL formulation, that translates into finding how to code the

theory T into bits in the most efficient way. There are many ways of coding

things, and they all depend on presuppositions that must be shared by encoder

and decoder. If you know in advance that the theory is going to take a certain

form, you can use that information to encode it more efficiently. How are you

going to actually encode T? The devil is in the details.

Encoding E with respect to T to obtain L(E|T) seems a little more straightfor-

ward: we have already met the informational loss function. But actually, when

1995.10 The MDL Principle

you encode one member of the training set after another, you are encoding a

sequence rather than a set. It is not necessary to transmit the training set in any

particular order, and it ought to be possible to use that fact to reduce the number

of bits required. Often, this is simply approximated by subtracting log n! (where n

is the number of elements in E), which is the number of bits needed to specify a

particular permutation of the training set (and because this is the same for all the-

ories, it doesn’t actually affect the comparison between them). But one can imag-

ine using the frequency of the individual errors to reduce the number of bits

needed to code them. Of course, the more sophisticated the method that is used to

code the errors, the less the need for a theory in the first place—so whether a the-

ory is justified or not depends to some extent on how the errors are coded. The

details, the details.

We end this section as we began, on a philosophical note. It is important to

appreciate that Occam’s Razor, the preference of simple theories over complex

ones, has the status of a philosophical position or “axiom” rather than something

that can be proven from first principles. While it may seem self-evident to us, this

is a function of our education and the times we live in. A preference for simplic-

ity is—or may be—culture specific rather than absolute.

The Greek philosopher Epicurus (who enjoyed good food and wine and sup-

posedly advocated sensual pleasure—in moderation—as the highest good)

expressed almost the opposite sentiment. His principle of multiple explanations

advises “if more than one theory is consistent with the data, keep them all” on the

basis that if several explanations are equally in agreement, it may be possible to

achieve a higher degree of precision by using them together—and anyway, it

would be unscientific to discard some arbitrarily. This brings to mind instance-

based learning, in which all the evidence is retained to provide robust predictions,

and resonates strongly with decision combination methods such as bagging and

boosting (described in Chapter 12: Ensemble learning) that actually do gain pre-

dictive power by using multiple explanations together.

5.11 APPLYING THE MDL PRINCIPLE TO CLUSTERING
One of the nice things about the MDL principle is that unlike other evaluation cri-

teria, it can be applied under widely different circumstances. Although in some

sense equivalent to Bayes’ rule in that, as we have seen, devising a coding

scheme for theories is tantamount to assigning them a prior probability distribu-

tion, schemes for coding are somehow far more tangible and easier to think about

in concrete terms than intuitive prior probabilities. To illustrate this we will

briefly describe—without entering into coding details—how you might go about

applying the MDL principle to clustering.

Clustering seems intrinsically difficult to evaluate. Whereas classification or

association learning has an objective criterion of success—predictions made on

200 CHAPTER 5 Credibility: evaluating what’s been learned

test cases are either right or wrong—this is not so with clustering. It seems that

the only realistic evaluation is whether the result of learning—the clustering—

proves useful in the application context. (It is worth pointing out that really this is

the case for all types of learning, not just clustering.)

Despite this, clustering can be evaluated from a description length perspective.

Suppose a cluster-learning technique divides the training set E into k clusters. If

these clusters are natural ones, it should be possible to use them to encode E

more efficiently. The best clustering will support the most efficient encoding.

One way of encoding the instances in E with respect to a given clustering is to

start by encoding the cluster centers—the average value of each attribute over all

instances in the cluster. Then, for each instance in E, transmit which cluster it

belongs to (in log2k bits) followed by its attribute values with respect to the clus-

ter center—perhaps as the numeric difference of each attribute value from the

center. Couched as it is in terms of averages and differences, this description pre-

supposes numeric attributes and raises thorny questions of how to code numbers

efficiently. Nominal attributes can be handled in a similar manner: for each clus-

ter there is a probability distribution for the attribute values, and the distributions

are different for different clusters. The coding issue becomes more straightfor-

ward: attribute values are coded with respect to the relevant probability distribu-

tion, a standard operation in data compression.

If the data exhibits extremely strong clustering, this technique will result in a

smaller description length than simply transmitting the elements of E without any

clusters. However, if the clustering effect is not so strong, it will likely increase

rather than decrease the description length. The overhead of transmitting cluster-

specific distributions for attribute values will more than offset the advantage

gained by encoding each training instance relative to the cluster it lies in. This is

where more sophisticated coding techniques come in. Once the cluster centers

have been communicated, it is possible to transmit cluster-specific probability dis-

tributions adaptively, in tandem with the relevant instances: the instances them-

selves help to define the probability distributions, and the probability distributions

help to define the instances. We will not venture further into coding techniques

here. The point is that the MDL formulation, properly applied, may be flexible

enough to support the evaluation of clustering. But actually doing it satisfactorily

in practice is not easy.

5.12 USING A VALIDATION SET FOR MODEL SELECTION
The MDL principle is an example of a so-called model selection criterion, which

can be used to determine the appropriate complexity of a model for a given

dataset. Adding unnecessary structure to a model can result in overfitting and a

consequent drop in predictive performance. Conversely, insufficient model com-

plexity implies that the information in the training data cannot be completely

2015.12 Using a Validation Set for Model Selection

exploited: the model will underfit. Model selection criteria such as the MDL prin-

ciple can be used as tools for guessing the right complexity.

A classic model selection problem in statistics is to determine, for a given

dataset, what subset of attributes to use in a linear regression model for the data.

(Even a simple technique such as linear regression can overfit!) However, the

problem is ubiquitous in machine learning because learning algorithms inevitably

need to choose how much structure to add to a model. Examples include pruning

subtrees in a decision tree, determining the number of instances to retain in a

nearest-neighbor classifier, and picking the number and size of the layers in an

artificial neural network.

Many model selection strategies similar to the MDL principle exist, based on

various theoretical approaches and corresponding underlying assumptions. They

all follow the same strategy: the predictive performance on the training data is

balanced with the complexity of the model. The aim is to find a sweet spot.

Whether they succeed depends on whether the underlying assumptions are appro-

priate for the problem at hand. This is difficult to know in practice. The good

news is that there is a simple alternative approach to guessing what model com-

plexity will maximize predictive performance on new data: we can simply use a

validation set for model selection, just as we did in Section 5.5 for tuning hyper-

parameters. Alternatively, if the dataset is small, we can use cross-validation, or

maybe the bootstrap.

5.13 FURTHER READING AND BIBLIOGRAPHIC NOTES
The statistical basis of confidence tests is well covered in most statistics texts,

which also gives tables of the normal distribution and Student’s distribution. (We

use an excellent course text by Wild and Seber (1995), which we recommend

very strongly if you can get hold of it). “Student” is the nom de plume of a statis-

tician called William Gosset, who obtained a post as a chemist in the Guinness

brewery in Dublin, Ireland, in 1899 and invented the t-test to handle small sam-

ples for quality control in brewing. The corrected resampled t-test was proposed

by Nadeau and Bengio (2003). Cross-validation is a standard statistical technique,

and its application in machine learning has been extensively investigated and

compared with the bootstrap by Kohavi (1995a). The bootstrap technique itself is

thoroughly covered by Efron and Tibshirani (1993).

The Kappa statistic was introduced by Cohen (1960). Ting (2002) has investi-

gated a heuristic way of generalizing to the multiclass case the algorithm given in

Section 5.8 to make two-class learning schemes cost sensitive. Lift charts are

described by Berry and Linoff (1997). The use of ROC analysis in signal detec-

tion theory is covered by Egan (1975); this work has been extended for visualiz-

ing and analyzing the behavior of diagnostic systems (Swets, 1988) and is also

used in medicine (Beck & Schultz, 1986). Provost and Fawcett (1997) brought

202 CHAPTER 5 Credibility: evaluating what’s been learned

the idea of ROC analysis to the attention of the machine learning and data mining

community. Witten, Moffat, and Bell (1999b) explain the use of recall and preci-

sion in information retrieval systems; the F-measure is described by van

Rijsbergen (1979). Drummond and Holte (2000) introduced cost curves and inves-

tigated their properties.

The MDL principle was formulated by Rissanen (1985). Kepler’s discovery of

his economical three laws of planetary motion, and his doubts about them, are

recounted by Koestler (1964).

Epicurus’s principle of multiple explanations is mentioned by Li and Vitanyi

(1992), quoting from Asmis (1984).

2035.13 Further Reading and Bibliographic Notes

II
More advanced
machine learning
schemes
We have seen the basic ideas of several machine learning methods and studied in

detail how to assess their performance on practical data mining problems. Now

we are well prepared to look at more powerful and advanced machine learning

algorithms. Our aim is to explain these both at a conceptual level and with a fair

amount of technical detail, so that you can understand them fully and appreciate

the key implementation issues that arise.

There are substantial differences between the simple methods described in

Chapter 4, Algorithms: the basic methods, and the more sophisticated algorithms

required to achieve state-of-the-art performance on many real-world problems,

but the principles are the same. So are the inputs and, in many cases, the out-

puts—the methods of knowledge representation. But the algorithms are more

complex—e.g., they may have to be extended to deal with numeric attributes,

missing values, and—most challenging of all—noisy data.

Chapter 4, Algorithms: the basic methods, opened with an explanation of how

to infer rudimentary rules, and went on to examine probabilistic modeling and

decision trees. Then we returned to rule induction, and continued with association

rules, linear models, the nearest-neighbor method of instance-based learning,

clustering, and multi-instance learning. In Part II, we develop all these topics

further, and also encounter some new ones.

We begin, in Chapter 6, Trees and rules, with decision tree induction, working

up to a full description of the C4.5 system, a landmark decision tree program that

is one of the most widely used workhorses of machine learning. Next we describe

decision rule induction. Despite the simplicity of the idea, inducing rules that per-

form comparably with state-of-the-art decision trees turns out to be quite difficult

in practice. Most high-performance rule inducers find an initial rule set and then

refine it using a rather complex optimization stage that discards or adjusts individ-

ual rules to make them work better together. We describe the ideas that underlie

rule learning in the presence of noise, and then go on to cover a scheme that oper-

ates by forming partial decision trees, an approach that has been demonstrated to

perform well, while avoiding complex heuristics. Following this, we take a brief

look at how to generate rules with exceptions, which were described in

Section 3.4, and examine fast data structures for learning association rules.

Chapter 7, Extending instance-based and linear models, extends instance-

based learning methods and linear models. There has been a resurgence of interest

in linear models with the introduction of support vector machines, a blend of lin-

ear modeling and instance-based learning. These select a small number of critical

boundary instances called “support vectors” from each class and build a linear

discriminant function that separates them as widely as possible. This instance-

based approach transcends the limitations of linear boundaries by making it

practical to include further terms in the function that allow quadratic, cubic, and

higher order decision boundaries. The same techniques can be applied to the per-

ceptron described in Section 4.6 to implement complex decision boundaries, and

also to least squares regression. An older but also very powerful technique for

extending the perceptron is to connect units together into multilayer “neural net-

works.” We cover all these ideas in Chapter 7, Extending instance-based and lin-

ear models.

Chapter 7, Extending instance-based and linear models, also describes classic

instance-based learners, developing the simple nearest-neighbor method intro-

duced in Section 4.7 and showing some more powerful alternatives that perform

explicit generalization. The final part of the chapter extends linear regression for

numeric prediction to a more sophisticated procedure that comes up with the tree

representation introduced in Section 3.3, and goes on to describe locally weighted

regression, an instance-based strategy for numeric prediction.

Chapter 8, Data transformations, discusses methods for transforming data to

improve machine learning. We look primarily at techniques that process the input

to machine learning to make it more amenable to learning. We cover selection

of informative attributes, discretization of numeric attributes, data projections

for dimensionality reduction and learning from text data, efficient sampling

from large datasets, data cleansing using such techniques as anomaly detection;

and also consider transforming multiclass classification problems to two-class

problems, and calibrating class probability estimates to make them more accurate.

206 PART II More advanced machine learning schemes

Chapter 9, Probabilistic methods, covers probabilistic modeling approaches

that go far beyond the simple Naı̈ve Bayes classifier introduced in Chapter 4,

Algorithms: the basic methods. We begin with a review of some fundamental

concepts, such as maximum likelihood estimation, that form the basis of probabi-

listic approaches. Then we examine Bayesian networks, a powerful way of

extending the Naı̈ve Bayes method to make it less “naı̈ve” by accommodating

datasets that have internal dependencies. Next we consider how clustering can be

viewed from a probabilistic perspective as fitting a mixture of probability distri-

butions to a dataset. This is essentially a form of density estimation, and we also

discuss the alternative approach of kernel density estimation to model the distri-

bution of a dataset.

Except for the brief review of foundations at the beginning, this initial part of

Chapter 9, Probabilistic methods, is fairly light on mathematics. However,

the remainder of the material in the chapter requires a more mathematical

approach. We look at general approaches for fitting models with unknown

variables—hidden attributes that are not explicitly included in a dataset—before

considering truly Bayesian methods for estimation and prediction. The next big

topic is how to represent probability distributions using graphical models such as

factor graphs. We will encounter probabilistic principal component analysis and

Markov random fields, as well as (probabilistic) latent semantic analysis and

latent Dirichlet allocation, two well-known models for working with text data.

We will also see how to efficiently compute probabilities for tree-structured

graphical models using the sum-product and max-product algorithms.

Up to now, most of the techniques described in this book have twin

goals: maximizing predictive accuracy and producing comprehensible models.

Chapter 10, Data transformations, however, breaks away and focuses exclusively

on maximizing modeling accuracy; it makes no attempt to provide insight by

generating interpretable models. Here we enter the domain of “deep learning,” the

idea of learning very complex artificial neural networks that implicitly extract

increasingly more abstract representations of the underlying patterns in a dataset.

We first cover the nuts and bolts of deep feedforward networks, including com-

monly used loss functions and activation functions, before delving into the details

of training and evaluating deep networks, including hyperparameter tuning, data

augmentation, and pretraining. Next, we introduce a particular type of feedfor-

ward network, called a convolutional neural network, that reduces the number of

parameters to be learned by weight sharing. We also describe autoencoders and

Boltzmann machines, which are network models for unsupervised learning; and

recurrent networks, which are designed for sequential data. Chapter 10, Deep

learning, closes with some pointers to software implementations of deep learning

methods.

The main focus of this book is on supervised techniques for machine learning,

although we also consider unsupervised learning in the form of clustering and

association rule mining. However, there are other, less conventional learning set-

tings. In fact, we have already encountered one in Chapter 4, Algorithms: the

207Part II More advanced machine learning schemes

basic methods—multi-instance learning (although it can also be interpreted as a

form of supervised learning with bag-based examples). Chapter 8, Data transfor-

mations, covers more advanced techniques for multi-instance learning than those

in Chapter 4, Algorithms: the basic methods. We also look at semisupervised

learning, which, by combining supervised and unsupervised learning, promises a

tantalizing opportunity to exploit unlabeled data for learning more accurate classi-

fication and numeric prediction models.

To maximize accuracy in practical applications, advantage can often be gained

by combining multiple models. A wealth of practical experience has shown that

ensembles of models are often necessary to squeeze out the last drops of predic-

tive accuracy. Chapter 12, Ensemble learning, introduces various popular methods

of ensemble learning—bagging, boosting, and randomization, including the

renowned random forest variant—before going on to show how boosting can be

interpreted as a form of additive regression, a statistical model building approach.

A major drawback of most ensemble techniques is lack of interpretability, but

alternating decision trees and related tree-based approaches offer the prospect of

high accuracy while also providing insight. Finally we examine stacking, an intui-

tive method for combining a diverse set of models to maximize accuracy.

Chapter 13, Moving on: Applications and beyond, provides an outlook and

overview of applications. We discuss learning from massive datasets and data

streams, consider the use of domain knowledge, and provide an overview of

application areas such as text mining, web mining, computer vision, speech recog-

nition, and natural language processing, before briefly discussing the scenario of

adversarial learning—learning with a malevolent teacher. At the very end, we

imagine a future in which machine learning pervades our everyday activities.

Because of the nature of the material, this second part of the book differs

from Part I in how you can approach it. Chapters can be read independently.

Each is selfcontained, including references to further reading and to the research

literature.

208 PART II More advanced machine learning schemes

6Trees and rules

CHAPTER OUTLINE

6.1 Decision Trees...210

Numeric Attributes ...210

Missing Values ...212

Pruning ...213

Estimating Error Rates ..215

Complexity of Decision Tree Induction..217

From Trees to Rules..219

C4.5: Choices and Options..219

Cost-Complexity Pruning ...220

Discussion ...221

6.2 Classification Rules ...221

Criteria for Choosing Tests...222

Missing Values, Numeric Attributes..223

Generating Good Rules ...224

Using Global Optimization...226

Obtaining Rules From Partial Decision Trees ...227

Rules With Exceptions ..231

Discussion ...233

6.3 Association Rules ..234

Building a Frequent Pattern Tree ...235

Finding Large Item Sets ..240

Discussion ...241

6.4 WEKA Implementations...242

Decision tree learners are the workhorses of many practical applications of

machine learning because they are fast and produce intelligible output that is

often surprisingly accurate. This chapter explains how to make decision tree

learning robust and versatile enough to cope with the demands of real-world data-

sets. It shows how to deal with numeric attributes and missing values, and how to

prune away those parts of a tree that do not actually enjoy sufficient support from

the data. Our discussion is based on how these issues are addressed in the classic

C4.5 algorithm for decision tree learning, but we will also see how cross-

validation is used by the famous CART decision tree learner to implement a more

robust pruning strategy.

The second topic in this chapter is rule learning. When implemented appropri-

ately, this shares the advantages of decision tree learning, at a somewhat higher

cost in runtime, and often yields even more concise classification models.

Surprisingly, rules are less popular than decision trees in practice—perhaps

because rule learning algorithms are quite heuristic and are not often considered

outside the artificial intelligence community. We will see how to make the basic

rule learning strategy from Chapter 4, Algorithms: the basic methods, less prone

to overfitting, how to deal with missing values and numeric attributes, and how to

select and prune good rules. Generating concise and accurate rule sets is trickier

than learning concise and accurate decision trees. We will discuss two strategies

for achieving this: one based on global optimization of a rule set and another

based on extracting rules from partially grown and pruned decision trees. We will

also briefly look at the advantages of representing learned knowledge using rules

sets with exceptions.

6.1 DECISION TREES
The first machine learning scheme that we will develop in detail, the C4.5 algo-

rithm, derives from the simple divide-and-conquer algorithm for producing deci-

sion trees that was described in Section 4.3. It needs to be extended in several

ways before it is ready for use on real-world problems. First we consider how to

deal with numeric attributes, and, after that, missing values. Then we look at the

all-important problem of pruning decision trees, because trees constructed by the

basic divide-and-conquer algorithm as described perform well on the training set,

but are usually overfitted to it and do not generalize well to independent test sets.

We then briefly consider how to convert decision trees to classification rules, and

examine the options provided by the C4.5 algorithm itself. Finally, we look at an

alternative pruning strategy that is implemented in the famous CART system for

learning classification and regression trees.

NUMERIC ATTRIBUTES

The method we described in Section 4.3 only works when all the attributes are

nominal, whereas, as we have seen, most real datasets contain some numeric attri-

butes. It is not too difficult to extend the algorithm to deal with these. For a

numeric attribute we will restrict the possibilities to a two-way, or binary, split.

210 CHAPTER 6 Trees and rules

Suppose we use the version of the weather data that has some numeric features

(Table 1.3). Then, when temperature is being considered for the first split, the

temperature values involved are

64 65 68 69 70 71 72 75 80 81 83 85
Yes No Yes Yes Yes No No

Yes
Yes
Yes

No Yes Yes No

(Repeated values have been collapsed together), and there are only 11 possible

positions for the breakpoint—8 if the breakpoint is not allowed to separate items

of the same class. The information gain for each can be calculated in the usual

way. For example, the test temperature , 71.5 produces four yes’s and two no’s,

whereas temperature . 71.5 produces five yes’s and three no’s, and so the

information value of this test is

Infoð½4; 2�; ½5; 3�Þ5 ð6=14Þ3 infoð½4; 2�Þ1 ð8=14Þ3 infoð½5; 3�Þ5 0:939 bits:

It is common to place numeric thresholds halfway between the values that

delimit the boundaries of a concept, although something might be gained by

adopting a more sophisticated policy. For example, we will see below that

although the simplest form of instance-based learning puts the dividing line

between concepts in the middle of the space between them, other methods that

involve more than just the two nearest examples have been suggested.

When creating decision trees using the divide-and-conquer method, once the

first attribute to split on has been selected, a top-level tree node is created that

splits on that attribute, and the algorithm proceeds recursively on each of the child

nodes. For each numeric attribute, it appears that the subset of instances at each

child node must be re-sorted according to that attribute’s values—and, indeed,

this is how programs for inducing decision trees are usually written. However, it

is not actually necessary to re-sort because the sort order at a parent node can be

used to derive the sort order for each child, leading to a speedier implementation,

at the expense of storage. Consider the temperature attribute in the weather data,

whose sort order (this time including duplicates) is

64 65 68 69 70 71 72 72 75 75 80 81 83 85
7 6 5 9 4 14 8 12 10 11 2 13 3 1

The italicized number below each temperature value gives the number of the

instance that has that value: thus instance number 7 has temperature value 64,

instance 6 has temperature 65, and so on. Suppose we decide to split at the top

level on the attribute outlook. Consider the child node for which

outlook5 sunny—in fact the examples with this value of outlook are numbers 1,

2, 8, 9, and 11. If the italicized sequence is stored with the example set (and

a different sequence must be stored for each numeric attribute)—i.e., instance

7 contains a pointer to instance 6, instance 6 points to instance 5, instance 5

2116.1 Decision Trees

points to instance 9, and so on—then it is a simple manner to read off the exam-

ples for which outlook5 sunny in order. All that is necessary is to scan through

the instances in the indicated order, checking the outlook attribute for each and

writing down the ones with the appropriate value:

9 8 11 2 1

Thus repeated sorting can be avoided by storing with each subset of instances

the sort order for that subset according to each numeric attribute. The sort order

must be determined for each numeric attribute at the beginning; no further sorting

is necessary thereafter.

When a decision tree tests a nominal attribute as described in Section 4.3, a branch

is made for each possible value of the attribute. However, we have restricted splits on

numeric attributes to be binary. This creates an important difference between numeric

attributes and nominal ones: once you have branched on a nominal attribute, you have

used all the information that it offers, whereas successive splits on a numeric attribute

may continue to yield new information. Whereas a nominal attribute can only be tested

once on any path from the root of a tree to the leaf, a numeric one can be tested many

times. This can yield trees that are messy and difficult to understand because the tests

on any single numeric attribute are not located together but can be scattered along the

path. An alternative, which is harder to accomplish but produces a more readable tree,

is to allow a multiway test on a numeric attribute, testing against several different con-

stants at a single node of the tree. A simpler but less powerful solution is to prediscre-

tize the attribute as described in Section 8.2.

MISSING VALUES

The next enhancement to the decision tree-building algorithm deals with the pro-

blems of missing values. Missing values are endemic in real-world datasets. As

explained in Chapter 2, Input: concepts, instances, attributes, one way of handling

them is to treat them as just another possible value of the attribute; this is appro-

priate if the fact that the attribute is missing is significant in some way. In that

case no further action need be taken. But if there is no particular significance in

the fact that a certain instance has a missing attribute value, a more subtle solu-

tion is needed. It is tempting to simply ignore all instances in which some of the

values are missing, but this solution is often too draconian to be viable. Instances

with missing values often provide a good deal of information. Sometimes the

attributes whose values are missing play no part in the decision, in which case

these instances are as good as any other.

One question is how to apply a decision tree, once it has been constructed, to

an instance in which some of the attributes to be tested have missing values. We

outlined a solution in Section 3.3. It involves notionally splitting the instance into

pieces, using a numeric weighting scheme, and sending part of it down each

212 CHAPTER 6 Trees and rules

branch in proportion to the number of training instances going down that branch.

Eventually, the various parts of the instance will each reach a leaf node, and the

decisions at these leaf nodes must be recombined using the weights that have per-

colated to the leaves.

A second question, which precedes the first one because it applies to training,

is how to partition the training set once a splitting attribute has been chosen, to

allow recursive application of the decision tree formation procedure on each of

the daughter nodes. The same weighting procedure is used. Instances for which

the relevant attribute value is missing are notionally split into pieces, one piece

for each branch, in the same proportion as the known instances go down the vari-

ous branches. Pieces of the instance contribute to decisions at lower nodes in the

usual way through the information gain or gain ratio calculation, except that they

are weighted accordingly. The calculations described in Section 4.3 can also be

applied to partial instances. Instead of having integer counts, the weights are used

when computing both gain figures. Instances may be further split at lower nodes,

of course, if the values of other attributes are unknown as well.

PRUNING

Fully expanded decision trees often contain unnecessary structure, and it is gener-

ally advisable to simplify them before they are deployed. Now it is time to learn

how to prune decision trees.

By building the complete tree and pruning it afterward we are adopting a strat-

egy of postpruning (sometimes called backward pruning) rather than prepruning

(or forward pruning). Prepruning would involve trying to decide during the tree-

building process when to stop developing subtrees—quite an attractive prospect

because that would avoid all the work of developing subtrees only to throw them

away afterward. However, postpruning does seem to offer some advantages. For

example, situations occur in which two attributes individually seem to have noth-

ing to contribute but are powerful predictors when combined—a sort of

combination-lock effect in which the correct combination of the two attribute

values is very informative whereas the attributes taken individually are not. Most

decision tree builders postprune.

Two rather different operations have been considered for postpruning: subtree

replacement and subtree raising. At each node, a learning scheme might decide

whether it should perform subtree replacement, subtree raising, or leave the subtree

as it is, unpruned. Subtree replacement is the primary pruning operation, and we

look at it first. The idea is to select some subtrees and replace them with single

leaves. For example, the whole subtree in Fig. 1.3B, involving two internal nodes

and four leaf nodes, has been replaced by the single leaf bad. This will certainly

cause the accuracy on the training set to decrease if the original tree is produced by

the decision tree algorithm described previously, because that continues to build

the tree until all leaf nodes are pure (or until all attributes have been tested).

However, it may increase the accuracy on an independently chosen test set.

2136.1 Decision Trees

When subtree replacement is implemented, it proceeds from the leaves and

works back up toward the root. In the Fig. 1.3 example, the whole subtree in

(b) would not be replaced at once. First, consideration would be given to repla-

cing the three daughter nodes in the health plan contribution subtree with a single

leaf node. Assume that a decision is made to perform this replacement—we will

explain how shortly. Then, continuing to work back from the leaves, consider-

ation would be given to replacing the working hours per week subtree, which

now has just two daughter nodes, by a single leaf node. In the Fig. 1.3 example

this replacement was indeed made, which accounts for the entire subtree in

(b) being replaced by a single leaf marked bad. Finally, consideration would be

given to replacing the two daughter nodes in the wage increase 1st year subtree

with a single leaf node. In this case that decision was not made, so the tree remains

as shown in Fig. 1.3A. Again, we will examine how these decisions are actually

made shortly.

The second pruning operation, subtree raising, is more complex, and it is not

clear that it is necessarily always worthwhile. However, because it is used in the

influential decision tree building system C4.5, we describe it here. Subtree raising

does not occur in the Fig. 1.3 example, so use the artificial example of Fig. 6.1

for illustration. Here, consideration is given to pruning the tree in Fig. 6.1A, and

the result is shown in Fig. 6.1B. The entire subtree from C downward has been

“raised” to replace the B subtree. Note that although the daughters of B and C are

shown as leaves, they can be entire subtrees. Of course, if we perform this raising

operation, it is necessary to reclassify the examples at the nodes marked 4 and 5

into the new subtree headed by C. This is why the daughters of that node are

marked with primes: 10, 20, and 30—to indicate that they are not the same as the

original daughters 1, 2, and 3 but differ by the inclusion of the examples

originally covered by 4 and 5.

A

B

C 4 5

1 2 3

1′ 2′ 3′

A

C

(A) (B)

FIGURE 6.1

Example of subtree raising, where node C is “raised” to subsume node B.

214 CHAPTER 6 Trees and rules

Subtree raising is a potentially time-consuming operation. In actual implemen-

tations it is generally restricted to raising the subtree of the most popular branch.

That is, we consider doing the raising illustrated in Fig. 6.1 provided that

the branch from B to C has more training examples than the branches from B to

node 4 or from B to node 5. Otherwise, if (e.g.) node 4 were the majority daughter

of B, we would consider raising node 4 to replace B and reclassifying all examples

under C, as well as the examples from node 5, into the new node.

ESTIMATING ERROR RATES

So much for the two pruning operations. Now we must address the question of

how to decide whether to replace an internal node by a leaf (for subtree replace-

ment), or whether to replace an internal node by one of the nodes below it (for

subtree raising). To make this decision rationally, it is necessary to estimate the

error rate that would be expected at a particular node given an independently cho-

sen test set. We need to estimate the error at internal nodes as well as at leaf

nodes. If we had such an estimate, it would be clear whether to replace, or raise,

a particular subtree simply by comparing the estimated error of the subtree with

that of its proposed replacement. Before estimating the error for a subtree pro-

posed for raising, examples that lie under siblings of the current node—the exam-

ples at 4 and 5 of Fig. 6.1—would have to be temporarily reclassified into the

raised tree.

It is no use taking the training set error as the error estimate: that would not

lead to any pruning because the tree has been constructed expressly for that par-

ticular training set. One way of coming up with an error estimate is the standard

verification technique: hold back some of the data originally given and use it as

an independent test set to estimate the error at each node. This is called reduced-

error pruning. It suffers from the disadvantage that the actual tree is based on less

data.

The alternative is to try to make some estimate of error based on the training

data itself. That is what C4.5 does, and we will describe its method here. It is a

heuristic based on some statistical reasoning, but the statistical underpinning is

rather weak. However, it seems to work well in practice. The idea is to consider

the set of instances that reach each node and imagine that the majority class is

chosen to represent that node. That gives us a certain number of “errors,” E, out

of the total number of instances, N. Now imagine that the true probability of error

at the node is q, and that the N instances are generated by a Bernoulli process

with parameter q, of which E turn out to be errors.

This is almost the same situation as we considered when looking at the hold-

out method in Section 5.2, where we calculated confidence intervals on the true

success probability p given a certain observed success rate. There are two differ-

ences. One is trivial: here we are looking at the error rate q rather than the suc-

cess rate p; these are simply related by p1 q5 1. The second is more serious:

here the figures E and N are measured from the training data, whereas in

2156.1 Decision Trees

Section 5.2 we were considering independent test data instead. Because of this

difference we make a pessimistic estimate of the error rate by using the upper

confidence limit rather than stating the estimate as a confidence range.

The mathematics involved is just the same as before. Given a particular confi-

dence c (the default figure used by C4.5 is c5 25%), we find confidence limits z

such that

Pr
f 2 qffi

qð12 qÞ=N
p . z

" #
5 c;

where N is the number of samples, f5E/N is the observed error rate, and q is the

true error rate. As before, this leads to an upper confidence limit for q. Now we

use that upper confidence limit as a (pessimistic) estimate for the error rate e at

the node:

e5
f 1

z2

2N
1 z

ffi
f

N
2

f 2

N
1

z2

4N2

r
11 z2

N

:

Note the use of the 1 sign before the square root in the numerator to obtain

the upper confidence limit. Here, z is the number of standard deviations corre-

sponding to the confidence c, which for c5 25% is z5 0.69.

To see how all this works in practice, let’s look again at the labor negotiations

decision tree of Fig. 1.3, salient parts of which are reproduced in Fig. 6.2 with the

number of training examples that reach the leaves added. We use the above for-

mula with a 25% confidence figure, i.e., with z5 0.69. Consider the lower left

Wage increase 1st year

Working hours per week

≤ 2.5 > 2.5

1 bad
1 good

≤ 36

Health plan contribution

> 36

4 bad
2 good

None

1 bad
1 good

Half

4 bad
2 good

Full

FIGURE 6.2

Pruning the labor negotiations decision tree.

216 CHAPTER 6 Trees and rules

leaf, for which E5 2, N5 6, and so f5 0.33. Plugging these figures into the for-

mula, the upper confidence limit is calculated as e5 0.47. That means that instead

of using the training set error rate for this leaf, which is 33%, we will use the pes-

simistic estimate of 47%. This is pessimistic indeed, considering that it would be

a bad mistake to let the error rate exceed 50% for a two-class problem. But things

are worse for the neighboring leaf, where E5 1 and N5 2, because the upper

confidence limit becomes e5 0.72. The third leaf has the same value of e as the

first. The next step is to combine the error estimates for these three leaves in the

ratio of the number of examples they cover, 6: 2:6, which leads to a combined

error estimate of 0.51. Now we consider the error estimate for the parent node,

health plan contribution. This covers nine bad examples and five good ones, so

the training set error rate is f5 5/14. For these values, the above formula yields a

pessimistic error estimate of e5 0.46. Because this is less than the combined error

estimate of the three children, they are pruned away.

The next step is to consider the working hours per week node, which now has

two children that are both leaves. The error estimate for the first, with E5 1 and

N5 2, is e5 0.72, while for the second it is e5 0.46 as we have just seen.

Combining these in the appropriate ratio of 2:14 leads to a value that is higher

than the error estimate for the working hours node, so the subtree is pruned away

and replaced by a leaf node.

The estimated error figures obtained in these examples should be taken with a

grain of salt because the estimate is only a heuristic one and is based on a number

of shaky assumptions: the use of the upper confidence limit; the assumption of a

normal distribution; and the fact that statistics from the training set are used.

However, the qualitative behavior of the error formula is correct and the method

seems to work reasonably well in practice. If necessary, the underlying confi-

dence level, which we have taken to be 25%, can be tweaked to produce more

satisfactory results.

COMPLEXITY OF DECISION TREE INDUCTION

Now that we have learned how to accomplish the pruning operations, we have

finally covered all the central aspects of decision tree induction. Let’s take stock

and examine the computational complexity of inducing decision trees. We will

use the standard order notation: OðnÞ stands for a quantity that grows at most line-

arly with n, Oðn2Þ grows at most quadratically with n, and so on.

Suppose the training data contains n instances and m attributes. We need to

make some assumption about the size of the tree, and we will assume that its

depth is on the order of log n, i.e., O(log n). This is the standard rate of growth

of a tree with n leaves, provided that it remains “bushy” and does not degener-

ate into a few very long, stringy branches. Note that we are tacitly assuming

that most of the instances are different from each other, and—this is almost

the same thing—that the m attributes provide enough tests to allow the

instances to be differentiated. For example, if there were only a few binary

2176.1 Decision Trees

attributes, they would allow only so many instances to be differentiated and

the tree could not grow past a certain point, rendering an “in the limit” analy-

sis meaningless.

The computational cost of building the tree in the first place is

Oðmn log nÞ
Consider the amount of work done for one attribute over all nodes of the tree.

Not all the examples need to be considered at each node, of course. But at each

possible tree depth, the entire set of n instances must be considered. And because

there are log n different depths in the tree, the amount of work for this one attri-

bute is Oðn log nÞ. At each node all attributes are considered, so the total amount

of work is Oðmn log nÞ.
This reasoning makes some assumptions. If some attributes are numeric, they

must be sorted, but once the initial sort has been done there is no need to re-sort

at each tree depth if the appropriate algorithm is used (described earlier). The ini-

tial sort takes Oðn log nÞ operations for each of up to m attributes: thus the above

complexity figure is unchanged. If the attributes are nominal, all attributes do not

have to be considered at each tree node—because attributes that are used further

up the tree cannot be reused. However, if attributes are numeric, they can be

reused and so they have to be considered at every tree level.

Next, consider pruning by subtree replacement. First an error estimate must

be made for every tree node. Provided that counts are maintained appropri-

ately, this is linear in the number of nodes in the tree. Then each node needs

to be considered for replacement. The tree has at most n leaves, one for each

instance. If it were a binary tree, each attribute being numeric or two-valued,

that would give it 2n2 1 nodes; multiway branches would only serve to

decrease the number of internal nodes. Thus the complexity of subtree replace-

ment is

OðnÞ
Finally, subtree lifting has a basic complexity equal to subtree replacement.

But there is an added cost because instances need to be reclassified during the

lifting operation. During the whole process, each instance may have to be reclas-

sified at every node between its leaf and the root, i.e., as many as Oðlog nÞ times.

That makes the total number of reclassifications Oðn log nÞ. And reclassification

is not a single operation: one that occurs near the root will take Oðlog nÞ opera-
tions, and one of average depth will take half of this. Thus the total complexity of

subtree lifting is as follows:

Oðnðlog nÞ2Þ:
Taking into account all these operations, the full complexity of decision tree

induction is

Oðmn log nÞ1Oðnðlog nÞ2Þ:

218 CHAPTER 6 Trees and rules

FROM TREES TO RULES

It is possible to read a set of rules directly off a decision tree, as noted in

Section 3.4, by generating a rule for each leaf and making a conjunction of all the

tests encountered on the path from the root to that leaf. This produces rules that

are unambiguous in that it does not matter in what order they are executed.

However, the rules are more complex than necessary.

The estimated error rate described previously provides exactly the mechanism

necessary to prune the rules. Given a particular rule, each condition in it is con-

sidered for deletion by tentatively removing it, working out which of the training

examples are now covered by the rule, calculating from this a pessimistic estimate

of the error rate of the new rule, and comparing this with the pessimistic estimate

for the original rule. If the new rule is better, delete that condition and carry on,

looking for other conditions to delete. Leave the rule when there are no conditions

left that will improve it if they are removed. Once all rules have been pruned in

this way, it is necessary to see if there are any duplicates and remove them from

the rule set.

This is a greedy approach to detecting redundant conditions in a rule, and

there is no guarantee that the best set of conditions will be removed. An

improvement would be to consider all subsets of conditions, but this is usually

prohibitively expensive. Another solution might be to use an optimization tech-

nique such as simulated annealing or a genetic algorithm to select the best

version of this rule. However, the simple greedy solution seems to produce quite

good rule sets.

The problem, even with the greedy method, is computational cost. For every

condition that is a candidate for deletion, the effect of the rule must be reevalu-

ated on all the training instances. This means that rule generation from trees

tends to be very slow, and Section 6.2: Classification Rules describes much fas-

ter methods that generate classification rules directly without forming a decision

tree first.

C4.5: CHOICES AND OPTIONS

C4.5 works essentially as described in the “From Trees to Rules” sections. The

default confidence value is set at 25% and works reasonably well in most cases;

possibly it should be altered to a lower value, which causes more drastic

pruning, if the actual error rate of pruned trees on test sets is found to be much

higher than the estimated error rate. There is one other important parameter

whose effect is to eliminate tests for which almost all of the training examples

have the same outcome. Such tests are often of little use. Consequently tests are

not incorporated into the decision tree unless they have at least two outcomes

that have at least a minimum number of instances. The default value for this

minimum is 2, but it is controllable and should perhaps be increased for tasks

that have a lot of noisy data.

2196.1 Decision Trees

Another heuristic in C4.5 is that candidate splits on numeric attributes are

only considered if they cut off a certain minimum number of instances: at least

10% of the average number of instances per class at the current node, or 25

instances, whichever value is smaller (but the above minimum, 2 by default, is

also enforced).

C4.5 Release 8, the version of C4.5 implemented in the Weka software,

includes an MDL-based adjustment to the information gain for splits on numeric

attributes. More specifically, if there are S candidate splits on a certain numeric

attribute at the node currently considered for splitting, log2(S)/N is subtracted

from the information gain, where N is the number of instances at the node. This

heuristic is designed to prevent overfitting. The information gain may be negative

after subtraction, and tree growing will stop if there are no attributes with positive

information gain—a form of prepruning. We mention this here because it can be

surprising to obtain a pruned tree even if postpruning has been turned off!

Finally, C4.5 does not actually place the split point for a numeric attribute

halfway between two values. Once a split has been chosen, the entire training set

is searched to find the greatest value for that attribute that does not exceed the

provisional split point, and this becomes the actual split point. This adds a qua-

dratic term O(n2) to the time complexity because it can happen at any node,

which we have ignored above.

COST-COMPLEXITY PRUNING

As mentioned above, the postpruning method in C4.5 is based on shaky statistical

assumptions and it turns out that it often does not prune enough. On the other hand, it

is very fast and thus popular in practice. However, in many applications it is worth-

while expending more computational effort to obtain a more compact decision tree.

Experiments have shown that C4.5’s pruning method can yield unnecessary addi-

tional structure in the final tree: tree size continues to grow when more instances are

added to the training data even when this does not further increase performance on

independent test data. In that case the more conservative cost-complexity pruning

method from the CART tree learning system may be more appropriate.

Cost-complexity pruning is based on the idea of first pruning those subtrees

that, relative to their size, lead to the smallest increase in error on the training

data. The increase in error is measured by a quantity α that is defined to be the

average error increase per leaf of the subtree concerned. By monitoring this quan-

tity as pruning progresses, the algorithm generates a sequence of successively

smaller pruned trees. In each iteration it prunes all subtrees that exhibit the smal-

lest value of α amongst the remaining subtrees in the current version of the tree.

Each candidate tree in the resulting sequence of pruned trees corresponds to

one particular threshold value αi. The question becomes: which tree should be

chosen as the final classification model? To determine the most predictive tree,

cost-complexity pruning either uses a holdout set to estimate the error rate of

each tree, or, if data is limited, employs cross-validation.

220 CHAPTER 6 Trees and rules

Using a holdout set is straightforward. However, cross-validation poses the

problem of relating the α values observed in the sequence of pruned trees for

training fold k of the cross-validation to the α values from the sequence of trees

for the full dataset: these values are usually different. This problem is solved by

first computing the geometric average of αi and αi11 for tree i from the full data-

set. Then, for each fold k of the cross-validation, the tree that exhibits the largest

α value smaller than this average is picked. The average of the error estimates for

these trees from the k folds, estimated from the corresponding test datasets, is the

cross-validation error for tree i from the full dataset.

DISCUSSION

Top-down induction of decision trees is probably the most extensively researched

method of machine learning used in data mining. Researchers have investigated a

panoply of variations for almost every conceivable aspect of the learning

process—e.g., different criteria for attribute selection or modified pruning meth-

ods. However, they are rarely rewarded by substantial improvements in accuracy

over a spectrum of diverse datasets. As discussed above, the pruning method used

by the CART system for learning decision trees (Breiman et al., 1984) can often

produce smaller trees than C4.5’s pruning method. This has been investigated

empirically by Oates and Jensen (1997).

The decision tree program C4.5 and its successor C5.0 were devised by Ross

Quinlan over a 20-year period beginning in the late 1970s. A complete descrip-

tion of C4.5, the early 1990s version, appears as a excellent and readable book

(Quinlan, 1993), along with the full source code. The MDL heuristic for C4.5

Release 8 is described by Quinlan (1996). The more recent version, C5.0, is also

available as open-source code.

In our description of decision trees, we have assumed that only one attribute is

used to split the data into subsets at each node of the tree. However, it is possible

to allow tests that involve several attributes at a time. For example, with numeric

attributes each test can be on a linear combination of attribute values. Then the

final tree consists of a hierarchy of linear models of the kind described in

Section 4.6, and the splits are no longer restricted to being axis-parallel. The

CART system has the option of generating such tests. They are often more accu-

rate and smaller than standard trees, but take much longer to generate and are

also more difficult to interpret. We briefly mention one way of generating them

under principal component analysis in Section 8.3.

6.2 CLASSIFICATION RULES
We call the basic covering algorithm for generating rules that was described in

Section 4.4 a separate-and-conquer technique because it identifies a rule that

2216.2 Classification Rules

covers instances in the class (and excludes ones not in the class), separates them

out, and continues on those that are left. Such algorithms have been used as the

basis of many systems that generate rules. There we described a simple

correctness-based measure for choosing what test to add to the rule at each stage.

However, there are many other possibilities, and the particular criterion that is

used has a significant effect on the rules produced. We examine different criteria

for choosing tests in this section. We also look at how the basic rule-generation

algorithm can be extended to more practical situations by accommodating missing

values and numeric attributes.

But the real problem with all these rule-generation schemes is that they tend

to overfit the training data and do not generalize well to independent test sets,

particularly on noisy data. To be able to generate good rule sets for noisy data, it

is necessary to have some way of measuring the real worth of individual rules.

The standard approach to assessing the worth of rules is to evaluate their error

rate on an independent set of instances, held back from the training set, and we

explain this next. After that, we describe two industrial-strength rule learners: one

that combines the simple separate-and-conquer technique with a global optimiza-

tion step, and another one that works by repeatedly building partial decision trees

and extracting rules from them. Finally, we consider how to generate rules with

exceptions, and exceptions to the exceptions.

CRITERIA FOR CHOOSING TESTS

When we introduced the basic rule learner in Section 4.4, we had to figure out a

way of deciding which of many possible tests to add to a rule to prevent it from

covering any negative examples. For this we used the test that maximizes the

ratio

p=t

where t is the total number of instances that the new rule will cover, and p is the

number of these that are positive—i.e., belong to the class in question. This

attempts to maximize the “correctness” of the rule on the basis that the higher the

proportion of positive examples it covers, the more correct a rule is. One alterna-

tive is to calculate an information gain:

p log
p

t
2 log

P

T

� �
;

where p and t are the number of positive instances and the total number of

instances covered by the new rule, as before, and P and T are the corresponding

number of instances that satisfied the rule before the new test was added.

The rationale for this is that it represents the total information gained regarding the

current positive examples, which is given by the number of them that satisfy

the new test, multiplied by the information gained regarding each one.

222 CHAPTER 6 Trees and rules

The basic criterion for choosing a test to add to a rule is to find one that cov-

ers as many positive examples as possible, while covering as few negative exam-

ples as possible. The original correctness-based heuristic, which is just the

percentage of positive examples among all examples covered by the rule, attains

a maximum when no negative examples are covered regardless of the number of

positive examples covered by the rule. Thus a test that makes the rule exact will

be preferred to one that makes it inexact, no matter how few positive examples

the former rule covers, nor how many positive examples the latter covers. For

example, if we can choose between a test that covers one example, which is posi-

tive, this criterion will prefer it over a test that covers 1000 positive examples

along with one negative one.

The information-based heuristic, on the other hand, places far more emphasis

on covering a large number of positive examples regardless of whether the rule so

created is exact. Of course, both algorithms continue adding tests until the final

rule produced is exact, which means that the rule will be finished earlier using

the correctness measure, whereas more terms will have to be added if the

information-based measure is used. Thus the correctness-based measure might

find special cases and eliminate them completely, saving the larger picture for

later (when the more general rule might be simpler because awkward special

cases have already been dealt with), whereas the information-based one will try

to generate high-coverage rules first and leave the special cases until later. It is

by no means obvious that either strategy is superior to the other at producing an

exact rule set. Moreover, the whole situation is complicated by the fact that, as

described below, rules may be pruned and inexact ones tolerated.

MISSING VALUES, NUMERIC ATTRIBUTES

As with divide-and-conquer decision tree algorithms, the nasty practical consid-

erations of missing values and numeric attributes need to be addressed. In fact,

there is not much more to say. Now that we know how these problems can be

solved for decision tree induction, appropriate solutions for rule induction are eas-

ily given.

When producing rules using covering algorithms, missing values can best be

treated as though they don’t match any of the tests. This is particularly

suitable when a decision list is being produced because it encourages the learning

algorithm to separate out positive instances using tests that are known to succeed.

It has the effect that either instances with missing values are dealt with by rules

involving other attributes that are not missing, or any decisions about them are

deferred until most of the other instances have been taken care of, at which time

tests will probably emerge that involve other attributes. Covering algorithms for

decision lists have a decided advantage over decision tree algorithms in this

respect: tricky examples can be left until late in the process, at which time they

will appear less tricky because most of the other examples have already been

classified and removed from the instance set.

2236.2 Classification Rules

Numeric attributes can be dealt with in exactly the same way as they are for

trees. For each numeric attribute, instances are sorted according to the attribute’s

value and, for each possible threshold, a binary less-than/greater-than test is con-

sidered and evaluated in exactly the same way that a binary attribute would be.

GENERATING GOOD RULES

Suppose you don’t want to generate perfect rules that guarantee to give the cor-

rect classification on all instances in the training set, but would rather generate

“sensible” ones that avoid overfitting the training set and thereby stand a better

chance of performing well on new test instances. How do you decide which rules

are worthwhile? How do you tell when it becomes counterproductive to continue

adding terms to a rule to exclude a few pesky instances of the wrong type, all the

while excluding more and more instances of the right type, too?

Let’s look at a few examples of possible rules—some good and some bad—

for the contact lens problem in Table 1.1. Consider first the rule

If astigmatism 5 yes and tear production rate 5 normal

then recommendation 5 hard.

This gives a correct result for four out of the six cases that it covers; thus its

success fraction is 4/6. Suppose we add a further term to make the rule a “per-

fect” one:

If astigmatism 5 yes and tear production rate 5 normal

and age 5 young then recommendation 5 hard.

This improves accuracy to 2/2. Which rule is better? The second one is more

accurate on the training data but covers only two cases, whereas the first one

covers six. It may be that the second version is just overfitting the training data.

For a practical rule learner we need a principled way of choosing the appropriate

version of a rule, preferably one that maximizes accuracy on future test data.

Suppose we split the training data into two parts that we will call a growing

set and a pruning set. The growing set is used to form a rule using the basic cov-

ering algorithm. Then a test is deleted from the rule, and the effect is evaluated

by trying out the truncated rule on the pruning set and seeing whether it performs

better than the original rule. This pruning process repeats until the rule cannot be

improved by deleting any further tests. The whole procedure is repeated for each

class, obtaining one best rule for each class, and the overall best rule is estab-

lished by evaluating the rules on the pruning set. This rule is then added to the

rule set, the instances it covers removed from the training data—from both grow-

ing and pruning sets—and the process is repeated.

Why not do the pruning as we build the rule up, rather than building up the

whole thing and then throwing parts away? That is, why not preprune rather than

postprune? Just as when pruning decision trees it is often best to grow the tree to

224 CHAPTER 6 Trees and rules

its maximum size and then prune back, so with rules it is often best to make a

perfect rule and then prune it. Who knows?—adding that last term may make a

really good rule, a situation that we might never have noticed had we adopted an

aggressive prepruning strategy.

It is essential that the growing and pruning sets are separate, because it is mis-

leading to evaluate a rule on the very data that was used to form it: that would

lead to serious errors by preferring rules that were overfitted. Usually the training

set is split so that two-thirds of instances are used for growing and one-third for

pruning. A disadvantage, of course, is that learning occurs from instances in the

growing set only, so the algorithm might miss important rules because some key

instances had been assigned to the pruning set. Moreover, the wrong rule might

be preferred because the pruning set contains only one-third of the data and may

not be completely representative. These effects can be ameliorated by resplitting

the training data into growing and pruning sets at each cycle of the algorithm,

i.e., after each rule is finally chosen.

The idea of using a separate pruning set for pruning—which is applicable to

decision trees as well as rule sets—is called reduced-error pruning. The variant

described above prunes a rule immediately after it has been grown, and is called

incremental reduced-error pruning. Another possibility is to build a full,

unpruned, rule set first, pruning it afterwards by discarding individual tests.

However, this method is much slower.

Of course, there are many different ways to assess the worth of a rule based

on the pruning set. A simple measure is to consider how well the rule would do

at discriminating the predicted class from other classes if it were the only rule in

the rule set, operating under the closed world assumption. Suppose it gets p

instances right out of the t instances that it covers, and there are P instances of

this class out of a total T of instances altogether. The instances that it does not

cover include N � n negative ones, where n5 t � p is the number of negative

instances that the rule covers and N5 T � P is the total number of negative

instances. Thus in total the rule makes correct decisions on p1 (N � n) instances,

and so has an overall success ratio of

½ p1 ðN � nÞ�=T :
This quantity, evaluated on the test set, has been used to evaluate the success

of a rule when using reduced-error pruning.

This measure is open to criticism because it treats noncoverage of negative

examples as equally important as coverage of positive ones, which is unrealistic in

a situation where what is being evaluated is one rule that will eventually serve

alongside many others. For example, a rule that gets p5 2000 instances right out of

a total coverage of 3000 (i.e., it gets n5 1000 wrong) is judged as more successful

than one that gets p5 1000 out of a total coverage of 1001 (i.e., n5 1 wrong),

because [p1 (N � n)]/T is [10001N]/T in the first case but only [9991N]/T in

the second. This is counterintuitive: the first rule is clearly less predictive than the

second, because it has 33.3% as opposed to only 0.1% chance of being incorrect.

2256.2 Classification Rules

Using the success rate p/t as a measure, as was done in the original formula-

tion of the covering algorithm (Fig. 4.8), is not the perfect solution either, because

it will prefer a rule that gets a single instance right (p5 1) out of a total coverage

of 1 (so n5 0) to the far more useful rule that gets 1000 right out of 1001.

Another heuristic that has been used is (p � n)/t, but that suffers from exactly the

same problem because (p � n)/t5 2p/t � 1 and so the result, when comparing one

rule with another, is just the same as with the success rate. It seems hard to find a

simple measure of the worth of a rule that corresponds with intuition in all cases.

Whatever heuristic is used to measure the worth of a rule, the incremental

reduced-error pruning algorithm is the same. A possible rule learning algorithm

based on this idea is given in Fig. 6.3. It generates a decision list, creating rules for

each class in turn and choosing at each stage the best version of the rule according

to its worth on the pruning data. The basic covering algorithm for rule generation

(Fig. 4.8) is used to come up with good rules for each class, choosing conditions to

add to the rule using the accuracy measure p/t that we described earlier.

This method has been used to produce rule induction schemes that can process

vast amounts of data and operate very quickly. It can be accelerated by generating

rules for the classes in order rather than generating a rule for each class at every

stage and choosing the best. A suitable ordering is the increasing order in which

they occur in the training set so that the rarest class is processed first and the

most common ones are processed later. Another significant speedup is obtained

by stopping the whole process when a rule of sufficiently low accuracy is gener-

ated, so as not to spend time generating a lot of rules at the end with very small

coverage. However, very simple terminating conditions (such as stopping when

the accuracy for a rule is lower than the default accuracy for the class it predicts)

do not give the best performance. One criterion that seems to work well is a

rather complicated one based on the MDL principle, described below.

USING GLOBAL OPTIMIZATION

In general, rules generated using incremental reduced-error pruning in this manner

perform quite well, particularly on large datasets. However, it has been found that

Initialize E to the instance set
Split E into Grow and Prune in the ratio 2:1

For each class C for which Grow and Prune both contain an instance
Use the basic covering algorithm to create the best perfect rule for class C
Calculate the worth w(R) for the rule on Prune, and of the rule with the
final condition omitted w(R-)
While w(R-) > w(R), remove the final condition from the rule and repeat the
previous step

From the rules generated, select the one with the largest w(R)
Print the rule
Remove the instances covered by the rule from E

Continue

FIGURE 6.3

Algorithm for forming rules by incremental reduced-error pruning.

226 CHAPTER 6 Trees and rules

a worthwhile performance advantage can be obtained by performing a global

optimization step on the set of rules induced. The motivation is to increase the

accuracy of the rule set by revising or replacing individual rules. Experiments

show that both the size and the performance of rule sets are significantly improved

by postinduction optimization. On the other hand, the process itself is rather

complex.

To give an idea of how elaborate industrial-strength rule learners become,

Fig. 6.4 shows an algorithm called RIPPER, an acronym for repeated incremental

pruning to produce error reduction. Classes are examined in increasing size and

an initial set of rules for the class is generated using incremental reduced-error

pruning. An extra stopping condition is introduced that depends on the description

length (DL) of the examples and rule set. The description length DL is a complex

formula that takes into account the number of bits needed to send a set of exam-

ples with respect to a set of rules, the number of bits required to send a rule with

k conditions, and the number of bits needed to send the integer k—times an arbi-

trary factor of 50% to compensate for possible redundancy in the attributes.

Having produced a rule set for the class, each rule is reconsidered and two var-

iants produced, again using reduced-error pruning—but at this stage, instances

covered by other rules for the class are removed from the pruning set, and success

rate on the remaining instances is used as the pruning criterion. If one of the two

variants yields a better DL, it replaces the rule. Next we reactivate the original

building phase to mop up any newly uncovered instances of the class. A final

check is made to ensure that each rule contributes to the reduction of DL, before

proceeding to generate rules for the next class.

OBTAINING RULES FROM PARTIAL DECISION TREES

There is an alternative approach to rule induction that avoids global optimization

but nevertheless produces accurate and fairly compact rule sets. The method com-

bines the divide-and-conquer strategy for decision tree learning with the separate-

and-conquer one for rule learning. It adopts the separate-and-conquer strategy in

that it builds a rule, removes the instances it covers, and continues creating rules

recursively for the remaining instances until none are left. However, it differs

from the standard approach in the way that each rule is created. In essence, to

make a single rule, a pruned decision tree is built for the current set of instances,

the leaf with the largest coverage is made into a rule, and the tree is discarded.

The prospect of repeatedly building decision trees only to discard most of

them is not as bizarre as it first seems. Using a pruned tree to obtain a rule instead

of pruning a rule incrementally by removing conjunctions one at a time avoids a

tendency to overprune that is a characteristic problem of the basic separate-and-

conquer rule learner. Using the separate-and-conquer methodology in conjunction

with decision trees adds flexibility and speed. It is indeed wasteful to build a full

decision tree just to obtain a single rule, but the process can be accelerated signif-

icantly without sacrificing the advantages.

2276.2 Classification Rules

The key idea is to build a partial decision tree instead of a fully explored

one. A partial decision tree is an ordinary decision tree that contains branches to

undefined subtrees. To generate such a tree, the construction and pruning opera-

tions are integrated in order to find a “stable” subtree that can be simplified no

further. Once this subtree has been found, tree building ceases and a single rule

is read off.

(A)

Initialize E to the instance set
For each class C, from smallest to largest

BUILD:
Split E into Growing and Pruning sets in the ratio 2:1
Repeat until (a) there are no more uncovered examples of C; or(b) the

description length (DL) of ruleset and examples is 64 bits greater
than the smallest DL found so far, or(c) the error rate exceeds
50%:

GROW phase: Grow a rule by greedily adding conditions until the rule is
100% accurate by testing every possible value of each attribute and
selecting the condition with greatest information gain G

PRUNE phase: Prune conditions in last-to-first order. Continue as long
as the worth W of the rule increases

OPTIMIZE:
GENERATE VARIANTS:
For each rule R for class C,

Split E afresh into Growing and Pruning sets
Remove all instances from the Pruning set that are covered by other
rules for C

Use GROW and PRUNE to generate and prune two competing rules from the
newly split data:

R1 is a new rule, rebuilt from scratch;
R2 is generated by greedily adding antecedents to R.

Prune using the metric A (instead of W) on this reduced data
SELECT REPRESENTATIVE:
Replace R by whichever of R, R1 and R2 has the smallest DL.

MOP UP:
If there are residual uncovered instances of class C, return to the

BUILD stage to generate more rules based on these instances.
CLEAN UP:

Calculate DL for the whole ruleset and for the ruleset with each rule in
turn omitted; delete any rule that increases the DL

Remove instances covered by the rules just generated
Continue

(B) DL: see text
G = p[log(p/t) – log(P/T)]

W =
p + 1
t + 2

A =
p + n′

T
; accuracy for this rule

p = number of positive examples covered by this rule (true positives)
n = number of negative examples covered by this rule (false negatives)
t = p + n; total number of examples covered by this rule
n′ = N – n; number of negative examples not covered by this rule (true negatives)
P = number of positive examples of this class
N = number of negative examples of this class
T = P + N; total number of examples of this class

FIGURE 6.4

RIPPER: (A) algorithm for rule learning; (B) meaning of symbols.

228 CHAPTER 6 Trees and rules

The tree-building algorithm is summarized in Fig. 6.5: it splits a set of

instances recursively into a partial tree. The first step chooses a test and divides

the instances into subsets accordingly. The choice is made using the same

information-gain heuristic that is normally used for building decision trees

(Section 4.3). Then the subsets are expanded in increasing order of their average

entropy. The reason for this is that the later subsets will most likely not end up

being expanded, and a subset with low average entropy is more likely to result in

a small subtree and therefore produce a more general rule. This proceeds recur-

sively until a subset is expanded into a leaf, and then continues further by back-

tracking. But as soon as an internal node appears that has all its children

expanded into leaves, the algorithm checks whether that node is better replaced

by a single leaf. This is just the standard subtree replacement operation of deci-

sion tree pruning (Section 6.1). If replacement is performed the algorithm back-

tracks in the standard way, exploring siblings of the newly replaced node.

However, if during backtracking a node is encountered not all of whose children

expanded so far are leaves—and this will happen as soon as a potential subtree

replacement is not performed—then the remaining subsets are left unexplored and

the corresponding subtrees are left undefined. Due to the recursive structure of

the algorithm, this event automatically terminates tree generation.

Fig. 6.6 shows a step-by-step example. During the stages in Fig. 6.6A�C, tree

building continues recursively in the normal way—except that at each point the

lowest-entropy sibling is chosen for expansion: node 3 between stages (A) and

(B). Gray elliptical nodes are as yet unexpanded; rectangular ones are leaves.

Between stages (B) and (C), the rectangular node will have lower entropy than its

sibling, node 5, but cannot be expanded further because it is a leaf. Backtracking

occurs and node 5 is chosen for expansion. Once stage (C) is reached, there is a

node—node 5—that has all its children expanded into leaves, and this triggers

pruning. Subtree replacement for node 5 is considered and accepted, leading to

stage (D). Now node 3 is considered for subtree replacement, and this operation

is again accepted. Backtracking continues, and node 4, having lower entropy than

node 2, is expanded into two leaves. Now subtree replacement is considered for

node 4: suppose that node 4 is not replaced. At this point, the process terminates

with the three-leaf partial tree of stage (E).

Expand-subset (S):
Choose a test T and use it to split the set of examples into subsets
Sort subsets into increasing order of average entropy
while (there is a subset X that has not yet been expanded

AND all subsets expanded so far are leaves)
expand-subset(X)

if (all the subsets expanded are leaves
AND estimated error for subtree ≥ estimated error for node)

undo expansion into subsets and make node a leaf

FIGURE 6.5

Algorithm for expanding examples into a partial tree.

2296.2 Classification Rules

If the data is noise-free and contains enough instances to prevent the algorithm

from doing any pruning, just one path of the full decision tree has to be explored.

This achieves the greatest possible performance gain over the naı̈ve method that

builds a full decision tree each time. The gain decreases as more pruning takes

place. For datasets with numeric attributes, the asymptotic time complexity of the

algorithm is the same as building the full decision tree, because in this case

the complexity is dominated by the time required to sort the attribute values in

the first place.

Once a partial tree has been built, a single rule is extracted from it. Each leaf

corresponds to a possible rule, and we seek the “best” leaf of those subtrees (typi-

cally a small minority) that have been expanded into leaves. Experiments show

that it is best to aim at the most general rule by choosing the leaf that covers the

greatest number of instances.

When a dataset contains missing values, they can be dealt with exactly as

they are when building decision trees. If an instance cannot be assigned to any

given branch because of a missing attribute value, it is assigned to each of the

branches with a weight proportional to the number of training instances going

down that branch, normalized by the total number of training instances with

known values at the node. During testing, the same procedure is applied sepa-

rately to each rule, thus associating a weight with the application of each rule to

1

2 3 4

1

2 3 4

5

1

2 3 4

5

1

2 3 4

1

2 4

(A) (B)

(D) (E)

(C)

FIGURE 6.6

Example of building a partial tree.

230 CHAPTER 6 Trees and rules

the test instance. That weight is deducted from the instance’s total weight before

it is passed to the next rule in the list. Once the weight has reduced to zero, the

predicted class probabilities are combined into a final classification according to

the weights.

This yields a simple but surprisingly effective method for learning decision lists

for noisy data. Its main advantage over other comprehensive rule-generation schemes

is simplicity, because it does not require a complex global optimization stage.

RULES WITH EXCEPTIONS

In Section 3.4 we learned that a natural extension of rules is to allow them to

have exceptions, and exceptions to the exceptions, and so on—indeed the whole

rule set can be considered as exceptions to a default classification rule that is

used when no other rules apply. The method of generating a “good” rule, using

one of the measures described previously provides exactly the mechanism needed

to generate rules with exceptions.

First, a default class is selected for the top-level rule: it is natural to use the

class that occurs most frequently in the training data. Then, a rule is found per-

taining to any class other than the default one. Of all such rules it is natural to

seek the one with the most discriminatory power, e.g., the one with the best eval-

uation on a test set. Suppose this rule has the form

if ,condition. then class 5 ,new class.

It is used to split the training data into two subsets: one containing instances

for which the rule’s condition is true and the other containing those for which it

is false. If either subset contains instances of more than one class, the algorithm

is invoked recursively on that subset. For the subset for which the condition is

true, the “default class” is the new class as specified by the rule; for the subset

where the condition is false, the default class remains as it was before.

Let’s examine how this algorithm would work for the rules with exceptions

that were given in Section 3.4 for the iris data of Table 1.4. We will represent the

rules in the graphical form shown in Fig. 6.7, which is in fact equivalent to the

textual rules we showed before in Fig. 3.8. The default of Iris setosa is the entry

node at the top left. Horizontal, dotted paths show exceptions, so the next box,

which contains a rule that concludes Iris versicolor, is an exception to the default.

Below this is an alternative, a second exception—alternatives are shown by verti-

cal, solid lines—leading to the conclusion Iris virginica. Following the upper path

along horizontally leads to an exception to the Iris versicolor rule that overrides

it whenever the condition in the top right box holds, with the conclusion I.

virginica. Below this is an alternative, leading (as it happens) to the same conclu-

sion. Returning to the box at bottom center, this has its own exception, the lower

right box, which gives the conclusion Iris versicolor. The numbers at the lower

right of each box give the “coverage” of the rule, expressed as the number of

2316.2 Classification Rules

examples that satisfy it divided by the number that satisfy its condition but not its

conclusion. For example, the condition in the top center box applies to 52 of the

examples, and 49 of them are Iris versicolor. The strength of this representation is

that you can get a very good feeling for the effect of the rules from the boxes

toward the left-hand side; the boxes at the right cover just a few exceptional cases.

To create these rules, the default is first set to I. setosa by taking the most fre-

quently occurring class in the dataset. This is an arbitrary choice because for this

dataset all classes occur exactly 50 times; as shown in Fig. 6.7 this default “rule”

is correct in 50 out of 150 cases. Then the best rule that predicts another class is

sought. In this case it is

if petal-length $ 2.45 and petal-length , 5.355 and petal-width , 1.75
then Iris-versicolor

This rule cover 52 instances, of which 49 are Iris versicolor. It divides the

dataset into two subsets: the 52 instances that satisfy the condition of the rule and

the remaining 98 that do not.

We work on the former subset first. The default class for these instances is Iris

versicolor: there are only three exceptions, all of which happen to be I. virginica.

The best rule for this subset that does not predict Iris versicolor is identified next:

if petal-length $ 4.95 and petal-width , 1.55 then Iris-virginica

It covers two of the three I. virginicas and nothing else. Again it divides the

subset into two: those instances that satisfy its condition and those that do not.

 --> Iris setosa
 50/150

 Petal length ≥ 2.45
 Petal width < 1.75
 Petal length < 5.35

 --> Iris versicolor
49/52

 Petal length ≥ 4.95
 Petal width < 1.55

 --> Iris virginica
2/2

 Petal length ≥ 3.35
 --> Iris virginica

47/48

 Sepal length < 4.95
 Sepal width ≥ 2.45

 --> Iris virginica
1/1

 Petal length < 4.85
 Sepal length < 5.95

 --> Iris versicolor
1/1

Exceptions are represented as dotted paths, alternatives as solid ones.

FIGURE 6.7

Rules with exceptions for the iris data.

232 CHAPTER 6 Trees and rules

Fortunately, in this case, all those instances that satisfy the condition do indeed

have class I. virginica, so there is no need for a further exception. However, the

remaining instances still include the third I. virginica, along with 49 Iris versico-

lors, which are the default at this point. Again the best rule is sought:

if sepal-length , 4.95 and sepal-width $ 2.45 then Iris-virginica

This rule covers the remaining I. virginica and nothing else, so it also has no

exceptions. Furthermore, all remaining instances in the subset that do not satisfy

its condition have the class Iris versicolor, which is the default, so no more needs

to be done.

Return now to the second subset created by the initial rule, the instances that

do not satisfy the condition

petal-length $ 2.45 and petal-length , 5.355 and petal-width , 1.75

Of the rules for these instances that do not predict the default class I. setosa,

the best is

if petal-length $ 3.35 then Iris-virginica

It covers all 47 Iris virginicas that are in the example set (3 were removed by

the first rule, as explained previously). It also covers 1 Iris versicolor. This needs

to be taken care of as an exception, by the final rule:

if petal-length , 4.85 and sepal-length , 5.95 then Iris-versicolor

Fortunately, the set of instances that do not satisfy its condition are all the

default, I. setosa. Thus the procedure is finished.

The rules that are produced have the property that most of the examples are

covered by the high-level rules and the lower-level ones really do represent excep-

tions. For example, the last exception clause and the deeply nested else clause both

cover a solitary example, and removing them would have little effect. Even the

remaining nested exception rule covers only two examples. Thus one can get an

excellent feeling for what the rules do by ignoring all the deeper structure and look-

ing only at the first level or two. That is the attraction of rules with exceptions.

DISCUSSION

All algorithms for producing classification rules that we have describe use the basic

covering or separate-and-conquer approach. For the simple, noise-free case

this produces PRISM (Cendrowska, 1987), an algorithm that is simple and easy to

understand. When applied to two-class problems with the closed world assumption,

it is only necessary to produce rules for one class: then the rules are in disjunctive

normal form and can be executed on test instances without any ambiguity

arising. When applied to multiclass problems, a separate rule set is produced for

2336.2 Classification Rules

each class: thus a test instance may be assigned to more than one class, or to no

class, and further heuristics are necessary if a unique prediction is sought.

To reduce overfitting in noisy situations, it is necessary to produce rules that

are not “perfect” even on the training set. To do this it is necessary to have a

measure for the “goodness,” or worth, of a rule. With such a measure it is then

possible to abandon the class-by-class approach of the basic covering algorithm

and start by generating the very best rule, regardless of which class it predicts,

and then remove all examples covered by this rule and continue the process. This

yields a method for producing a decision list rather than a set of independent clas-

sification rules, and decision lists have the important advantage that they do not

generate ambiguities when interpreted.

The idea of incremental reduced-error pruning is due to Fürnkranz and

Widmer (1994) and forms the basis for fast and effective rule induction. The

RIPPER rule learner is due to Cohen (1995), although the published description

appears to differ from the implementation in precisely how the DL affects the

stopping condition. What we have presented here is the basic idea of the algo-

rithm; there are many more details in the implementation.

The whole question of measuring the value of a rule is a difficult one. Many

different measures have been proposed, some blatantly heuristic and others based

on information-theoretical or probabilistic grounds. However, there seems to be

no consensus on what the best measure to use is. An extensive theoretical study

of various criteria has been performed by Fürnkranz and Flach (2005).

The rule learning scheme based on partial decision trees was developed by

Frank and Witten (1998). On standard benchmark datasets it produces rule sets

that are as accurate as rules generated by the C4.5 rule learner, and often more

accurate than those of RIPPER; however, it produces larger rule sets than

RIPPER. Its main advantage over other schemes is not performance but simplic-

ity: by combining top-down decision tree induction with separate-and-conquer

rule learning, it produces good rule sets without any need for global optimization.

The procedure for generating rules with exceptions was developed as an

option in the Induct system by Gaines and Compton (1995), who called them

ripple-down rules. In an experiment with a large medical dataset (22,000

instances, 32 attributes, and 60 classes), they found that people can understand

large systems of rules with exceptions more readily than equivalent systems of

regular rules because that is the way that they think about the complex medical

diagnoses that are involved. Richards and Compton (1998) describe their role as

an alternative to classic knowledge engineering.

6.3 ASSOCIATION RULES
In Section 4.5 we studied the Apriori algorithm for generating association rules

that meet minimum support and confidence thresholds. Apriori follows a generate-

and-test methodology for finding frequent item sets, generating successively longer

234 CHAPTER 6 Trees and rules

candidate item sets from shorter ones that are known to be frequent. Each different

size of candidate item set requires a scan through the dataset in order to determine

whether its frequency exceeds the minimum support threshold. Although some

improvements to the algorithm have been suggested to reduce the number of scans

of the dataset, the combinatorial nature of this generation process can prove

costly—particularly if there are many item sets or item sets are large. Both these

conditions readily occur even for modest datasets when low support thresholds are

used. Moreover, no matter how high the threshold, if the data is too large to fit in

main memory it is undesirable to have to scan it repeatedly—and many association

rule applications involve truly massive datasets.

These effects can be ameliorated by using appropriate data structures. We

describe a method called FP-growth that uses an extended prefix tree—a frequent

pattern tree or “FP-tree”—to store a compressed version of the dataset in main

memory. Only two passes are needed to map a dataset into an FP-tree. The algo-

rithm then processes the tree in a recursive fashion to grow large item sets

directly, instead of generating candidate item sets and then having to test them

against the entire database.

BUILDING A FREQUENT PATTERN TREE

Like Apriori, the FP-growth algorithm begins by counting the number of times

individual items (i.e., attribute�value pairs) occur in the dataset. After this initial

pass, a tree structure is created in a second pass. Initially the tree is empty and

the structure emerges as each instance in the dataset is inserted into it.

The key to obtaining a compact tree structure that can be quickly processed to

find large item sets is to sort the items in each instance in descending order of

their frequency of occurrence in the dataset, which has already been recorded in

the first pass, before inserting them into the tree. Individual items in each instance

that do not meet the minimum support threshold are not inserted into the tree,

effectively removing them from the dataset. The hope is that many instances will

share those items that occur most frequently individually, resulting in a high

degree of compression close to the tree’s root.

We illustrate the process with the weather data, reproduced in Table 6.1A,

using a minimum support threshold of 6. The algorithm is complex, and its com-

plexity far exceeds what would be reasonable for such a trivial example, but a

small illustration is the best way of explaining it. Table 6.1B shows the individual

items, with their frequencies, that are collected in the first pass. They are sorted

into descending order and ones whose frequency exceeds the minimum threshold

are in bold. Table 6.1C shows the original instances, numbered as in Table 6.1A,

with the items in each instance sorted into descending frequency order. Finally, to

give an advance peek at the final outcome, Table 6.1D shows the only two

multiple-item sets whose frequency satisfies the minimum support threshold.

Along with the six single-item sets shown in bold in Table 6.1B, these form the

2356.3 Association Rules

Table 6.1 Preparing the Weather Data for Insertion Into an FP-tree: (A) The
Original Data; (B) Frequency Ordering of Items With Frequent Item Sets in
Bold; (C) The Data With Each Instance Sorted Into Frequency Order; (D) The
Two Multiple-Item Frequent Item Sets

Outlook Temperature Humidity Windy Play

(A) 1 Sunny Hot High False No
2 Sunny Hot High True No
3 Overcast Hot High False Yes
4 Rainy Mild High False Yes
5 Rainy Cool Normal False Yes
6 Rainy Cool Normal True No
7 Overcast Cool Normal True Yes
8 Sunny Mild High False No
9 Sunny Cool Normal False Yes
10 Rainy Mild Normal False Yes
11 Sunny Mild Normal True Yes
12 Overcast Mild High True Yes
13 Overcast Hot Normal False Yes
14 Rainy Mild High True No

(B) Play5 yes 9
Windy5 false 8
Humidity5normal 7
Humidity5high 7
Windy5 true 6
Temperature5mild 6
Play5 no 5
Outlook5 sunny 5
Outlook5 rainy 5
Temperature5 hot 4
Temperature5 cool 4
Outlook5 overcast 4

(C) 1 Windy5 false, humidity5high, play5 no, outlook5 sunny,
temperature5 hot

2 Humidity5high, windy5 true, play5 no, outlook5 sunny,
temperature5 hot

3 Play5 yes, windy5 false, humidity5high, temperature5 hot,
outlook5 overcast

4 Play5 yes, windy5 false, humidity5high, temperature5mild,
outlook5 rainy

5 Play5 yes, windy5 false, humidity5normal, outlook5 rainy,
temperature5 cool

6 Humidity5normal, windy5 true, play5 no, outlook5 rainy,
temperature5 cool

7 Play5 yes, humidity5normal, windy5 true, temperature5 cool,
outlook5 overcast

236 CHAPTER 6 Trees and rules

final answer: a total of eight item sets. We are going to have to do a lot of work

to find the two multiple-item sets in Table 6.1D using the FP-tree method.

Fig. 6.8A shows the FP-tree structure that results from this data with a mini-

mum support threshold of 6. The tree itself is shown with solid arrows. The num-

bers at each node show how many times the sorted prefix of items, up to and

including the item at that node, occur in the dataset. For example, following the

third branch from the left in the tree we can see that, after sorting, two instances

begin with the prefix humidity5 high—the second and last instances of

Table 6.1C. Continuing down that branch, the next node records that the same

two instances also have windy5 true as their next most frequent item. The lowest

node in the branch shows that one of these two instances (the last in Table 6.1C)

contain temperature5mild as well. The other instance (the second in the Table)

drops out at this stage because its next most frequent item does not meet the mini-

mum support constraint and is therefore omitted from the tree.

On the left-hand side of the diagram a “header table” shows the frequencies of

the individual items in the dataset (Table 6.1B). These items appear in descending

frequency order, and only those with at least minimum support are included. Each

item in the header table points to its first occurrence in the tree, and subsequent

items in the tree with the same name are linked together to form a list. These lists,

emanating from the header table, are shown in Fig. 6.8A by dashed arrows.

It is apparent from the tree that only two nodes have counts that satisfy the mini-

mum support threshold, corresponding to the item sets play5 yes (count of 9) and

play5 yes & windy5 false (count of 6) in the leftmost branch. Each entry in the

header table is itself a single-item set that also satisfies the threshold. This identifies

as part of the final answer all the bold items in Table 6.1B and the first item set in

Table 6.1D. Since we know the outcome in advance we can see that there is only one

more item set to go—the second in Table 6.1D. But there is no hint of it in the data

structure of Fig. 6.8A, and we will have to do a lot of work to discover it!

8 Windy5 false, humidity5high, temperature5mild, play5 no,
outlook5 sunny

9 Play5 yes, windy5 false, humidity5normal, outlook5 sunny,
temperature5 cool

10 Play5 yes, windy5 false, humidity5normal, temperature5mild,
outlook5 rainy

11 Play5 yes, humidity5normal, windy5 true, temperature5mild,
outlook5 sunny

12 Play5 yes, humidity5high, windy5 true, temperature5mild,
outlook5 overcast

13 Play5 yes, windy5 false, humidity5normal, temperature5 hot,
outlook5 overcast

14 Humidity5high, windy5 true, temperature5mild, play5 no,
outlook5 rainy

(D) Play5 yes & windy5 false 6
Play5 yes & humidity5normal 6

2376.3 Association Rules

(A) Root

play = yes
(9)

windy = false
(6)

humidity = normal
(2)

humidity = normal
(4)

temperature = mild
(1)

temperature = mild (6)

windy = true (6)

humidity = normal (7)

humidity = high (7)

windy = false (8)

play = yes (9)

temperature = mild
(1)

temperature = mild
(1)

temperature = mild
(1)

temperature = mild
(1)

temperature = mild
(1)

humidity = normal
(1)

humidity = high
(1)

humidity = high
(2)

humidity = high
(2)

humidity = high
(2)

windy = false
(2)

windy = true
(2)

windy = true
(1)

windy = true
(2)

windy = true
(1)

FIGURE 6.8

Extended prefix trees for the weather data: (A) the full data; (B) the data conditional on temperature5mild; (C) the data conditional on

humidity5 normal.

(B)

windy = true (3)

humidity = normal (2)

humidity = high (4)

windy = false (3)

windy = false
(2)

play = yes
(4)

windy = true
(1)

windy = true
(1)

windy = true
(1)

windy = false
(1)

humidity = normal
(1)

humidity = normal
(1)

humidity = high
(1)

humidity = high
(1)

humidity = high
(1)

humidity = high
(1)

play = yes (4)

Root

(C)

windy = false (4)

windy = false
(4)

play = yes (6)
play = yes

(6)

Root

FIGURE 6.8

(Continued)

FINDING LARGE ITEM SETS

The purpose of the links from the header table into the tree structure is to facili-

tate traversal of the tree to find other large item sets, apart from the two that are

already in the tree. This is accomplished by a divide-and-conquer approach that

recursively processes the tree to grow large item sets. Each header table list is fol-

lowed in turn, starting from the bottom of the table and working upwards.

Actually, the header table can be processed in any order, but it is easier to think

about processing the longest paths in the tree first, and these correspond to the

lower-frequency items.

Starting from the bottom of the header table, we can immediately add temper-

ature5mild to the list of large item sets. Fig. 6.8B shows the result of the next

stage, which is an FP-tree for just those instances in the dataset that include tem-

perature5mild. This tree was not created by rescanning the dataset but by further

processing of the tree in Fig. 6.8A, as follows.

To see if a larger item set containing temperature5mild can be grown, we

follow its link from the header table. This allows us to find all instances that con-

tain temperature5mild. From here the new tree in Fig. 6.8B is created, with

counts projected from the original tree corresponding to the set of instances that

are conditional on the presence of temperature5mild. This is done by propagat-

ing the counts from the temperature5mild nodes up the tree, each node receiving

the sum of its children’s counts.

A quick glance at the header table for this new FP-tree shows that the temper-

ature5mild pattern cannot be grown any larger because there are no individual

items, conditional on temperature5mild, that meet the minimum support thresh-

old. Note, however, that it is necessary to create the whole Fig. 6.8B tree in order

to discover this, because it is effectively being created bottom up and the counts

in the header table to the left are computed from the numbers in the tree. The

recursion exits at this point, and processing continues on the remaining header

table items in the original FP-tree.

Fig. 6.8C shows a second example, the FP-tree that results from following the

header table link for humidity5 normal. Here the windy5 false node has a count of

4, corresponding to the four instances that had humidity5 normal in its left branch in

the original tree. Similarly, play5 yes has a count of 6, corresponding to the four

instances from windy5 false and the two instances that contain humidity5 normal

from the middle branch of the subtree rooted at play5 yes in Fig. 6.8A.

Processing the header list for this FP-tree shows that the humidity5 normal

item set can be grown to include play5 yes since these two occur together six

times, which meets the minimum support constraint. This corresponds to the

second item set in Table 6.1D, which in fact completes the output. However, in

order to be sure that there are no other eligible item sets it is necessary to

continue processing the entire header link table in Fig. 6.8A.

Once the recursive tree mining process is complete all large item sets that

meet the minimum support threshold have been found. Then association rules are

240 CHAPTER 6 Trees and rules

created using the approach explained in Section 4.5. Studies have claimed that

the FP-growth algorithm is up to an order of magnitude faster than Apriori at

finding large item sets, although this depends on the details of the implementation

and the nature of the dataset.

DISCUSSION

The process of recursively creating projected FP-trees can be efficiently

implemented within a single prefix tree structure by having a list of fre-

quencies, indexed by recursion depth, at each node in the tree and each ele-

ment of the header table. The tree structure itself is usually far smaller than

the original dataset, and if the dataset is dense it achieves a high level of com-

pression. This outweighs the overhead imposed by the pointers and counters

that must be maintained at each node. Only when the support threshold is set

very low does the FP-tree’s ability to compress the dataset degrade. Under

these conditions, the tree becomes bushy, with little node sharing. On massive

datasets for which the FP-tree exceeds main memory, disk-resident trees can

be constructed using indexing techniques that have been developed for rela-

tional database systems.

The FP-tree data structure and FP-growth algorithm for finding large item

sets without candidate generation were introduced by Han, Pei, and Yin (2000)

following pioneering work by Zaki, Parthasarathy, Ogihara, and Li (1997);

Han, Pei, Yin, and Mao (2004) give a more comprehensive description. It has

been extended in various ways. Wang, Han, and Pei (2003) develop an algo-

rithm called CLOSET1 to mine closed item sets, i.e., sets for which there is

no proper superset that has the same support. Finding large closed item sets

provides essentially the same information as finding the complete set of large

item sets, but produces few redundant rules and thus eases the task that users

face when examining the output of the mining process. GSP, for Generalized

Sequential Patterns, is a method based on the Apriori algorithm for mining

patterns in databases of event sequences (Srikant & Agrawal, 1996). A similar

approach to FP-growth is used for event sequences by algorithms called

PrefixSpan (Pei et al., 2004) and CloSpan (Yan, Han, & Afshar, 2003), and for

graph patterns by algorithms called gSpan (Yan & Han, 2002) and CloseGraph

(Yan & Han, 2003).

Ceglar and Roddick (2006) provide a comprehensive survey of association

rule mining. Some authors have worked on integrating association rule mining

with classification. For example, Liu, Hsu, and Ma (1998) mine a kind of associa-

tion rule that they call a “class association rule,” and build a classifier on the rules

that are found using a technique they call CBA. Mutter, Hall, and Frank (2004)

use classification to evaluate the output of confidence-based association rule min-

ing, and find that standard learners for classification rules are generally preferable

to CBA when run time and size of the rule sets is of concern.

2416.3 Association Rules

6.4 WEKA IMPLEMENTATIONS
• Decision trees

J48 (implementation of C4.5)

SimpleCart (minimum cost-complexity pruning à la CART, in the

simpleCART package)

REPTree (reduced-error pruning)

• Classification rules

JRip (RIPPER rule learner)

Part (rules from partial decision trees)

Ridor (ripple-down rule learner, in the ridor package)

• Association rules

FPGrowth (frequent pattern trees).

GeneralizedSequentialPatterns (find large item trees in sequential data, in

the generalizedSequentialPatterns package)

CBA (mining class association rules, in the classAssociationRules package)

242 CHAPTER 6 Trees and rules

7Extending instance-based
and linear models

CHAPTER OUTLINE

7.1 Instance-Based Learning ..244

Reducing the Number of Exemplars ...245

Pruning Noisy Exemplars ..245

Weighting Attributes ...246

Generalizing Exemplars...247

Distance Functions for Generalized Exemplars ..248

Generalized Distance Functions ...250

Discussion ...250

7.2 Extending Linear Models ..252

The Maximum Margin Hyperplane..253

Nonlinear Class Boundaries...254

Support Vector Regression...256

Kernel Ridge Regression ...258

The Kernel Perceptron ..260

Multilayer Perceptrons ..261

Radial Basis Function Networks...270

Stochastic Gradient Descent..270

Discussion ...272

7.3 Numeric Prediction With Local Linear Models ...273

Model Trees ...274

Building the Tree..275

Pruning the Tree...275

Nominal Attributes ...276

Missing Values ...276

Pseudocode for Model Tree Induction...277

Rules From Model Trees..281

Locally Weighted Linear Regression ...281

Discussion ...283

7.4 WEKA Implementations...284

Instance-based learning and fitting linear models are both classic techniques that

have been used for many decades to solve prediction tasks in statistics. In this

chapter, we show how these basic methods can be extended to tackle more chal-

lenging tasks.

Basic instance-based learning using the nearest-neighbor classifier is quite

fickle in the presence of noise and irrelevant attributes, and its predictive perfor-

mance hinges on employing a distance function that matches the task at hand. It

requires the entire training data to be stored, which may not be desirable or even

feasible in practice. Finally, it provides no insight into what has been “learned.”

To address these deficiencies, we will show how to reduce the number of training

examples, how to guard against noisy examples, how to weight attributes to take

account of their importance, how to generalize examples to rules to provide

insight, and how to generalize distance functions to different types of data.

For linear models, we discuss several ways of extending their applicability to

situations where the output is not a linear function of the original attributes. One

is to increase the mathematical complexity of the model by forming new attri-

butes based on the original ones, or by combining the output of many linear mod-

els to form a far more complex function. The first approach, applied naı̈vely,

greatly increases the computational demands of the learning problem. However, it

turns out that there is a neat mathematical device—known as the “kernel trick”—

that resolves this issue. We discuss several kernel-based learning methods: sup-

port vector machines, kernel regression, and kernel perceptrons. The second

approach, based on nonlinear transformations of the outputs of linear models,

yields what is known as an artificial neural network. We will discuss multilayer

perceptrons, a widely used type of neural network for classification and regres-

sion. We will also explain stochastic gradient descent, a simple and fast technique

for learning many of the models we discuss—both basic linear models and their

extended versions.

We also discuss two other ways to extend linear models. One is to build local

linear models by dividing the instance space into regions using a tree learner and

fitting models to the leaves of the tree, yielding so-called model trees. Another is

to combine instance-based learning with linear models, yielding locally weighted

regression. The former approach produces an intelligible model, in contrast to

most of the other approaches discussed in this chapter; the latter naturally accom-

modates incremental learning.

7.1 INSTANCE-BASED LEARNING
In Section 4.7 we saw how the nearest-neighbor rule can be used to implement a

basic form of instance-based learning. There are several practical problems with

this simple scheme. First, it tends to be slow for large training sets, because the

entire set must be searched for each test instance—unless sophisticated data

244 CHAPTER 7 Extending instance-based and linear models

structures such as kD-trees or ball trees are used. Second, it performs badly with

noisy data, because the class of a test instance is determined by its single nearest

neighbor without any “averaging” to help eliminate noise. Third, it performs badly

when different attributes affect the outcome to different extents—in the extreme

case, when some attributes are completely irrelevant—because all attributes con-

tribute equally to the distance formula. Fourth, it does not perform explicit gener-

alization, although we intimated in Section 3.5 (and illustrated in Fig. 3.10) that

some instance-based learning systems do indeed perform explicit generalization.

REDUCING THE NUMBER OF EXEMPLARS

The plain nearest-neighbor rule stores a lot of redundant exemplars. Yet it is

almost always completely unnecessary to save all the examples seen so far. A

simple variant is to classify each example with respect to the examples already

seen and to save only ones that are misclassified. We use the term exemplars to

refer to the already-seen instances that are used for classification. Discarding cor-

rectly classified instances reduces the number of exemplars and proves to be an

effective way to prune the exemplar database. Ideally, only a single exemplar is

stored for each important region of the instance space. However, early in the

learning process examples may be discarded that later turn out to be important,

possibly leading to some decrease in predictive accuracy. As the number of stored

instances increases, the accuracy of the model improves, and so the system makes

fewer mistakes.

Unfortunately, the strategy of only storing misclassified instances does not

work well in the face of noise. Noisy examples are very likely to be misclassified,

and so the set of stored exemplars tends to accumulate those that are least useful.

This effect is easily observed experimentally. Thus this strategy is only a stepping

stone on the way toward more effective instance-based learners.

PRUNING NOISY EXEMPLARS

Noisy exemplars inevitably lower the performance of any nearest-neighbor

scheme that does not suppress them, because they have the effect of repeatedly

misclassifying new instances. There are two ways of dealing with this. One is to

locate, instead of the single nearest neighbor, the k nearest neighbors for some

predetermined constant k, and assign the majority class to the unknown instance.

The only problem here is determining a suitable value of k. Plain nearest-

neighbor learning corresponds to k5 1. The more noise, the greater the optimal

value of k. One way to proceed is to perform cross-validation tests with several

different values and choose the best. Although this is expensive in computation

time, it often yields excellent predictive performance.

A second solution is to monitor the performance of each exemplar that is

stored and discard ones that do not perform well. This can be done by keeping a

record of the number of correct and incorrect classification decisions that each

2457.1 Instance-Based Learning

exemplar makes. Two predetermined thresholds are set on the success ratio.

When an exemplar’s performance drops below the lower one, it is deleted from

the exemplar set. If its performance exceeds the upper threshold, it is used for

predicting the class of new instances. If its performance lies between the two, it is

not used for prediction but, whenever it is the closest exemplar to the new

instance (and thus would have been used for prediction if its performance record

had been good enough), its success statistics are updated as though it had been

used to classify that new instance.

To accomplish this, we use the confidence limits on the success probability of

a Bernoulli process that we derived in Section 5.2. Recall that we took a certain

number of successes S out of a total number of trials N as evidence on which to

base confidence limits on the true underlying success rate p. Given a certain con-

fidence level of, say, 5%, we can calculate upper and lower bounds and be 95%

sure that p lies between them.

To apply this to the problem of deciding when to accept a particular exemplar,

suppose that it has been used n times to classify other instances and that s of these

have been successes. That allows us to estimate bounds, at a particular confidence

level, on the true success rate of this exemplar. Now suppose that the exemplar’s

class has occurred c times out of a total number N of training instances. This

allows us to estimate bounds on the default success rate, i.e., the probability of

successfully classifying an instance of this class without any information about

the attribute values. We insist that the lower confidence bound on an exemplar’s

success rate exceeds the upper confidence bound on the default success rate. We

use the same method to devise a criterion for rejecting a poorly performing exem-

plar, requiring that the upper confidence bound on its success rate lies below the

lower confidence bound on the default success rate.

With suitable choice of thresholds, this scheme works well. In a particular

implementation, called IB3 for Instance-Based learner version 3, a confidence

level of 5% is used to determine acceptance, whereas a level of 12.5% is used for

rejection. The lower percentage figure produces a wider confidence interval,

which makes for a more stringent criterion because it is harder for the lower

bound of one interval to lie above the upper bound of the other. The criterion for

acceptance is more stringent than for rejection, making it more difficult for an

instance to be accepted. The reason for a less stringent rejection criterion is that

there is little to be lost by dropping instances with only moderately poor classifi-

cation accuracies: they will probably be replaced by similar instances later. Using

these thresholds has been found to improve the performance of instance-based

learning and, at the same time, dramatically reduce the number of exemplars—

particularly noisy exemplars—that are stored.

WEIGHTING ATTRIBUTES

The Euclidean distance function, modified to scale all attribute values to between

0 and 1, works well in domains in which the attributes are equally relevant to the

246 CHAPTER 7 Extending instance-based and linear models

outcome. Such domains, however, are the exception rather than the rule. In most

domains some attributes are irrelevant, and some relevant ones are less important

than others. The next improvement in instance-based learning is to learn the rele-

vance of each attribute incrementally by dynamically updating feature weights.

In some schemes, the weights are class specific in that an attribute may be

more important to one class than to another. To cater for this, a description is pro-

duced for each class that distinguishes its members from members of all other

classes. This leads to the problem that an unknown test instance may be assigned

to several different classes, or no classes at all—a problem that is all too familiar

from our description of rule induction. Heuristic solutions are applied to resolve

these situations.

The weighted Euclidean distance metric incorporates the feature weights w1,

w2,. . ., wn on each dimension:ffi
w2
1ðx12y1Þ2 1w2

2ðx22y2Þ2 1?1w2
nðxn2ynÞ2

q
:

In the case of class-specific feature weights, there will be a separate set of

weights for each class.

All attribute weights are updated after each training instance is classified, and

the most similar exemplar (or the most similar exemplar of each class) is used as

the basis for updating. Call the training instance x and the most similar exemplar y.

For each attribute i, the difference jxi2 yij is a measure of the contribution of that

attribute to the decision. If this difference is small then the attribute contributes

positively, whereas if it is large it may contribute negatively. The basic idea is to

update the ith weight on the basis of the size of this difference and whether the

classification was indeed correct. If the classification is correct the associated

weight is increased and if it is incorrect it is decreased, the amount of increase or

decrease being governed by the size of the difference: large if the difference is

small and vice versa. The weight change is generally followed by a renormalization

step. A simpler strategy, which may be equally effective, is to leave the weights

alone if the decision is correct and if it is incorrect to increase the weights for those

attributes that differ most greatly, accentuating the difference.

A good test of whether an attribute weighting scheme works is to add irrele-

vant attributes to all examples in a data set. Ideally, the introduction of irrelevant

attributes should not affect either the quality of predictions or the number of

exemplars stored.

GENERALIZING EXEMPLARS

Removing training exemplars that are noisy or redundant aids understanding of

the structure of the data—to some extent. To improve interpretability further,

exemplars need to be generalized.

Generalized exemplars are rectangular regions of instance space, called hyper-

rectangles because they are high-dimensional. When classifying new instances it

2477.1 Instance-Based Learning

is necessary to modify the distance function as described below to allow the dis-

tance to a hyperrectangle to be computed. When a new exemplar is classified cor-

rectly, it is generalized by simply merging it with the nearest exemplar of the

same class. The nearest exemplar may be either a single instance or a hyperrec-

tangle. In the former case, a new hyperrectangle is created that covers the old and

the new instance. In the latter, the hyperrectangle is enlarged to encompass the

new instance. Finally, if the prediction is incorrect and it was a hyperrectangle

that was responsible for the incorrect prediction, the hyperrectangle’s boundaries

are altered so that it shrinks away from the new instance.

It is necessary to decide at the outset whether overgeneralization caused by

nesting or overlapping hyperrectangles is to be permitted or not. If it is to be

avoided, a check is made before generalizing a new example to see whether any

regions of feature space conflict with the proposed new hyperrectangle. If they

do, the generalization is aborted and the example is stored verbatim. Note that

overlapping hyperrectangles are precisely analogous to situations in which the

same example is covered by two or more rules in a rule set.

In some schemes generalized exemplars can be nested in that they may be

completely contained within one another in the same way that, in some represen-

tations, rules may have exceptions. To do this, whenever an example is incor-

rectly classified, a fallback heuristic is tried using the second nearest neighbor if

it would have produced a correct prediction in a further attempt to perform gener-

alization. This second-chance mechanism promotes nesting of hyperrectangles. If

an example falls within a rectangle of the wrong class that already contains an

exemplar of the same class, the two are generalized into a new “exception” hyper-

rectangle nested within the original one. For nested generalized exemplars, the

learning process frequently begins with a small number of seed instances to pre-

vent all examples of the same class from being generalized into a single rectangle

that covers most of the problem space.

DISTANCE FUNCTIONS FOR GENERALIZED EXEMPLARS

With generalized exemplars it is necessary to generalize the distance function to

compute the distance from an instance to a generalized exemplar, as well as

to another instance. The distance from an instance to a hyperrectangle is defined

to be zero if the point lies within the hyperrectangle. The simplest way to gener-

alize the distance function to compute the distance from an exterior point to a

hyperrectangle is to choose the closest instance within it and measure the dis-

tance to that. However, this reduces the benefit of generalization because it rein-

troduces dependence on a particular single example. More precisely, whereas

new instances that happen to lie within a hyperrectangle continue to benefit

from generalizations, ones that lie outside do not. It might be better to use the

distance from the nearest part of the hyperrectangle instead.

Fig. 7.1 shows the implicit boundaries that are formed between two rectangu-

lar classes if the distance metric is adjusted to measure distance to the nearest

248 CHAPTER 7 Extending instance-based and linear models

point of a rectangle. Even in two dimensions the boundary contains a total of

nine regions (they are numbered for easy identification); the situation will be

more complex for higher-dimensional hyperrectangles.

Proceeding from the lower left, the first region, in which the boundary is lin-

ear, lies outside the extent of both rectangles—to the left of both borders of the

larger one and below both borders of the smaller one. The second is within the

extent of one rectangle—to the right of the leftmost border of the larger rectan-

gle—but outside that of the other—below both borders of the smaller one. In this

region the boundary is parabolic, because the locus of a point that is the same dis-

tance from a given line as from a given point is a parabola. The third region is

where the boundary meets the lower border of the larger rectangle when projected

upward and the left border of the smaller one when projected to the right. The

boundary is linear in this region, because it is equidistant from these two borders.

The fourth is where the boundary lies to the right of the larger rectangle but

below the bottom of that rectangle. In this case the boundary is parabolic because

it is the locus of points equidistant from the lower right corner of the larger rect-

angle and the left side of the smaller one. The fifth region lies between the two

rectangles: here the boundary is vertical. The pattern is repeated in the upper right

part of the diagram: first parabolic, then linear, then parabolic (although this par-

ticular parabola is almost indistinguishable from a straight line), and finally linear

as the boundary finally escapes from the scope of both rectangles.

1

2

3

4

5

6
7

8

9

FIGURE 7.1

A boundary between two rectangular classes.

2497.1 Instance-Based Learning

This simple situation certainly defines a complex boundary! Of course it is not

necessary to represent the boundary explicitly; it is generated implicitly by the

nearest-neighbor calculation. Nevertheless, the solution is still not a very good

one. Whereas taking the distance from the nearest instance within a hyperrectan-

gle is overly dependent on the position of that particular instance, taking the

distance to the nearest point of the hyperrectangle is overly dependent on that cor-

ner of the rectangle—the nearest example might be a long way from the corner.

A final problem concerns measuring the distance to hyperrectangles that over-

lap or are nested. This complicates the situation because an instance may fall

within more than one hyperrectangle. A suitable heuristic for use in this case is to

choose the class of the most specific hyperrectangle containing the instance, i.e.,

the one covering the smallest area of instance space.

Whether or not overlap or nesting is permitted, the distance function should

be modified to take account of both the observed prediction accuracy of exem-

plars and the relative importance of different features, as described in the sections

above on pruning noisy exemplars and attribute weighting.

GENERALIZED DISTANCE FUNCTIONS

There are many different ways of defining a distance function, and it is hard to

find rational grounds for any particular choice. An elegant solution is to consider

one instance being transformed into another through a sequence of predefined ele-

mentary operations and to calculate the probability of such a sequence occurring

if operations are chosen randomly. Robustness is improved if all possible transfor-

mation paths are considered, weighted by their probabilities, and the scheme gen-

eralizes naturally to the problem of calculating the distance between an instance

and a set of other instances by considering transformations to all instances in the

set. Through such a technique it is possible to consider each instance as exerting

a “sphere of influence,” but a sphere with soft boundaries rather than the hard-

edged cutoff implied by the k-nearest-neighbor rule, in which any particular

example is either “in” or “out” of the decision.

With such a measure, given a test instance whose class is unknown, its distance

to the set of all training instances in each class in turn is calculated, and the closest

class is chosen. It turns out that nominal and numeric attributes can be treated in a

uniform manner within this transformation-based approach by defining different

transformation sets, and it is even possible to take account of unusual attribute

types—such as degrees of arc or days of the week, which are measured on a circu-

lar scale.

DISCUSSION

Nearest-neighbor methods gained popularity in machine learning through the

work of Aha (1992), who showed that, when combined with noisy exemplar prun-

ing and attribute weighting, instance-based learning performs well in comparison

250 CHAPTER 7 Extending instance-based and linear models

with other methods. It is worth noting that although we have described it solely in

the context of classification rather than numeric prediction problems, it applies to

these equally well: predictions can be obtained by combining the predicted values

of the k nearest neighbors and weighting them by distance.

Viewed in instance space, the standard rule- and tree-based representations are

only capable of representing class boundaries that are parallel to the axes defined

by the attributes. This is not a handicap for nominal attributes, but it is for

numeric ones. Nonaxis-parallel class boundaries can only be approximated by

covering the region above or below the boundary with several axis-parallel rec-

tangles, the number of rectangles determining the degree of approximation. In

contrast, the instance-based method can easily represent arbitrary linear bound-

aries. Even with just one example of each of two classes, the boundary implied

by the nearest-neighbor rule is a straight line of arbitrary orientation, namely, the

perpendicular bisector of the line joining the examples.

Plain instance-based learning does not produce explicit knowledge representa-

tions except by selecting representative exemplars. However, when combined

with exemplar generalization, a set of rules can be obtained that may be compared

with those produced by other machine learning schemes. The rules tend to be

more conservative because the distance metric, modified to incorporate general-

ized exemplars, can be used to process examples that do not fall within the rules.

This reduces the pressure to produce rules that cover the whole example space or

even all of the training examples. On the other hand, the incremental nature of

the instance-based learning scheme we have described means that rules are

formed eagerly, after only part of the training set has been seen; and this inevita-

bly reduces their quality.

We have not given precise algorithms for variants of instance-based learning

that involve generalization because it is not clear what the best way to do general-

ization is. Salzberg (1991) suggested that generalization with nested exemplars

can achieve a high degree of classification of accuracy on a variety of different

problems, a conclusion disputed by Wettschereck and Dietterich (1994), who

argued that these results were fortuitous and did not hold in other domains.

Martin (1995) explored the idea that it is not generalization but the overgenerali-

zation that occurs when hyperrectangles nest or overlap that is responsible

for poor performance and demonstrated that if nesting and overlapping are

avoided excellent results are achieved in a large number of domains. The general-

ized distance function based on transformations is described by Cleary and Trigg

(1995).

Exemplar generalization is a rare example of a learning strategy in which the

search proceeds from specific to general rather than from general to specific as in

the case of the tree and rule induction schemes we have described. There is no

particular reason why specific-to-general searching should necessarily be handi-

capped by forcing the examples to be considered in a strictly incremental fashion,

and batch-oriented approaches exist that generate rules using a basic instance-

based approach. Moreover, it seems that the idea of producing conservative

2517.1 Instance-Based Learning

generalizations and coping with instances that are not covered by choosing the

“closest” generalization may be generally useful for tree and rule inducers.

7.2 EXTENDING LINEAR MODELS
Section 4.6 described how simple linear models can be used for classification in

situations where all attributes are numeric. Their biggest disadvantage is that they

can only represent linear boundaries between classes, which makes them too sim-

ple for many practical applications. Support vector machines use linear models to

implement nonlinear class boundaries. (Although it is a widely used term, support

vector machines is something of a misnomer: these are algorithms, not machines.)

How can this be possible? The trick is easy: transform the input using a nonlinear

mapping. In other words, transform the instance space into a new space. With a

nonlinear mapping, a straight line in the new space does not look straight in the

original instance space. A linear model constructed in the new space can represent

a nonlinear decision boundary in the original space.

Imagine applying this idea directly to the ordinary linear models in

Section 4.6. For example, the original set of attributes could be replaced by one

giving all products of n factors that can be constructed from these attributes. An

example for two attributes, including all products with three factors, is

x5w1a
3
1 1w2a

2
1a2 1w3a1a

2
2 1w4a

3
2:

Here, x is the outcome, a1 and a2 are the two attribute values, and there are

four weights wi to be learned. As described in Section 4.6, the result can be used

for classification by training one linear system for each class and assigning an

unknown instance to the class that gives the greatest output x—the standard tech-

nique of multiresponse linear regression. Then, a1 and a2 will be the attribute

values for the test instance. To generate a linear model in the space spanned by

these products, each training instance is mapped into the new space by computing

all possible three-factor products of its two attribute values. The learning algorithm

is then applied to the transformed instances. To classify an instance, it is processed

by the same transformation prior to classification. There is nothing to stop us from

adding in more synthetic attributes. For example, if a constant term were included,

the original attributes and all two-factor products of them would yield a total of

ten weights to be learned. (Alternatively, adding an additional attribute with a con-

stant value would have the same effect.) Indeed, polynomials of sufficiently high

degree can approximate arbitrary decision boundaries to any required accuracy.

It seems too good to be true—and it is. As you will probably have guessed,

problems arise with this procedure due to the large number of coefficients intro-

duced by the transformation in any realistic setting. The first snag is computa-

tional complexity. With 10 attributes in the original data set, suppose we want to

include all products with 5 factors: then the learning algorithm will have to

252 CHAPTER 7 Extending instance-based and linear models

determine more than 2000 coefficients. If its run time is cubic in the number of

attributes, as it is for linear regression, training will be infeasible. That is a prob-

lem of practicality. The second problem is one of principle: overfitting. If

the number of coefficients is large relative to the number of training instances,

the resulting model will be “too nonlinear”—it will overfit the training data.

There are just too many parameters in the model.

THE MAXIMUM MARGIN HYPERPLANE

Support vector machines address both problems. They are based on an algorithm

that finds a special kind of linear model: the maximum margin hyperplane. We

already know what a hyperplane is—it is just another term for a linear model. To

visualize a maximum margin hyperplane, imagine a two-class data set whose clas-

ses are linearly separable; i.e., there is a hyperplane in instance space that classifies

all training instances correctly. The maximum margin hyperplane is the one that

gives the greatest separation between the classes—it comes no closer to either than

it has to. An example is shown in Fig. 7.2, where the classes are represented by

open and filled circles, respectively. Technically, the convex hull of a set of points

is the tightest enclosing convex polygon: its outline emerges when you connect

every point of the set to every other point. Because we have supposed that the two

classes are linearly separable, their convex hulls cannot overlap. Among all hyper-

planes that separate the classes, the maximum margin hyperplane is the one that is

as far as possible from both convex hulls—it is the perpendicular bisector of the

shortest line connecting the hulls, which is shown dashed in the figure.

The instances that are closest to the maximum margin hyperplane—the ones

with minimum distance to it—are called support vectors. There is always at least

one support vector for each class, and often there are more. The important thing

Maximum margin hyperplane

Support vectors

FIGURE 7.2

A maximum margin hyperplane.

2537.2 Extending Linear Models

is that the set of support vectors uniquely defines the maximum margin hyper-

plane for the learning problem. Given the support vectors for the two classes, we

can easily construct the maximum margin hyperplane. All other training instances

are irrelevant—they can be deleted without changing the position and orientation

of the hyperplane.

A hyperplane separating the two classes might be written

x5w0 1w1a1 1w2a2

in the two-attribute case, where a1 and a2 are the attribute values, and there are

three weights wi to be learned. However, the equation defining the maximum

margin hyperplane can be written in another form, in terms of the support vectors.

Write the class value y of a training instance as either 1 (for yes, it is in this class)

or 21 (for no, it is not). Then the maximum margin hyperplane can be written

x5 b1
X

i is support vector

αiyiaðiÞUa:

Here, yi is the class value of training instance a(i), while b and αi are numeric

parameters that have to be determined by the learning algorithm. Note that a(i) and

a are vectors. The vector a represents a test instance—just as the vector [a1, a2]

represented a test instance in the earlier formulation. The vectors a(i) are the sup-

port vectors, those circled in Fig. 7.2; they are selected members of the training set.

The term aðiÞUa represents the dot product of the test instance with one of the sup-

port vectors: aðiÞUa5PjaðiÞjaj. If you are not familiar with dot product notation,

you should still be able to understand the gist of what follows: just think of a(i) as

the whole set of attribute values for the i-th support vector. Finally, b and αi are

parameters that determine the hyperplane, just as the weights w0, w1, and w2 are

parameters that determine the hyperplane in the earlier formulation.

It turns out that finding the support vectors for the training instances and

determining the parameters b and αi belong to a standard class of optimization

problems known as constrained quadratic optimization problems. There are off-

the-shelf software packages for solving these problems. However, the computa-

tional complexity can be reduced, and learning accelerated, if special purpose

algorithms for training support vector machines are applied—but the details of

these algorithms lie beyond the scope of this book.

NONLINEAR CLASS BOUNDARIES

We motivated the introduction of support vector machines by claiming that they

can be used to model nonlinear class boundaries. However, so far we have only

described the linear case. Consider what happens when an attribute transformation,

as described above, is applied to the training data before determining the maximum

margin hyperplane. Recall that there are two problems with the straightforward

application of such transformations to linear models: computational complexity, on

the one hand, and overfitting, on the other.

254 CHAPTER 7 Extending instance-based and linear models

With support vectors, overfitting is reduced. The reason is that it is inevitably

associated with instability: with an algorithm that overfits, changing one or two

instance vectors will make sweeping changes to large sections of the decision

boundary. But the maximum margin hyperplane is relatively stable: it only moves

if training instances are added or deleted that are support vectors—and this is true

even in the high-dimensional space spanned by the nonlinear transformation.

Overfitting is caused by too much flexibility in the decision boundary. The sup-

port vectors are global representatives of the whole set of training points, and

there are often relatively few of them, which gives little flexibility. Thus overfit-

ting is less likely to occur.

What about computational complexity? This is still a problem. Suppose that

the transformed space is a high-dimensional one so that the transformed support

vectors and test instance have many components. According to the preceding

equation, every time an instance is classified its dot product with all support vec-

tors must be calculated. In the high-dimensional space produced by the nonlinear

mapping this is rather expensive. Obtaining the dot product involves one multipli-

cation and one addition for each attribute, and the number of attributes in the new

space can be huge. This problem occurs not only during classification but also

during training, because the optimization algorithms have to calculate the same

dot products very frequently.

Fortunately, it turns out that it is possible to calculate the dot product before

the nonlinear mapping is performed, on the original attribute set. A high-

dimensional version of the preceding equation is simply

x5 b1
X

αiyiðaðiÞUaÞn;

where n is chosen as the number of factors in the transformation (three in the exam-

ple we used earlier). If you expand the term ðaðiÞUaÞn, you will find that it contains

all the high-dimensional terms that would have been involved if the test and train-

ing vectors were first transformed by including all products of n factors and the dot

product was taken of the result. (If you actually do the calculation, you will notice

that some constant factors—binomial coefficients—are introduced. However, it is

primarily the dimensionality of the space that concerns us; the constants merely

scale the axes.) Because of this mathematical equivalence, the dot products can be

computed in the original low-dimensional space, and the problem becomes feasi-

ble. In implementation terms, you take a software package for constrained qua-

dratic optimization and every time aðiÞUa is evaluated you evaluate ðaðiÞUaÞn
instead. It is as simple as that, because in both the optimization and the classifica-

tion algorithms these vectors are only ever used in this dot product form. The

training vectors, including the support vectors, and the test instance all remain in

the original low-dimensional space throughout the calculations.

The function ðxUyÞn, which computes the dot product of two vectors x and y

and raises the result to the power n, is called a polynomial kernel. A good way of

2557.2 Extending Linear Models

choosing the value of n is to start with 1 (a linear model) and increment it until

the estimated error ceases to improve. Usually, quite small values suffice. To

include lower-order terms, we can use the kernel ðxUy11Þn.
Other kernel functions can be used instead to implement different nonlinear

mappings. Two that are often suggested are the radial basis function (RBF) kernel

and the sigmoid kernel. Which one produces the best results depends on the appli-

cation, although the differences are rarely large in practice. It is interesting to

note that a support vector machine with the RBF kernel corresponds to a type of

neural network called an RBF network (which we describe later), and one with

the sigmoid kernel implements another type of neural network, a multilayer per-

ceptron with one hidden layer (also described later).

Mathematically, any function Kðx; yÞ is a kernel function if it can be written

Kðx; yÞ5ΦðxÞUΦðyÞ, where Φ is a function that maps an instance into a (poten-

tially high-dimensional) feature space. In other words, the kernel function repre-

sents a dot product in the feature space created by Φ. Practitioners sometimes

apply functions that are not proper kernel functions (the sigmoid kernel with cer-

tain parameter settings is an example). Despite the lack of theoretical guarantees,

this can nevertheless produce accurate classifiers.

Throughout this section, we have assumed that the training data is linearly

separable—either in the instance space or in the new space spanned by the nonlin-

ear mapping. It turns out that support vector machines can be generalized to the

case where the training data is not separable. This is accomplished by placing an

upper bound C on the coefficients αi. Unfortunately this parameter must be cho-

sen by the user, and the best setting can only be determined by experimentation.

Also, except in trivial cases, it is not possible to determine a priori whether the

data is linearly separable or not.

Finally, we should mention that compared with other methods such as decision

tree learners, even the fastest training algorithms for support vector machines

are slow when applied in the nonlinear setting. On the other hand, they often pro-

duce very accurate classifiers because subtle and complex decision boundaries

can be obtained.

SUPPORT VECTOR REGRESSION

The concept of a maximum margin hyperplane only applies to classification.

However, support vector machine algorithms have been developed for numeric

prediction that share many of the properties encountered in the classification case:

they produce a model that can usually be expressed in terms of a few support vec-

tors and can be applied to nonlinear problems using kernel functions. As with reg-

ular support vector machines, we will describe the concepts involved but do not

attempt to describe the algorithms that actually perform the work.

As with linear regression, covered in Section 4.6, the basic idea is to find a

function that approximates the training points well by minimizing the prediction

error. The crucial difference is that all deviations up to a user-specified parameter

256 CHAPTER 7 Extending instance-based and linear models

ε are simply discarded. Also, when minimizing the error, the risk of overfitting is

reduced by simultaneously trying to maximize the flatness of the function.

Another difference is that what is minimized is normally the predictions’ absolute

error instead of the squared error used in linear regression. (There are, however,

versions of the algorithm that use the squared error instead.)

A user-specified parameter ε defines a tube around the regression function in

which errors are ignored: for linear support vector regression, the tube is a cylin-

der. If all training points can fit within a tube of width 2ε, the algorithm outputs

the function in the middle of the flattest tube that encloses them. In this case the

total perceived error is zero. Fig. 7.3A shows a regression problem with one attri-

bute, a numeric class, and eight instances. In this case ε was set to 1, so the width

of the tube around the regression function (indicated by dotted lines) is 2.

Fig. 7.3B shows the outcome of the learning process when ε is set to 2. As you

can see, the wider tube makes it possible to learn a flatter function.

The value of ε controls how closely the function will fit the training data. Too

large a value will produce a meaningless predictor—in the extreme case, when 2ε
exceeds the range of class values in the training data, the regression line is hori-

zontal and the algorithm just predicts the mean class value. On the other hand, for

small values of ε there may be no tube that encloses all the data. In that case

some training points will have nonzero error, and there will be a tradeoff between

the prediction error and the tube’s flatness. In Fig. 7.3C, ε was set to 0.5 and there

is no tube of width 1 that encloses all the data.

For the linear case, the support vector regression function can be written

x5 b1
X

i is support vector

αiaðiÞUa:

As with classification, the dot product can be replaced by a kernel function for

nonlinear problems. The support vectors are all those points that do not fall

strictly within the tube—i.e., the points outside the tube and on its border. As

with classification, all other points have coefficient 0 and can be deleted from the

training data without changing the outcome of the learning process—just as in the

classification case, we obtain a so-called sparse model. In contrast to the classifi-

cation case, the αi may be negative.

 0

 2

 4

 6

 8

 10
(A) (B) (C)

 0 2 4 6 8 10

C
la

ss

Attribute

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

C
la

ss

Attribute

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

C
la

ss

Attribute

FIGURE 7.3

Support vector regression: (A) ε51; (B) ε52; (C) ε50.5.

2577.2 Extending Linear Models

We have mentioned that as well as minimizing the error, the algorithm simul-

taneously tries to maximize the flatness of the regression function. In Fig. 7.3A

and B, where there is a tube that encloses all the training data, the algorithm sim-

ply outputs the flattest tube that does so. However, in Fig. 7.3C there is no tube

with error 0, and a tradeoff is struck between the prediction error and the tube’s

flatness. This tradeoff is controlled by enforcing an upper limit C on the absolute

value of the coefficients αi. The upper limit restricts the influence of the support

vectors on the shape of the regression function and is a parameter that the user

must specify in addition to ε. The larger C is, the more closely the function can

fit the data. In the degenerate case ε5 0 the algorithm simply performs least-

absolute-error regression under the coefficient size constraint, and all training

instances become support vectors. Conversely, if ε is large enough that the tube

can enclose all the data, the error becomes zero, there is no tradeoff to make, and

the algorithm outputs the flattest tube that encloses the data irrespective of the

value of C.

KERNEL RIDGE REGRESSION

Chapter 4, Algorithms: the basic methods, introduced classic least-squares linear

regression as a technique for predicting numeric quantities. In “Nonlinear class

boundaries” section we saw how the powerful idea of support vector machines

can be applied to regression, and, furthermore, how nonlinear problems can be

tackled by replacing the dot product in the support vector formulation by a kernel

function—this is often known as the “kernel trick.” For classic linear regression

using squared loss, only simple matrix operations are needed to find the model,

but this is not the case for support vector regression with the user-specified loss

parameter ε. It would be nice to combine the power of the kernel trick with the

simplicity of standard least-squares regression. Kernel ridge regression does just

that. In contrast to support vector regression, it does not ignore errors smaller

than ε, and the squared error is used instead of the absolute error.

Instead of expressing the linear regression model’s predicted class value for a

given test instance a as a weighted sum of the attribute values, as in Chapter 4,

Algorithms: the basic methods, it can be expressed as a weighted sum over the

dot products of each training instance aj and the test instance in question:

Xn
j51

αjajUa

where we assume that the function goes through the origin and an intercept is

not required. This involves a coefficient αj for each training instance, which resem-

bles the situation with support vector machines—except that here j ranges over all

instances in the training data, not just the support vectors. Again, the dot product

can be replaced by a kernel function to yield a nonlinear model.

258 CHAPTER 7 Extending instance-based and linear models

The sum of the squared errors of the model’s predictions on the training data

is given by

Xn
i51

yi2
Xn
j51

αjajUai

 !2

:

This is the squared loss, just as in Chapter 4, Algorithms: the basic methods,

and again we seek to minimize it by choosing appropriate αj’s. But now there is a

coefficient for each training instance, not just for each attribute, and most data

sets have far more instances than attributes. This means that there is a serious risk

of overfitting the training data when a kernel function is used instead of the dot

product to obtain a nonlinear model.

That is where the ridge part of kernel ridge regression comes in. Instead of

minimizing the squared loss, we trade closeness of fit against model complexity

by introducing a penalty term:

Xn
i51

yi2
Xn
j51

αjajUai

 !2

1λ
Xn
i; j51

αiαjajUai:

The second sum penalizes large coefficients. This prevents the model from

placing too much emphasis on individual training instances by giving them

large coefficients, unless this yields a correspondingly large drop in error. The

parameter λ controls the tradeoff between closeness of fit and model complex-

ity. When matrix operations are used to solve for the coefficients of the model,

the ridge penalty also has the added benefit of stabilizing degenerate cases. For

this reason, it is often applied in standard least-squares linear regression as

well.

Although kernel ridge regression has the advantage over support vector

machines of computational simplicity, one disadvantage is that there is no sparse-

ness in the vector of coefficients—in other words, no concept of “support vectors.”

This makes a difference at prediction time, because support vector machines have

to sum only over the set of support vectors, not the entire training set.

In a typical situation with more instances than attributes, kernel ridge regres-

sion is more computationally expensive than standard linear regression—even

when using the dot product rather than a kernel. This is because of the complexity

of the matrix inversion operation used to find the model’s coefficient vector.

Standard linear regression requires inverting an m3m matrix, which has com-

plexity O(m3) where m is the number of attributes in the data. Kernel ridge regres-

sion, on the other hand, involves an n3 n matrix, with complexity O(n3) where n

is the number of instances in the training data. Nevertheless, it is advantageous to

use kernel ridge regression in cases where a nonlinear fit is desired, or where

there are more attributes than training instances.

2597.2 Extending Linear Models

THE KERNEL PERCEPTRON

In Section 4.6 we introduced the perceptron algorithm for learning a linear classi-

fier. It turns out that the kernel trick can also be used to upgrade this algorithm to

learn nonlinear decision boundaries. To see this, we first revisit the linear case.

The perceptron algorithm repeatedly iterates through the training data instance by

instance and updates the weight vector every time one of these instances is mis-

classified based on the weights learned so far. The weight vector is updated

simply by adding or subtracting the instance’s attribute values to or from it. This

means that the final weight vector is just the sum of the instances that have been

misclassified. The perceptron makes its predictions based on whetherX
i
wiai

is greater or less than zero—where wi is the weight for the ith attribute and ai the

corresponding attribute value of the instance that we wish to classify. Instead, we

could use X
i

X
j
yðjÞa0ðjÞiai:

Here, a0(j) is the jth misclassified training instance, a0(j)i its ith attribute value,

and y(j) its class value (either 11 or 21). To implement this we no longer keep

track of an explicit weight vector: we simply store the instances that have been

misclassified so far and use the above expression to make a prediction.

It looks like we have gained nothing—in fact, the algorithm is much slower

because it iterates through all misclassified training instances every time a predic-

tion is made. However, closer inspection of this formula reveals that it can be

expressed in terms of dot products between instances. First, swap the summation

signs to yield

X
j
yðjÞ
X

i
a0ðjÞiai:

The second sum is just a dot product between two instances and can be

written X
j
yðjÞa0ðjÞUa:

This rings a bell! A similar expression for support vector machines enabled

the use of kernels. Indeed, we can apply exactly the same trick here and use a

kernel function instead of the dot product. Writing this function as K(. . .) givesX
j
yðjÞKða0ðjÞ; aÞ:

In this way the perceptron algorithm can learn a nonlinear classifier simply by

keeping track of the instances that have been misclassified during the training

process and using this expression to form each prediction.

260 CHAPTER 7 Extending instance-based and linear models

If a separating hyperplane exists in the high-dimensional space implicitly cre-

ated by the kernel function, this algorithm will learn one. However, it won’t learn

the maximum-margin hyperplane found by a support vector machine classifier.

This means that classification performance is usually worse. On the plus side, the

algorithm is easy to implement and supports incremental learning.

This classifier is called the kernel perceptron. It turns out that all sorts of algo-

rithms for learning linear models can be upgraded by applying the kernel trick in

a similar fashion. For example, logistic regression can be turned into kernel

logistic regression. As we saw above, the same applies to regression problems:

linear regression can also be upgraded using kernels. Again, a drawback of these

advanced methods for linear and logistic regression (if they are done in a straight-

forward manner) is that the solution is not “sparse”: every training instance

contributes to the solution vector. In support vector machines and the kernel

perceptron, only some of the training instances affect the solution, and this can

make a big difference to computational efficiency.

The solution vector found by the perceptron algorithm depends greatly on the

order in which the instances are encountered. One way to make the algorithm

more stable is to use all the weight vectors encountered during learning, not just

the final one, letting them vote on a prediction. Each weight vector contributes a

certain number of votes. Intuitively, the “correctness” of a weight vector can be

measured roughly as the number of successive trials after its inception in which it

correctly classified subsequent instances and thus didn’t have to be changed. This

measure can be used as the number of votes given to the weight vector, giving an

algorithm known as the voted perceptron that performs almost as well as a sup-

port vector machine. (Note that, as mentioned earlier, the various weight vectors

in the voted perceptron don’t need to be stored explicitly, and the kernel trick can

be applied here too.)

MULTILAYER PERCEPTRONS

Using a kernel is not the only way to create a nonlinear classifier based on the

perceptron. In fact, kernel functions are a fairly recent development in machine

learning. Previously, neural network proponents used a different approach for

nonlinear classification: they connected many simple perceptron-like models in a

hierarchical structure. This approach has seen a dramatic resurgence in the form

of deep learning, which we cover in Chapter 10, Deep learning.

Section 4.6 explained that a perceptron represents a hyperplane in instance

space. We mentioned there that it is sometimes described as an artificial “neuron.”

Of course, human and animal brains successfully undertake very complex classifi-

cation tasks—e.g., image recognition. The functionality of each individual neuron

in a brain is certainly not sufficient to perform these feats. How can they be solved

by brain-like structures? The answer must lie in the fact that the neurons in the

brain are massively interconnected, allowing a problem to be decomposed into

2617.2 Extending Linear Models

subproblems that can be solved at the neuron level. This observation inspired the

development of artificial networks of neurons—neural nets.

Consider the simple data sets in Fig. 7.4. Fig. 7.4A shows a two-dimensional

instance space with four instances having classes 0 and 1, represented by white and

black dots, respectively. No matter how you draw a straight line through this space,

you will not be able to find one that separates all the black points from all the white

ones. In other words, the problem is not linearly separable, and the simple perceptron

algorithm will fail to generate a separating hyperplane (in this two-dimensional

instance space a hyperplane is just a straight line). The situation is different in

Fig. 7.4B and C: both these problems are linearly separable. The same holds for

Fig. 7.4D, which shows two points in a one-dimensional instance space (in the case

of one dimension the separating hyperplane degenerates to a separating point).

If you are familiar with propositional logic, you may have noticed that the

four situations in Fig. 7.4 correspond to four types of logical connectives.

Fig. 7.4A represents a logical XOR, where the class is 1 if and only if exactly

one of the attributes has value 1. Fig. 7.4B represents logical AND, where the

class is 1 if and only if both attributes have value 1. Fig. 7.4C represents OR,

where the class is 0 only if both attributes have value 0. Fig. 7.4D represents

NOT, where the class is 0 if and only if the attribute has value 1. Because the last

three are linearly separable, a perceptron can represent AND, OR, and NOT.

Indeed, perceptrons for the corresponding data sets are shown in Fig. 7.4F, G,

and H, respectively. However, a simple perceptron cannot represent XOR,

because that is not linearly separable. To build a classifier for this type of prob-

lem a single perceptron is not sufficient: we need several of them.

FIGURE 7.4

Example data sets and corresponding perceptrons.

262 CHAPTER 7 Extending instance-based and linear models

Fig. 7.4E shows a network with three perceptrons, or units, labeled A, B, and C.

The first two are connected to what is sometimes called the input layer of the net-

work, representing the attributes in the data. As in a simple perceptron, the input

layer has an additional constant input called the bias. However, the third unit does

not have any connections to the input layer. Its input consists of the output of units

A and B (either 0 or 1) and another constant bias unit. These three units make up

the hidden layer of the multilayer perceptron. They are called “hidden” because the

units have no direct connection to the environment. This layer is what enables the

system to represent XOR. You can verify this by trying all four possible combina-

tions of input signals. For example, if attribute a1 has value 1 and a2 has value

1, then unit A will output 1 (because 13 11 13 12 0.53 1. 0), unit B will

output 0 (because 213 11 2 13 11 1.53 1, 0), and unit C will output 0

(because 13 11 13 01 2 1.53 1, 0). This is the correct answer. Closer

inspection of the behavior of the three units reveals that the first one represents

OR, the second represents NAND (NOT combined with AND), and the third

represents AND. Together they represent the expression (a1 OR a2) AND

(a1 NAND a2), which is precisely the definition of XOR.

As this example illustrates, any expression from propositional logic can be

converted into a multilayer perceptron, because the three connectives AND,

OR, and NOT are sufficient for this and we have seen how each can be repre-

sented using a perceptron. Individual units can be connected together to form

arbitrarily complex expressions. Hence, a multilayer perceptron has the same

expressive power as, say, a decision tree. In fact, it turns out that a two-layer

perceptron (not counting the input layer) is sufficient. In this case, each unit in

the hidden layer corresponds to a variant of AND—a variant because we

assume that it may negate some of the inputs before forming the conjunction—

joined by an OR that is represented by a single unit in the output layer. In

other words, in this particular neural network setup each node in the hidden

layer has the same role as a leaf in a decision tree or a single rule in a set of

decision rules.

The big question is how to learn a multilayer perceptron. There are two

aspects to the problem: learning the structure of the network and learning the con-

nection weights. It turns out that there is a relatively simple algorithm for deter-

mining the weights given a fixed network structure. This algorithm is called

backpropagation and is described in “Backpropagation” section. However,

although there are many algorithms that attempt to identify network structure, this

aspect of the problem is commonly solved by experimentation—perhaps com-

bined with a healthy dose of expert knowledge. Sometimes the network can be

separated into distinct modules that represent identifiable subtasks (e.g., recogniz-

ing different components of an object in an image recognition problem), which

opens up a way of incorporating domain knowledge into the learning process.

Often a single hidden layer is all that is necessary, and an appropriate number of

units for that layer is determined by maximizing the estimated accuracy.

2637.2 Extending Linear Models

Backpropagation
Suppose we have some data and seek a multilayer perceptron that is an accurate

predictor for the underlying classification problem. Given a fixed network struc-

ture, we must determine appropriate weights for the connections in the network.

In the absence of hidden layers, the perceptron learning rule from Section 4.6 can

be used to find suitable values. But suppose there are hidden units. We know

what the output unit should predict, and could adjust the weights of the connec-

tions leading to that unit based on the perceptron rule. But the correct outputs for

the hidden units are unknown, so the rule cannot be applied there.

It turns out that, roughly speaking, the solution is to modify the weights of the

connections leading to the hidden units based on the strength of each unit’s con-

tribution to the final prediction. There is a standard mathematical optimization

algorithm, called gradient descent, which achieves exactly that. The standard gra-

dient descent algorithm requires taking derivatives, and the step function that the

simple perceptron uses to convert the weighted sum of the inputs into a 0/1 pre-

diction is not differentiable. We need to see whether the step function can be

replaced by something else.

Fig. 7.5A shows the step function: if the input is smaller than zero, it outputs

zero; otherwise, it outputs one. We want a function that is similar in shape but

differentiable. A commonly used replacement is shown in Fig. 7.5B. In neural

networks terminology it is called the sigmoid function, and it is defined by

f ðxÞ5 1

11 e2x
:

We encountered it in Section 4.6 when we described the logit transform used

in logistic regression. In fact, learning a multilayer perceptron is closely related to

logistic regression.

To apply the standard gradient descent procedure, the error function—

the thing that is to be minimized by adjusting the weights—must also be

0

0.2

0.4

0.6

0.8

1

–10 –5 0 5 10

0

0.2

0.4

0.6

0.8

1

–10 –5 0 5 10

(A) (B)

FIGURE 7.5

Step vs sigmoid: (A) step function; (B) sigmoid function.

264 CHAPTER 7 Extending instance-based and linear models

differentiable. The number of misclassifications—measured by the discrete 0�1

loss mentioned in Section 5.7—does not fulfill this criterion. Instead, multilayer

perceptrons are usually trained by minimizing the squared error of the network’s

output, essentially treating it as an estimate of the class probability. (Other loss

functions are also applicable. For example, if the negative log-likelihood is used

instead of the squared error, learning a sigmoid-based perceptron is identical to

logistic regression.)

We work with the squared-error loss function because it is most widely used.

For a single training instance, it is

E5
1

2
ðy2f ðxÞÞ2;

where f(x) is the network’s prediction obtained from the output unit and y is the

instance’s class label (in this case, it is assumed to be either 0 or 1). The factor

1/2 is included just for convenience, and will drop out when we start taking

derivatives.

Gradient descent exploits information given by the derivative of the function

that is to be minimized—in this case, the error function. As an example, consider

a hypothetical error function that happens to be identical to w21 1, shown in

Fig. 7.6. The x-axis represents a hypothetical parameter w that is to be optimized.

The derivative of w21 1 is simply 2w. The crucial observation is that, based on

the derivative, we can figure out the slope of the function at any particular point.

If the derivative is negative, the function slopes downward to the right; if it is

positive, it slopes downward to the left; and the size of the derivative determines

how steep the decline is. Gradient descent is an iterative optimization procedure

that uses this information to adjust a function’s parameters. It takes the value of

the derivative, multiplies it by a small constant called the learning rate, and

0

5

10

15

20

–4 –2 0 2 4

FIGURE 7.6

Gradient descent using the error function w211.

2657.2 Extending Linear Models

subtracts the result from the current parameter value. This is repeated for the new

parameter value, and so on, until a minimum is reached.

Returning to the example, assume that the learning rate is set to 0.1 and the

current parameter value w is 4. The derivative is double this—8 at this point.

Multiplying by the learning rate yields 0.8, and subtracting this from 4 gives 3.2,

which becomes the new parameter value. Repeating the process for 3.2, we get

2.56, then 2.048, and so on. The little crosses in Fig. 7.6 show the values encoun-

tered in this process. The process stops once the change in parameter value

becomes too small. In the example this happens when the value approaches 0, the

value corresponding to the location on the x-axis where the minimum of the hypo-

thetical error function is located.

The learning rate determines the step size and hence how quickly the search

converges. If it is too large and the error function has several minima, the search

may overshoot and miss a minimum entirely, or it may oscillate wildly. If it is

too small, progress toward the minimum may be slow. Note that gradient descent

can only find a local minimum. If the function has several minima—and error

functions for multilayer perceptrons usually have many—it may not find the best

one. This is a significant drawback of standard multilayer perceptrons compared

with, e.g., support vector machines.

To use gradient descent to find the weights of a multilayer perceptron, the

derivative of the squared error must be determined with respect to each parame-

ter—i.e., each weight in the network. Let us start with a simple perceptron with-

out a hidden layer. Differentiating the error function with respect to a particular

weight wi yields

dE

dwi

5 ðf ðxÞ2 yÞ f ðxÞ
dwi

:

Here, f(x) is the perceptron’s output and x is the weighted sum of the inputs.

To compute the second factor on the right-hand side, the derivative of the sig-

moid function f(x) is needed. It turns out that this has a particularly simple form

that can be written in terms of f(x) itself:

df ðxÞ
dx

5 f ðxÞð12 f ðxÞÞ:

We use f0(x) to denote this derivative. But we seek the derivative with respect

to wi, not x. Because

x5
X

i
wiai;

the derivative of f(x) with respect to wi is

df ðxÞ
dwi

5 f 0ðxÞai:

Plugging this back into the derivative of the error function yields

266 CHAPTER 7 Extending instance-based and linear models

dE

dwi

5 ðf ðxÞ2 yÞf 0ðxÞai:

This expression gives all that is needed to calculate the change of weight wi

caused by a particular example vector a (extended by 1 to represent the bias, as

explained previously). Having repeated this computation for each training

instance, we add up the changes associated with a particular weight wi, multiply

by the learning rate, and subtract the result from wi’s current value.

So far so good. But all this assumes that there is no hidden layer. With a hid-

den layer, things get a little trickier. Suppose f(xi) is the output of the ith hidden

unit, wij is the weight of the connection from input j to the ith hidden unit, and wi

is the weight of the ith hidden unit to the output unit. The situation is depicted in

Fig. 7.7, where, for simplicity, we have omitted bias inputs for all units. As

before, f(x) is the output of the single unit in the output layer. The update rule for

the weights wi is essentially the same as above, except that ai is replaced by the

output of the ith hidden unit:

dE

dwi

5 ðf ðxÞ2 yÞf 0ðxÞf ðxiÞ:

However, to update the weights wij the corresponding derivatives must be

calculated. Applying the chain rule gives

Hidden
unit 0

Input a1 Input akInput a0

w 0

f(x1)

Hidden
unit 1

Hidden
unit l

Output
unit

w
1

f(x2)

w
l

f(xl)

w 00 w 10
w l0

w
01

w
11 w l1

w
lkw

1k
w

0k

f(x)

FIGURE 7.7

Multilayer perceptron with a hidden layer (omitting bias inputs).

2677.2 Extending Linear Models

dE

dwij

5
dE

dx

dx

dwij

5 ðf ðxÞ2 yÞf 0ðxÞ dx

dwij

:

The first two factors are the same as in the previous equation. To compute the

third factor, differentiate further. Because

x5
P

iwif ðxiÞ;
dx

dwij

5wi

df ðxiÞ
dwij

:

Furthermore,

xi 5
X

j
wijaj;

so

df ðxiÞ
dwij

5 f 0ðxiÞ dxi
dwij

5 f 0ðxiÞaj:

This means that we are finished. Putting everything together yields an equa-

tion for the derivative of the error function with respect to the weights wij:

dE

dwij

5 ðf ðxÞ2 yÞf 0ðxÞwif
0ðxiÞaj:

As before, we calculate this value for every training instance, add up the

changes associated with a particular weight wij, multiply by the learning rate, and

subtract the outcome from the current value of wij.

This derivation applies to a perceptron with one hidden layer. If there are two

hidden layers, the same strategy can be applied a second time to update the

weights pertaining to the input connections of the first hidden layer, propagating

the error from the output unit through the second hidden layer to the first one.

Because of this error propagation mechanism, this version of the generic gradient

descent strategy is called backpropagation.

We have tacitly assumed that the network’s output layer has just one unit,

which is appropriate for two-class problems. For more than two classes, a sepa-

rate network could be learned for each class that distinguishes it from the remain-

ing classes. A more compact classifier can be obtained from a single network by

creating an output unit for each class, connecting every unit in the hidden layer to

every output unit. The squared error for a particular training instance is the sum

of squared errors taken over all output units. The same technique can be applied

to predict several targets, or attribute values, simultaneously by creating a sepa-

rate output unit for each one. Intuitively, this may give better predictive accuracy

than building a separate classifier for each class attribute if the underlying learn-

ing tasks are in some way related.

We have assumed that weights are only updated after all training instances

have been fed through the network and all the corresponding weight

changes have been accumulated. This is batch learning, because all the training

data is processed together. But exactly the same formulas can be used to update

268 CHAPTER 7 Extending instance-based and linear models

the weights incrementally after each training instance has been processed. This is

called stochastic backpropagation because the overall error does not necessarily

decrease after every update. It can be used for online learning, in which new data

arrives in a continuous stream and every training instance is processed just once.

In both variants of backpropagation, it is often helpful to standardize the attri-

butes, e.g., to have zero mean and unit standard deviation. Before learning starts,

each weight is initialized to a small, randomly chosen value based on a normal

distribution with zero mean.

Like any other learning scheme, multilayer perceptrons trained with backpro-

pagation may suffer from overfitting—especially if the network is much

larger than what is actually necessary to represent the structure of the underlying

learning problem. Many modifications have been proposed to alleviate this.

A very simple one, called early stopping, works like reduced-error pruning in rule

learners: a holdout set is used to decide when to stop performing further

iterations of the backpropagation algorithm. The error on the holdout set is mea-

sured and the algorithm is terminated once the error begins to increase, because

that indicates overfitting to the training data. Another method, called weight

decay, adds to the error function a penalty term that consists of the squared sum

of all nonbias weights in the network, as in ridge regression. This attempts to

limit the influence of irrelevant connections on the network’s predictions by

penalizing large weights that do not contribute a correspondingly large reduction

in the error.

Although standard gradient descent is the simplest technique for learning the

weights in a multilayer perceptron, it is by no means the most efficient one. In

practice, it tends to be rather slow when executed on a standard personal com-

puter. A trick that often improves performance is to include a momentum term

when updating weights: add to the new weight change a small proportion of the

update value from the previous iteration. This smooths the search process by mak-

ing changes in direction less abrupt. More sophisticated methods make use of

information obtained from the second derivative of the error function as well;

they can converge much more quickly. However, even those algorithms can be

very slow compared with other methods of classification learning.

A serious disadvantage of multilayer perceptrons that contain hidden units is

that they are essentially opaque. There are several techniques that attempt to

extract rules from trained neural networks. However, it is unclear whether they

offer any advantages over standard rule learners that induce rule sets directly

from data—especially considering that this can generally be done much more

quickly than learning a multilayer perceptron in the first place.

Although multilayer perceptrons are the most prominent type of neural net-

work, many others have been proposed. Multilayer perceptrons belong to a class

of networks called feedforward networks because they do not contain any cycles

and the network’s output depends only on the current input instance. Recurrent

neural networks do have cycles. Computations derived from earlier input are fed

back into the network, which gives them a kind of memory.

2697.2 Extending Linear Models

RADIAL BASIS FUNCTION NETWORKS

Another popular type of feedforward network is the radial basis function (RBF)

network. It has two layers, not counting the input layer, and differs from a multi-

layer perceptron in the way that the hidden units perform computations. Each

hidden unit essentially represents a particular point in input space, and its output,

or activation, for a given instance depends on the distance between its point and

the instance—which is just another point. Intuitively, the closer these two points,

the stronger the activation. This is achieved by using a nonlinear transformation

function to convert the distance into a similarity measure. A bell-shaped Gaussian

activation function, whose width may be different for each hidden unit, is com-

monly used for this purpose. The hidden units are called RBFs because the points

in instance space for which a given hidden unit produces the same activation form

a hypersphere or hyperellipsoid. (In a multilayer perceptron, this is a hyperplane.)

The output layer of an RBF network is the same as that of a multilayer perceptron:

it takes a linear combination of the outputs of the hidden units and—in classification

problems—pipes it through the sigmoid function (or something with a similar shape).

The parameters that such a network learns are (1) the centers and widths of

the RBFs and (2) the weights used to form the linear combination of the outputs

obtained from the hidden layer. A significant advantage over multilayer percep-

trons is that the first set of parameters can be determined independently of the

second set and still produce fairly accurate classifiers.

One way to determine the first set of parameters is to use clustering. The simple

k-means clustering algorithm described in Section 4.8 can be applied, clustering each

class independently to obtain k basis functions for each class. Intuitively, the result-

ing RBFs represent prototype instances. The second set of parameters is then learned

by keeping the first parameters fixed. This involves learning a simple linear classifier

using one of the techniques we have discussed (e.g., linear or logistic regression). If

there are far fewer hidden units than training instances, this can be done very

quickly. Note that although this two-stage process is very quick, it is generally not as

accurate as training all network parameters using a strategy such as gradient descent.

A disadvantage of RBF networks is that they give every attribute the same

weight because all are treated equally in the distance computation, unless attribute

weight parameters are included in the overall optimization process. Support vector

machines share the same problem. In fact, support vector machines with Gaussian

kernels (i.e., “RBF kernels”) are a particular type of RBF network, in which one

basis function is centered on every training instance, all basis functions have the

same width, and the outputs are combined linearly by computing the maximum

margin hyperplane. This has the effect that only some of the RBFs have a non-

zero weight—the ones that represent the support vectors.

STOCHASTIC GRADIENT DESCENT

We have introduced gradient descent and stochastic backpropagation as optimization

methods for learning the weights in a neural network. Gradient descent is, in fact, a

270 CHAPTER 7 Extending instance-based and linear models

general-purpose optimization technique that can be applied whenever the objective

function is differentiable. Actually, it turns out that it can even be applied in

cases where the objective function is not completely differentiable through use of a

device called subgradients.

One application is the use of gradient descent to learn linear models such as

linear support vector machines or logistic regression. Learning such models using

gradient descent is easier than optimizing nonlinear neural networks because the

error function has a global minimum rather than many local minima, which is

usually the case for nonlinear networks. For linear problems, a stochastic gradient

descent procedure can be designed that is computationally simple and converges

very rapidly, allowing models such as linear support vector machines and logistic

regression to be learned from large data sets. Moreover, stochastic gradient

descent allows models to be learned incrementally, in an online setting.

For support vector machines, the error function—the thing that is to be mini-

mized—is called the “hinge loss.” Illustrated in Fig. 7.8, this is so named because

it comprises a downwards sloping linear segment joined to a horizontal part at

z5 1—more formally, E(z)5max{0, 12 z}. For comparison, the Figure also

shows the 0�1 loss, which is discontinuous, and the squared loss, which is both

continuous and differentiable. These functions are plotted as a function of the

margin z5 yf(x), where the class y is either 21 or 11 and f(x) is the output

of the linear model. Misclassification occurs when z , 0, so all loss functions

incur their most serious penalties in the negative region. In the linearly separable

case, the hinge loss is zero for a function that successfully separates the data. The

maximum margin hyperplane is given by the smallest weight vector that achieves

a zero hinge loss.

FIGURE 7.8

Hinge, squared and 0�1 loss functions.

2717.2 Extending Linear Models

The hinge loss is continuous, unlike the 0�1 loss, but is not differentiable at

z5 1, unlike the squared loss which is differentiable everywhere. This lack of

differentiability presents a problem if gradient descent is used to update the

model’s weights after a training example has been processed, because the loss

function’s derivative is needed for this. That is where subgradients come in. The

basic idea is that even though the gradient cannot be computed, the minimum

will still be found if something resembling a gradient can be substituted. In the

case of the hinge loss, the gradient is taken to be zero at the point of nondiffer-

entiability. In fact, since the hinge loss is zero for z$ 1, we can focus on that part

of the function that is differentiable (z , 1) and proceed as usual.

The weight update for a linear support vector machine using the hinge loss is

Δwi5 ηxiy, where η is the learning rate. For stochastic gradient descent, all that

is needed to compute z for each training instance is to take the dot product

between the current weight vector and the instance, multiply the result by the

instance’s class value, and check to see if the resulting value is less than 1. If so,

the weights are updated accordingly. As with perceptrons, a bias term can be

included by extending the weight vector by one element and including an addi-

tional attribute with each training instance that always has the value 1.

DISCUSSION

Support vector machines originated from research in statistical learning theory

(Vapnik, 1999), and a good starting point for exploration is a tutorial by Burges

(1998). A general description, including generalization to the case in which the

data is not linearly separable, has been published by Cortes and Vapnik (1995).

We have introduced the standard version of support vector regression: Schölkopf,

Bartlett, Smola, and Williamson (1999) present a different version that has one

parameter instead of two. Smola and Schölkopf (2004) provide an extensive tuto-

rial on support vector regression. Fletcher (1987) covers solution methods for

constrained quadratic optimization problems, while Platt (1998) describes the

sequential minimal optimization algorithm, which is specifically designed to train

support vector machines.

Ridge regression was introduced in statistics by Hoerl and Kennard (1970)

and can now be found in standard statistics texts. Hastie et al. (2009) give a good

description of kernel ridge regression. Kernel ridge regression is equivalent to a

technique called Gaussian process regression, a Bayesian approach that addition-

ally provides estimates of predictive uncertainty. The complexity of the most effi-

cient general matrix inversion algorithm is in fact O(n2.807) rather than O(n3).

The (voted) kernel perceptron is due to Freund and Schapire (1999). Cristianini

and Shawe-Taylor (2000) provide a nice introduction to support vector machines

and other kernel-based methods, including the optimization theory underlying the

support vector learning algorithms. We have barely skimmed the surface of these

learning schemes, mainly because advanced mathematics lies just beneath. The

idea of using kernels to solve nonlinear problems has been applied to many

272 CHAPTER 7 Extending instance-based and linear models

algorithms, e.g., principal component analysis (described in Section 8.3). A kernel

is essentially a similarity function with certain mathematical properties, and it is

possible to define kernel functions over all sorts of structures—e.g., sets, strings,

trees, and probability distributions. Shawe-Taylor and Cristianini (2004) and

Schölkopf and Smola (2002) cover kernel-based learning in detail.

There is extensive literature on neural networks, and Bishop (1995) provides

an excellent introduction to both multilayer perceptrons and RBF networks.

Interest in neural networks initially declined after the arrival of support vector

machines, perhaps because the latter often require fewer parameters to be tuned

to achieve the same (or greater) accuracy. However, recent studies have

shown that multilayer perceptrons achieve performance competitive with more

modern learning techniques on many practical data sets, and they excel in particu-

lar when performing deep learning (see chapter: Deep learning).

Gradient methods for learning classifiers are very popular. In particular, sto-

chastic gradient methods have been explored because they are applicable to large

data sets and online learning scenarios. Kivinen, Smola, and Williamson (2002);

Zhang (2004); and Shalev-Shwartz, Singer, and Srebro (2007) explore such meth-

ods when applied to learning support vector machines. Kivinen et al. (2002) and

Shalev-Shwartz et al. (2007) provide heuristics for setting the learning rate for

gradient descent based on the current iteration, and only require the user to pro-

vide a value for a single parameter that determines the closeness of fit to the

training data (a so-called regularization parameter). In the vanilla approach, regu-

larization is performed by limiting the number of updates that can be performed.

7.3 NUMERIC PREDICTION WITH LOCAL LINEAR MODELS
Trees that are used for numeric prediction are just like ordinary decision trees

except that at each leaf they store either a class value that represents the average

value of instances that reach the leaf, in which case the tree is called a regression

tree, or a linear regression model that predicts the class value of instances that

reach the leaf, in which case it is called a model tree. In what follows we will

talk about model trees because regression trees are really a special case.

Regression and model trees are constructed by first using a decision tree

induction algorithm to build an initial tree. However, whereas most decision tree

algorithms choose the splitting attribute to maximize the information gain, it is

appropriate for numeric prediction to instead minimize the intrasubset variation in

the class values down each branch. Once the basic tree has been formed, consid-

eration is given to pruning the tree back from each leaf, just as with ordinary

decision trees. The only difference between regression tree and model tree induc-

tion is that for the latter, each node is replaced by a regression plane instead of a

constant value. The attributes that serve to define that plane are generally those

that participate in decisions in the subtree that will be pruned, i.e., in nodes

2737.3 Numeric Prediction With Local Linear Models

beneath the current one, and perhaps those that occur on the path to the root

node.

Following an extensive description of model trees, we briefly explain how to

generate rules from model trees, and then describe another approach to numeric

prediction based on generating local linear models—locally weighted linear

regression. Whereas model trees derive from the basic divide-and-conquer deci-

sion tree methodology, locally weighted regression is inspired by the instance-

based methods for classification that we described is discussed in Section 4.3.

Like instance-based learning, it performs all “learning” at prediction time.

Although locally weighted regression resembles model trees in that it uses linear

regression to fit models locally to particular areas of instance space, it does so in

quite a different way.

MODEL TREES

When a model tree is used to predict the value for a test instance, the tree is fol-

lowed down to a leaf in the normal way, using the instance’s attribute values to

make routing decisions at each node. The leaf will contain a linear model based

on some of the attribute values, and this is evaluated for the test instance to yield

a raw predicted value.

Instead of using this raw value directly, however, it turns out to be beneficial

to use a smoothing process to reduce the sharp discontinuities that will inevitably

occur between adjacent linear models at the leaves of the pruned tree. This is a

particular problem for models constructed from a small number of training

instances. Smoothing can be accomplished by producing linear models for each

internal node, as well as for the leaves, at the time the tree is built. Then, once

the leaf model has been used to obtain the raw predicted value for a test instance,

that value is filtered along the path back to the root, smoothing it at each node by

combining it with the value predicted by the linear model for that node.

An appropriate smoothing calculation is

p0 5
np1 kq

n1 k
;

where p0 is the prediction passed up to the next higher node, p is the prediction

passed to this node from below, q is the value predicted by the model at this

node, n is the number of training instances that reach the node below, and k is a

smoothing constant. Experiments show that smoothing substantially increases the

accuracy of predictions.

However, discontinuities remain and the resulting function is not smooth. In

fact, exactly the same smoothing process can be accomplished by incorporating

the interior models into each leaf model after the tree has been built. Then, during

the classification process, only the leaf models are used. The disadvantage

is that the leaf models tend to be larger and more difficult to comprehend,

274 CHAPTER 7 Extending instance-based and linear models

because many coefficients that were previously zero become nonzero when the

interior nodes’ models are incorporated.

BUILDING THE TREE

The splitting criterion is used to determine which attribute is the best to split that

portion T of the training data that reaches a particular node. It is based on treating

the standard deviation of the class values in T as a measure of the error at that

node, and calculating the expected reduction in error as a result of testing each

attribute at that node. The attribute that maximizes the expected error reduction is

chosen for splitting at the node.

The expected error reduction, which we call SDR for standard deviation

reduction, is calculated by

SDR5 sdðTÞ2
X
i

Tij j
Tj j 3 sdðTiÞ;

where T1, T2,. . . are the sets that result from splitting the node according to the

chosen attribute.

The splitting process terminates when the class values of the instances that

reach a node vary very slightly, i.e., when their standard deviation is only a small

fraction (say, less than 5%) of the standard deviation of the original instance set.

Splitting also terminates when just a few instances remain, say four or fewer.

Experiments show that the results obtained are not very sensitive to the exact

choice of these parameters.

PRUNING THE TREE

As noted earlier, a linear model is needed for each interior node of the tree, not

just at the leaves, for use in the smoothing process. Before pruning, a model is

calculated for each node of the unpruned tree. The model takes the form

w0 1w1a1 1w2a2 1?1wkak;

where a1, a2,. . ., ak are attribute values. The weights w1, w2,. . ., wk are calculated

using standard regression. However, only a subset of the attributes are generally

used here—e.g., those that are tested in the subtree below this node, and perhaps

those occurring along the path to the root node. Note that we have tacitly assumed

that attributes are numeric: we describe the handling of nominal attributes in

“Nominal attributes” section.

The pruning procedure makes use of an estimate, at each node, of the expected

error for test data. First, the absolute difference between the predicted value and

the actual class value is averaged over each of the training instances that reach

that node. Because the tree has been built expressly for this data set, this average

will underestimate the expected error for unseen cases. To compensate, it is multi-

plied by the factor (n1 ν)/(n2 ν), where n is the number of training instances

2757.3 Numeric Prediction With Local Linear Models

that reach the node and ν is the number of parameters in the linear model that

gives the class value at that node.

The expected error for test data at a node is calculated as described previously,

using the linear model for prediction. Because of the compensation factor (n1 ν)/
(n2 ν), it may be that the linear model can be further simplified by dropping

terms to minimize the estimated error. Dropping a term decreases the multiplica-

tion factor, which may be enough to offset the inevitable increase in average error

over the training instances. Terms are dropped one by one, greedily, as long as

the error estimate decreases.

Finally, once a linear model is in place for each interior node, the tree is

pruned back from the leaves as long as the expected estimated error decreases.

The expected error for the linear model at that node is compared with the

expected error from the subtree below. To calculate the latter, the error from each

branch is combined into a single, overall value for the node by weighting the

branch by the proportion of the training instances that go down it and combining

the error estimates linearly using those weights. Alternatively, one can calculate

the training error of the subtree and multiply it by the above modification factor

based on an ad hoc estimate of the number of parameters in the tree—perhaps

adding one for each split point.

NOMINAL ATTRIBUTES

Before constructing a model tree, all nominal attributes are transformed into

binary variables that are then treated as numeric. For each nominal attribute, the

average class value corresponding to each possible value in the set is calculated

from the training instances, and the values are sorted according to these averages.

Then, if the nominal attribute has k possible values, it is replaced by k2 1 syn-

thetic binary attributes, the ith being 0 if the value is one of the first i in the

ordering and 1 otherwise. Thus all splits are binary: they involve either a numeric

attribute or a synthetic binary one, treated as a numeric attribute.

It is possible to prove analytically that the best split at a node for a nominal

variable with k values is one of the k2 1 positions obtained by ordering the aver-

age class values for each value of the attribute. This sorting operation should

really be repeated at each node; however, there is an inevitable increase in noise

due to small numbers of instances at lower nodes in the tree (and in some cases

nodes may not represent all values for some attributes), and not much is lost by

performing the sorting just once, before starting to build a model tree.

MISSING VALUES

To take account of missing values, a modification is made to the SDR formula.

The final formula, including the missing value compensation, is

276 CHAPTER 7 Extending instance-based and linear models

SDR5
m

Tj j 3 sdðTÞ2
X

jAfL;Rg

Tj
		 		
Tj j 3 sdðTjÞ

" #
;

where m is the number of instances without missing values for that attribute, and

T is the set of instances that reach this node. TL, TR are sets that result from split-

ting on this attribute—because all tests on attributes are now binary.

When processing both training and test instances, once an attribute is selected

for splitting it is necessary to divide the instances into subsets according to their

value for this attribute. An obvious problem arises when the value is missing. An

interesting technique called surrogate splitting has been developed to handle this

situation. It involves finding another attribute to split on in place of the original

one and using it instead. The attribute is chosen as the one most highly correlated

with the original attribute. However, this technique is both complex to implement

and time consuming to execute.

A simpler heuristic is to use the class value as the surrogate attribute, in the

belief that, a priori, this is the attribute most likely to be correlated with the one

being used for splitting. Of course, this is only possible when processing the train-

ing set, because for test examples the class is not known. A simple solution for

test examples is simply to replace the unknown attribute value by the average

value of that attribute for the training examples that reach the node—which has

the effect, for a binary attribute, of choosing the most populous subnode. This

simple approach seems to work well in practice.

Let us consider in more detail how to use the class value as a surrogate attri-

bute during the training process. We first deal with all instances for which the

value of the splitting attribute is known. We determine a threshold for splitting in

the usual way, by sorting the instances according to the splitting attribute’s value

and, for each possible split point, calculating the SDR according to the preceding

formula, choosing the split point that yields the greatest reduction in error. Only

the instances for which the value of the splitting attribute is known are used to

determine the split point.

Then we divide these instances into the two sets L and R according to the test.

We determine whether the instances in L or R have the greater average class

value, and we calculate the average of these two averages. Then, an instance for

which this attribute value is unknown is placed into L or R according to whether

its class value exceeds this overall average or not. If it does, it goes into which-

ever of L and R has the greater average class value; otherwise, it goes into the

one with the smaller average class value. When the splitting stops, all the missing

values will be replaced by the average values of the corresponding attributes of

the training instances reaching the leaves.

PSEUDOCODE FOR MODEL TREE INDUCTION

Fig. 7.9 gives pseudocode for the model tree algorithm we have described. The

two main parts are creating a tree by successively splitting nodes, performed by

2777.3 Numeric Prediction With Local Linear Models

split, and pruning it from the leaves upward, performed by prune. The node data

structure contains a type flag indicating whether it is an internal node or a leaf,

pointers to the left and right child, the set of instances that reach that node, the

attribute that is used for splitting at that node, and a structure representing the lin-

ear model for the node.

The sd function called at the beginning of the main program and again at the

beginning of split calculates the standard deviation of the class values of a set of

instances. Then follows the procedure for obtaining synthetic binary attributes

that was described previously. Standard procedures for creating new nodes and

printing the final tree are not shown. In split, sizeof returns the number of ele-

ments in a set. Missing attribute values are dealt with as described earlier. The

SDR is calculated according to the equation at the beginning of “Missing values”

FIGURE 7.9

Pseudocode for model tree induction.

278 CHAPTER 7 Extending instance-based and linear models

section. Although not shown in the code, it is set to infinity if splitting on the

attribute would create a leaf with less than two instances. In prune, the

linearRegression routine recursively descends the subtree collecting attributes,

performs a linear regression on the instances at that node as a function of those

attributes, and then greedily drops terms if doing so improves the error estimate,

as described earlier. Finally, the error function returns

n1 v

n2 v
3

P
instancesjdeviation from predicted class valuej

n
;

where n is the number of instances at the node and ν the number of parameters in

the node’s linear model.

Fig. 7.10 gives an example of a model tree formed by this algorithm for a

problem with two numeric and two nominal attributes. What is to be predicted is

the rise time of a simulated servo system involving a servo amplifier, motor, lead

screw, and sliding carriage. The nominal attributes play important roles. Four syn-

thetic binary attributes have been created for each of the five-valued nominal

attributes motor and screw, and are shown in Table 7.1 in terms of the two sets of

values to which they correspond. The ordering of these values—D, E, C, B, A for

FIGURE 7.10

Model tree for a data set with nominal attributes.

2797.3 Numeric Prediction With Local Linear Models

Table 7.1 Linear Models in the Model Tree

Model LM1 LM2 LM3 LM4 LM5 LM6 LM7 LM8 LM9 LM10 LM11

Constant term 0.96 1.14 1.43 1.52 2.69 2.91 0.88 0.98 1.11 1.06 0.97
Pgain 2 0.38 2 0.38 2 0.38 2 0.38 2 0.38 2 0.38 20.24 2 0.24 2 0.24 2 0.25 20.25
Vgain 0.71 0.49 0.49 0.49 0.56 0.45 0.13 0.15 0.15 0.10 0.14
Motor5D vs E, C, B, A 0.66 1.14 1.06 1.06 0.50 0.50 0.30 0.40 0.30 0.14 0.14
Motor5D, E vs C, B, A 0.97 0.61 0.65 0.59 0.42 0.42 20.02 0.06 0.06 0.17 0.22
Motor5D, E, C vs B, A 0.32 0.32 0.32 0.32 0.41 0.41 0.05
Motor5D, E, C, B vs A 0.08 0.05
Screw5D vs E, C, B, A
Screw5D, E vs C, B, A 0.13
Screw5D, E, C vs B, A 0.49 0.54 0.54 0.54 0.39 0.40 0.30 0.20 0.16 0.08 0.08
Screw5D, E, C, B vs A 1.73 1.79 1.79 0.96 1.13 0.22 0.15 0.15 0.16 0.19

motor and coincidentally D, E, C, B, A for screw also—is determined from the

training data: the rise time averaged over all examples for which motor5D is

less than that averaged over examples for which motor5E, which is less than

when motor5C, and so on. It is apparent from the magnitude of the coefficients

in Table 7.1 that motor5D versus E, C, B, A and screw5D, E, C, B versus A

play leading roles in the LM2, LM3, and LM4 models (among others). Both

motor and screw also play a minor role in several of the models.

RULES FROM MODEL TREES

Model trees are essentially decision trees with linear models at the leaves. Like

decision trees, they may suffer from the replicated subtree problem explained in

Section 3.4, and sometimes the structure can be expressed much more concisely

using a set of rules instead of a tree. Can we generate rules for numeric predic-

tion? Recall the rule learner described in Section 6.2 that uses separate-and-

conquer in conjunction with partial decision trees to extract decision rules from

trees. The same strategy can be applied to model trees to generate decision lists

for numeric prediction.

First build a partial model tree from all the data. Pick one of the leaves and

make it into a rule. Remove the data covered by that leaf; then repeat the process

with the remaining data. The question is, how to build the partial model tree, i.e.,

a tree with unexpanded nodes? This boils down to the question of how to pick

which node to expand next. The algorithm of Fig. 6.5 (Section 6.2) picks the

node whose entropy for the class attribute is smallest. For model trees, whose pre-

dictions are numeric, simply use the variance instead. This is based on the same

rationale: the lower the variance, the shallower the subtree and the shorter the

rule. The rest of the algorithm stays the same, with the model tree learner’s split

selection method and pruning strategy replacing the decision tree learner’s.

Because the model tree’s leaves are linear models, the corresponding rules will

have linear models on the right-hand side.

There is one caveat when using model trees in this fashion to generate rule

sets. It turns out that using smoothed model trees does not reduce the error in the

final rule set’s predictions. This may be because smoothing works best for contig-

uous data, but the separate-and-conquer scheme removes data covered by previ-

ous rules, leaving holes in the distribution. Smoothing, if it is done at all, must be

performed after the rule set has been generated.

LOCALLY WEIGHTED LINEAR REGRESSION

An alternative approach to numeric prediction is the method of locally weighted

linear regression. With model trees, the tree structure divides the instance space

into regions, and a linear model is found for each of them. In effect, the training

data determines how the instance space is partitioned. Locally weighted regres-

sion, on the other hand, generates local models at prediction time by giving higher

2817.3 Numeric Prediction With Local Linear Models

weight to instances in the neighborhood of the particular test instance. More spe-

cifically, it weights the training instances according to their distance to the test

instance and performs a linear regression on the weighted data. Training instances

close to the test instance receive a high weight; those far away a low one. In other

words, a linear model is tailor made for the particular test instance at hand and

used to predict the instance’s class value.

To use locally weighted regression, you need to decide on a distance-based

weighting scheme for the training instances. A common choice is to weight the

instances according to the inverse of their Euclidean distance from the test

instance. Another possibility is to use the Euclidean distance in conjunction with

a Gaussian kernel function. However, there is no clear evidence that the choice of

weighting function is critical. More important is the selection of a “smoothing

parameter” that is used to scale the distance function—the distance is multiplied

by the inverse of this parameter. If it is set to a small value, only instances very

close to the test instance will receive significant weight; if it is large, more distant

instances will also have a significant impact on the model. One way of choosing

the smoothing parameter is to set it to the distance of the kth nearest training

instance so that its value becomes smaller as the volume of training data

increases. If the weighting function is linear, say max(0, 1�smoothed-distance),

the weight is zero for all instances further than the kth nearest one. Then the

weighting function has bounded support and only the k2 1 nearest neighbors

need to be considered for building the linear model. The best choice of k

depends on the amount of noise in the data. The more noise there is, the more

neighbors should be included in the linear model. Generally, an appropriate

smoothing parameter is found using cross-validation.

Like model trees, locally weighted linear regression is able to approximate

nonlinear functions. One of its main advantages is that it is ideally suited for

incremental learning: all training is done at prediction time, so new instances can

be added to the training data at any time. However, like other instance-based

methods, it is slow at deriving a prediction for a test instance. First, the training

instances must be scanned to compute their weights; then, a weighted linear

regression is performed on these instances. Also, like other instance-based meth-

ods, locally weighted regression provides little information about the global struc-

ture of the training data set. Note that if the smoothing parameter is based on the

kth nearest neighbor and the weighting function gives zero weight to more distant

instances, the kD-trees and ball trees described in Section 4.7 can be used to

accelerate the process of finding the relevant neighbors.

Locally weighted learning is not restricted to linear regression: it can be

applied with any learning technique that can handle weighted instances. In partic-

ular, you can use it for classification. Most algorithms can be easily adapted to

deal with weights. The trick is to realize that (integer) weights can be simulated

by creating several copies of the same instance. Whenever the learning algorithm

uses an instance when computing a model, just pretend that it is accompanied by

the appropriate number of identical shadow instances. This also works if the

282 CHAPTER 7 Extending instance-based and linear models

weight is not an integer. For example, in the Naı̈ve Bayes algorithm described in

Section 4.2, multiply the counts derived from an instance by the instance’s

weight, and—voilà—you have a version of Naı̈ve Bayes that can be used for

locally weighted learning.

It turns out that locally weighted Naı̈ve Bayes works quite well in practice,

outperforming both Naı̈ve Bayes itself and the k-nearest-neighbor technique. It

also compares favorably with more sophisticated ways of enhancing Naı̈ve Bayes

by relaxing its intrinsic independence assumption. Locally weighted learning only

assumes independence within a neighborhood, not globally in the whole instance

space as standard Naı̈ve Bayes does.

In principle, locally weighted learning can also be applied to decision trees

and other models that are more complex than linear regression and Naı̈ve Bayes.

However, it is less beneficial here because locally weighted learning is primarily

a way of allowing simple models to become more flexible by allowing them to

approximate arbitrary targets. If the underlying learning algorithm can already do

that, there is little point in applying locally weighted learning. Nevertheless it

may improve other simple models—e.g., linear support vector machines and

logistic regression.

DISCUSSION

Regression trees were introduced in the CART system of Breiman et al. (1984).

CART, for “classification and regression trees,” incorporated a decision tree

inducer for discrete classes like that of C4.5, as well as a scheme for inducing

regression trees. Many of the techniques described in this section, such as the

method of handling nominal attributes and the surrogate device for dealing with

missing values, were included in CART. However, model trees did not appear

until much more recently, being first described by Quinlan (1992). Using model

trees for generating rule sets (although not partial trees) has been explored by

Hall, Holmes, and Frank (1999).

A comprehensive description (and implementation) of model tree induction is

given by Wang and Witten (1997). Neural networks are also commonly used for

predicting numeric quantities, although they suffer from the disadvantage that

the structures they produce are opaque and cannot be used to help understand the

nature of the solution. There are techniques for producing understandable insights

from the structure of neural networks, but the arbitrary nature of the internal

representation means that there may be dramatic variations between networks of

identical architecture trained on the same data. By dividing the function

being induced into linear patches, model trees provide a representation that is

reproducible and at least somewhat comprehensible.

There are many variations of locally weighted learning. For example, statisti-

cians have considered using locally quadratic models instead of linear ones and

have applied locally weighted logistic regression to classification problems. Also,

many different potential weighting and distance functions can be found in the

2837.3 Numeric Prediction With Local Linear Models

literature. Atkeson, Schaal, and Moore (1997) have written an excellent survey on

locally weighted learning, primarily in the context of regression problems. Frank,

Hall, and Pfahringer (2003) evaluated the use of locally weighted learning in con-

junction with Naı̈ve Bayes.

7.4 WEKA IMPLEMENTATIONS
• Instance-based learning

IBk

KStar

NNge (rectangular generalizations, in the NNge package)

• Linear models and extensions

SMO and variants

LibSVM (uses third-party libsvm library, in the LibSVM package)

LibLINEAR (uses third-party liblinear library, in the LibLINEAR package)

GaussianProcesses (kernel ridge regression, plus estimates of predictive

uncertainty)

VotedPerceptron (voted kernel perceptrons)

MultiLayerPerceptron, as well as MLPClassifier and MLPRegressor in the

multiLayerPerceptrons package

RBFNetwork, RBFClassifier, and RBFRegressor (all in the RBFNetwork

package)

SGD (stochastic gradient descent for several loss functions)

• Numeric prediction

M5P (model trees)

M5Rules (rules from model trees)

LWL (locally weighted learning)

284 CHAPTER 7 Extending instance-based and linear models

8Data transformations

CHAPTER OUTLINE

8.1 Attribute Selection ...288

Scheme-Independent Selection ...289

Searching the Attribute Space ...292

Scheme-Specific Selection..293

8.2 Discretizing Numeric Attributes...296

Unsupervised Discretization ..297

Entropy-Based Discretization...298

Other Discretization Methods...301

Entropy-Based Versus Error-Based Discretization...302

Converting Discrete to Numeric Attributes ..303

8.3 Projections ..304

Principal Component Analysis ...305

Random Projections..307

Partial Least Squares Regression ...307

Independent Component Analysis ..309

Linear Discriminant Analysis ...310

Quadratic Discriminant Analysis ..310

Fisher’s Linear Discriminant Analysis ...311

Text to Attribute Vectors ..313

Time Series..314

8.4 Sampling ...315

Reservoir Sampling...315

8.5 Cleansing ..316

Improving Decision Trees ..316

Robust Regression..317

Detecting Anomalies...318

One-Class Learning...319

Outlier Detection ..320

Generating Artificial Data ..321

8.6 Transforming Multiple Classes to Binary Ones ...322

Simple Methods ...323

Error-Correcting Output Codes ...324

Ensembles of Nested Dichotomies ...326

8.7 Calibrating Class Probabilities ..328

8.8 Further Reading and Bibliographic Notes ...331

8.9 WEKA Implementations...334

In the previous chapters we examined a large array of machine learning methods:

decision trees, classification and association rules, linear models, instance-based

schemes, numeric prediction techniques, and clustering algorithms. All are sound,

robust techniques that are eminently applicable to practical data mining problems.

But successful data mining involves far more than selecting a learning

algorithm and running it over your data. For one thing, many learning schemes

have various parameters, and suitable values must be chosen for these. In most

cases, results can be improved markedly by suitable choice of parameter values,

and the appropriate choice depends on the data at hand. For example, decision

trees can be pruned or unpruned, and in the former case a pruning parameter may

have to be chosen. In the k-nearest-neighbor method of instance-based learning,

a value for k will have to be chosen. More generally, the learning scheme itself

will have to be chosen from the range of schemes that are available. In all cases,

the right choices depend on the data itself.

It is tempting to try out several learning schemes, and several parameter

values, on your data, and see which works best. But be careful! The best choice is

not necessarily the one that performs best on the training data. We have repeat-

edly cautioned about the problem of overfitting, where a learned model is too

closely tied to the particular training data from which it was built. It is incorrect

to assume that performance on the training data faithfully represents the level of

performance that can be expected on the fresh data to which the learned model

will be applied in practice.

Fortunately, we have already encountered the solution to this problem in

Chapter 5, Credibility: evaluating what’s been learned. There are two good meth-

ods for estimating the expected true performance of a learning scheme: the use of

a large dataset that is quite separate from the training data, in the case of plentiful

data, and cross-validation (Section 5.3), if data is scarce. In the latter case, a single

10-fold cross-validation is typically used in practice, although to obtain a more

reliable estimate the entire procedure should be repeated 10 times. Once

suitable parameters have been chosen for the learning scheme, use the whole train-

ing set—all the available training instances—to produce the final learned model

that is to be applied to fresh data.

Note that the performance obtained with the chosen parameter value during

the tuning process is not a reliable estimate of the final model’s performance,

because the final model potentially overfits the data that was used for tuning.

We discussed this in Section 5.5. To ascertain how well it will perform, you

need yet another large dataset that is quite separate from any data used during

learning and tuning. The same is true for cross-validation: you need an “inner”

286 CHAPTER 8 Data transformations

cross-validation for parameter tuning and an “outer” cross-validation for error esti-

mation. With 10-fold cross-validation, this involves running the learning scheme

100 times for each parameter setting being considered. To summarize: When

assessing the performance of a learning scheme, any parameter tuning that goes

on should be treated as though it were an integral part of the training process.

There are other important processes that can materially improve success when

applying machine learning techniques to practical data mining problems, and these

are the subject of this chapter. They constitute a kind of data engineering:

engineering the input data into a form suitable for the learning scheme chosen

and engineering the output to make it more effective. You can look on them as a

bag of tricks that you can apply to practical machine learning problems to enhance

the chance of success. Sometimes they work; other times they do not—and at the

present state of the art, it is hard to say in advance whether they will or not. In an

area such as this where trial and error is the most reliable guide, it is particularly

important to be resourceful and have an understanding of what the tricks are.

In this chapter we examine six different ways in which the input can be mas-

saged to make it more amenable for learning methods: attribute selection, attribute

discretization, data projections, sampling, data cleansing, and converting multiclass

problems to two-class ones. Consider the first, attribute selection. In many

practical situations there are far too many attributes for learning schemes to

handle, and some of them—perhaps the overwhelming majority—are clearly irrel-

evant or redundant. Consequently, the data must be preprocessed to select a subset

of the attributes to use in learning. Of course, many learning schemes themselves

try to select attributes appropriately and ignore irrelevant or redundant ones, but in

practice their performance can frequently be improved by preselection. For exam-

ple, experiments show that adding useless attributes causes the performance of

learning schemes such as decision trees and rules, linear regression, and instance-

based learners to deteriorate.

Discretization of numeric attributes is absolutely essential if the task involves

numeric attributes but the chosen learning scheme can only handle categorical

ones. Even schemes that can handle numeric attributes often produce better

results, or work faster, if the attributes are prediscretized. The converse situation,

in which categorical attributes must be represented numerically, also occurs

(although less often); and we describe techniques for this case, too.

Data projection covers a variety of techniques. One transformation, which

we have encountered before when looking at relational data in Chapter 2, Input:

concepts, instances, attributes, and support vector machines in Chapter 7,

Extending instance-based and linear models, is to add new, synthetic attributes

whose purpose is to present existing information in a form that is suitable for the

machine learning scheme to pick up on. More general techniques that do not depend

so intimately on the semantics of the particular machine learning problem at hand

include principal component analysis and random projections. We also cover dis-

criminant analysis for classification and partial least squares regression as a data

projection technique for regression problems.

287CHAPTER 8 Data transformations

Sampling the input is an important step in many practical data mining applica-

tions, and is often the only way in which really large-scale problems can be

handled. Although it is fairly simple, we include a brief section on techniques of

sampling, including a way of incrementally producing a random sample of given

size when the total size of the dataset is not known in advance.

Unclean data plagues data mining. We emphasized in Chapter 2, Input:

concepts, instances, attributes, the necessity of getting to know your data: under-

standing the meaning of all the different attributes, the conventions used in coding

them, the significance of missing values and duplicate data, measurement noise,

typographical errors, and the presence of systematic errors—even deliberate ones.

Various simple visualizations often help with this task. There are also automatic

methods of cleansing data, of detecting outliers, and of spotting anomalies, which

we describe—including a class of techniques referred to as “one-class learning”

in which only a single class of instances is available at training time.

Finally, we examine techniques for refining the output of learning schemes that

estimate class probabilities by recalibrating the estimates that they make. This is pri-

marily of importance when accurate probabilities are required, as in cost-sensitive

classification, although it can also improve classification performance.

8.1 ATTRIBUTE SELECTION
Most machine learning algorithms are designed to learn which are the most

appropriate attributes to use for making their decisions. For example, decision

tree methods choose the most promising attribute to split on at each point and

should—in theory—never select irrelevant or unhelpful attributes. Having more

features should surely—in theory—result in more discriminating power, never

less. “What’s the difference between theory and practice?” an old question asks.

“There is no difference between theory and practice,” the answer goes, “—in

theory. But in practice, there is.” Here there is too: in practice, adding irrelevant

or distracting attributes to a dataset often confuses machine learning systems.

Experiments with a decision tree learner (C4.5) have shown that adding to

standard datasets a random binary attribute generated by tossing an unbiased coin

impacts classification performance, causing it to deteriorate (typically by 5�10%

in the situations tested). This happens because at some point in the trees that are

learned, the irrelevant attribute is invariably chosen to branch on, causing random

errors when test data is processed. How can this be, when decision tree learners

are cleverly designed to choose the best attribute for splitting at each node?

The reason is subtle. As you proceed further down the tree, less and less data

is available to help make the selection decision. At some point, with little data,

the random attribute will look good just by chance. Because the number of nodes

at each level increases exponentially with depth, the chance of the rogue attribute

looking good somewhere along the frontier multiplies up as the tree deepens.

288 CHAPTER 8 Data transformations

The real problem is that you inevitably reach depths at which only a small amount

of data is available for attribute selection. This is known as the fragmentation

problem. If the dataset were bigger it wouldn’t necessarily help—you’d probably

just go deeper.

Divide-and-conquer tree learners and separate-and-conquer rule learners both

suffer from this effect because they inexorably reduce the amount of data on

which they base judgments. Instance-based learners are very susceptible to irrele-

vant attributes because they always work in local neighborhoods, taking just a

few training instances into account for each decision. Indeed, it has been shown

that the number of training instances needed to produce a predetermined level of

performance for instance-based learning increases exponentially with the number

of irrelevant attributes present. Naı̈ve Bayes, by contrast, does not fragment the

instance space and robustly ignores irrelevant attributes. It assumes by design

that all attributes are independent of one another, an assumption that is just right

for random “distracter” attributes. But through this very same assumption, Naı̈ve

Bayes pays a heavy price in other ways because its operation is damaged by adding

redundant attributes.

The fact that irrelevant distracters degrade the performance of decision tree

and rule learners is, at first, surprising. Even more surprising is that relevant

attributes can also be harmful. For example, suppose that in a two-class dataset a

new attribute were added, which had the same value as the class to be predicted

most of the time (65%) and the opposite value the rest of the time, randomly

distributed among the instances. Experiments with standard datasets have shown

that this can cause classification accuracy to deteriorate (by 1�5% in the situa-

tions tested). The problem is that the new attribute is (naturally) chosen for

splitting high up in the tree. This has the effect of fragmenting the set of instances

available at the nodes below so that other choices are based on sparser data.

Because of the negative effect of irrelevant attributes on most machine learning

schemes, it is common to precede learning with an attribute selection stage that

strives to eliminate all but the most relevant attributes. The best way to select

relevant attributes is manually, based on a deep understanding of the learning prob-

lem and what the attributes actually mean. However, automatic methods can also

be useful. Reducing the dimensionality of the data by deleting unsuitable attributes

improves the performance of learning algorithms. It also speeds them up, although

this may be outweighed by the computation involved in attribute selection. More

importantly, dimensionality reduction yields a more compact, more easily

interpretable representation of the target concept, focusing the user’s attention on

the most relevant variables.

SCHEME-INDEPENDENT SELECTION

When selecting a good attribute subset, there are two fundamentally different

approaches. One is to make an independent assessment based on general charac-

teristics of the data; the other is to evaluate the subset using the machine learning

2898.1 Attribute Selection

algorithm that will ultimately be employed for learning. The first is called the

filter method, because the attribute set is filtered to produce the most promising

subset before learning commences. The second is the wrapper method, because

the learning algorithm is wrapped into the selection procedure. Making an inde-

pendent assessment of an attribute subset would be easy if there were a good way

of determining when an attribute was relevant to choosing the class. However,

there is no universally accepted measure of “relevance,” although several different

ones have been proposed.

One simple scheme-independent method of attribute selection is to use just

enough attributes to divide up the instance space in a way that separates all the

training instances. For example, if just one or two attributes are used, there will

generally be several instances that have the same combination of attribute values.

At the other extreme, the full set of attributes will likely distinguish the instances

uniquely so that no two instances have the same values for all attributes. (This will

not necessarily be the case, however; datasets sometimes contain instances

with the same attribute values but different classes.) It makes intuitive sense to

select the smallest attribute subset that serves to distinguish all instances uniquely.

This can easily be found using exhaustive search, although at considerable compu-

tational expense. Unfortunately, this strong bias toward consistency of the attribute

set on the training data is statistically unwarranted and can lead to overfitting—the

algorithm may go to unnecessary lengths to repair an inconsistency that was in

fact merely caused by noise.

Machine learning algorithms can be used for attribute selection. For instance,

you might first apply a decision tree algorithm to the full dataset, and then select

only those attributes that are actually used in the tree. While this selection would

have no effect at all if the second stage merely built another tree, it will have

an effect on a different learning algorithm. For example, the nearest-neighbor

algorithm is notoriously susceptible to irrelevant attributes, and its performance

can be improved by using a decision tree builder as a filter for attribute selection

first. The resulting nearest-neighbor scheme can also perform better than the deci-

sion tree algorithm used for filtering. As another example, the simple 1R scheme

described in Chapter 4, Algorithms: the basic methods, has been used to select

the attributes for a decision tree learner by evaluating the effect of branching on

different attributes (although an error-based method such as 1R may not be the

optimal choice for ranking attributes, as we will see later when covering the

related problem of supervised discretization). Often the decision tree performs

just as well when only the two or three top attributes are used for its construc-

tion—and it is much easier to understand.

Another possibility is to use an algorithm that builds a linear model—e.g., a linear

support vector machine—and ranks the attributes based on the size of the coeffi-

cients. A more sophisticated variant applies the learning algorithm repeatedly.

It builds a model, ranks the attributes based on the coefficients, removes the

lowest-ranked one, and repeats the process until all attributes have been removed.

This method of recursive feature elimination has been found to yield better results

290 CHAPTER 8 Data transformations

on certain datasets (e.g., when identifying important genes for cancer classifica-

tion) than simply ranking attributes based on a single model. With both methods

it is important to ensure that the attributes are measured on the same scale;

otherwise, the coefficients are not comparable. Note that these techniques just

produce a ranking; another method must be used to determine the appropriate

number of attributes to use.

Attributes can be selected using instance-based learning methods too. You could

sample instances randomly from the training set and check neighboring records of

the same and different classes—“near hits” and “near misses.” If a near hit has a

different value for a certain attribute, that attribute appears to be irrelevant and its

weight should be decreased. On the other hand, if a near miss has a different value,

the attribute appears to be relevant and its weight should be increased. Of

course, this is the standard kind of procedure used for attribute weighting for

instance-based learning, described in Section 7.1. After repeating this operation

many times, selection takes place: only attributes with positive weights are chosen.

As in the standard incremental formulation of instance-based learning, different

results will be obtained each time the process is repeated, because of the different

ordering of examples. This can be avoided by using all training instances and

taking into account all near hits and near misses of each.

A more serious disadvantage is that the method will not detect an attribute

that is redundant because it is correlated with another attribute. In the extreme

case, two identical attributes would be treated in the same way, either both

selected or both rejected. A modification has been suggested that appears to go

some way towards addressing this issue by taking the current attribute weights

into account when computing the nearest hits and misses.

Another way of eliminating redundant attributes as well as irrelevant ones is

to select a subset of attributes that individually correlate well with the class but

have little intercorrelation. The correlation between two nominal attributes A and

B can be measured using the symmetric uncertainty:

UðA;BÞ5 2
HðAÞ1HðBÞ2HðA;BÞ

HðAÞ1HðBÞ ;

where H is the entropy function described in Section 4.3. The entropies are based on

the probability associated with each attribute value; H(A,B), the joint entropy of

A and B, is calculated from the joint probabilities of all combinations of values of A

and B. The symmetric uncertainty always lies between 0 and 1. Correlation-based

feature selection determines the goodness of a set of attributes using

X
j

UðAj;CÞ
, ffiX

i

X
j

UðAi;AjÞ
s

;

where C is the class attribute and the indices i and j range over all attributes in the

set. If all m attributes in the subset correlate perfectly with the class and with one

another, the numerator becomes m and the denominator
ffiffiffiffiffiffi
m2

p
, which is also m.

2918.1 Attribute Selection

Hence the measure is 1, which turns out to be the maximum value it can attain

(the minimum is 0). Clearly this is not ideal, because we want to avoid redundant

attributes. However, any subset of this set will also have value 1. When using this

criterion to search for a good subset of attributes it makes sense to break ties in

favor of the smallest subset.

SEARCHING THE ATTRIBUTE SPACE

Most methods for attribute selection involve searching the space of attributes

for the subset that is most likely to predict the class best. Fig. 8.1 illustrates the

attribute space for the—by now all-too-familiar—weather dataset. The number of

possible attribute subsets increases exponentially with the number of attributes,

making exhaustive search impractical on all but the simplest problems.

Typically the space is searched greedily in one of two directions, top to

bottom or bottom to top in the figure. At each stage, a local change is made

to the current attribute subset by either adding or deleting a single attribute.

The downward direction, where you start with no attributes and add them one at

Outlook Temperature Humidity Windy

Outlook
temperature

Outlook
humidity

Outlook
windy

Temperature
humidity

Temperature
windy

Humidity
windy

Outlook
temperature

humidity

Outlook
temperature

windy

Outlook
humidity

windy

Temperature
humidity

windy

Outlook
temperature

humidity
windy

FIGURE 8.1

Attribute space for the weather dataset.

292 CHAPTER 8 Data transformations

a time, is called forward selection. The upward one, where you start with the full

set and delete attributes one at a time, is backward elimination.

In forward selection, each attribute that is not already in the current subset

is tentatively added to it, and the resulting set of attributes is evaluated—using,

e.g., cross-validation as described in the following section. This evaluation

produces a numeric measure of the expected performance of the subset. The

effect of adding each attribute in turn is quantified by this measure, the best one

is chosen, and the procedure continues. However, if no attribute produces an

improvement when added to the current subset, the search ends. This is a standard

greedy search procedure and guarantees to find a locally—but not necessarily

globally—optimal set of attributes. Backward elimination operates in an entirely

analogous fashion. In both cases a slight bias is often introduced toward smaller

attribute sets. This can be done for forward selection by insisting that if the search

is to continue, the evaluation measure must not only increase, but must increase

by at least a small predetermined quantity. A similar modification works for back-

ward elimination.

More sophisticated search schemes exist. Forward selection and backward

elimination can be combined into a bidirectional search; again one can either

begin with all the attributes or with none of them. Best-first search is a method

that does not just terminate when the performance starts to drop but keeps a list

of all attribute subsets evaluated so far, sorted in order of the performance

measure, so that it can revisit an earlier configuration instead. Given enough time

it will explore the entire space, unless this is prevented by some kind of stopping

criterion. Beam search is similar but truncates its list of attribute subsets at each

stage so that it only contains a fixed number—the beam width—of most promis-

ing candidates. Genetic algorithm search procedures are loosely based on the

principle of natural selection: they “evolve” good feature subsets by using random

perturbations of a current list of candidate subsets and combining them based on

performance.

SCHEME-SPECIFIC SELECTION

The performance of an attribute subset with scheme-specific selection is measured

in terms of the learning scheme’s classification performance using just those

attributes. Given a subset of attributes, accuracy is estimated using the normal

procedure of cross-validation described in Section 5.3. Of course, other evaluation

methods such as performance on a holdout set (Section 5.2) or the bootstrap

estimator (Section 5.4) could equally well be used.

The entire attribute selection process is rather computation intensive. If each

evaluation involves a 10-fold cross-validation, the learning procedure must be exe-

cuted 10 times. With k attributes, the heuristic forward selection or backward

elimination multiplies evaluation time by a factor proportional to k2 in the worst

case—and for more sophisticated searches, the penalty will be far greater, up to 2k

for an exhaustive algorithm that examines each of the 2k possible subsets.

2938.1 Attribute Selection

Good results have been demonstrated on many datasets. In general terms,

backward elimination produces larger attribute sets than forward selection, but

better classification accuracy in some cases. The reason is that the performance

measure is only an estimate, and a single optimistic estimate will cause both of

these search procedures to halt prematurely—backward elimination with too

many attributes and forward selection with not enough. But forward selection is

useful if the focus is on understanding the decision structures involved, because it

often reduces the number of attributes with only a small effect on classification

accuracy. Experience seems to show that more sophisticated search techniques

are not generally justified—although they can produce much better results in

certain cases.

One way to accelerate the search process is to stop evaluating a subset of attri-

butes as soon as it becomes apparent that it is unlikely to lead to higher accuracy

than another candidate subset. This is a job for a paired statistical significance

test, performed between the classifier based on this subset and all the other candi-

date classifiers based on other subsets. The performance difference between two

classifiers on a particular test instance can be taken to be 21, 0, or 1 depending

on whether the first classifier is worse, the same as, or better than the second on

that instance. A paired t-test (described in Section 5.6) can be applied to these

figures over the entire test set, effectively treating the results for each instance

as an independent estimate of the difference in performance. Then the cross-

validation for a classifier can be prematurely terminated as soon as it turns out

to be significantly worse than another—which, of course, may never happen.

We might want to discard classifiers more aggressively by modifying the t-test to

compute the probability that one classifier is better than another classifier by

at least a small user-specified threshold. If this probability becomes very small,

we can discard the former classifier on the basis that it is very unlikely to perform

substantially better than the latter.

This methodology is called race search and can be implemented with different

underlying search strategies. When used with forward selection, we race all possible

single-attribute additions simultaneously and drop those that do not perform well

enough. In backward elimination, we race all single-attribute deletions. Schemata

search is a more complicated method specifically designed for racing; it runs an iter-

ative series of races that each determine whether or not a particular attribute should

be included. The other attributes for this race are included or excluded randomly at

each point in the evaluation. As soon as one race has a clear winner, the next iteration

of races begins, using the winner as the starting point. Another search strategy

is to rank the attributes first using, e.g., their information gain (assuming they are

discrete), and then race the ranking. In this case the race includes no attributes,

the top-ranked attribute, the top two attributes, the top three, and so on.

A simple method for accelerating scheme-specific search is to preselect a given

number of attributes by ranking them first using a criterion like the information

gain and discarding the rest before applying scheme-specific selection. This has

been found to work surprisingly well on high-dimensional datasets such as gene

294 CHAPTER 8 Data transformations

expression and text categorization data, where only a couple of hundred of attri-

butes are used instead of several thousands. In the case of forward selection,

a slightly more sophisticated variant is to restrict the number of attributes available

for expanding the current attribute subset to a fixed-sized subset chosen from the

ranked list of attributes—creating a sliding window of attribute choices—rather

than making all (unused) attributes available for consideration in each step of the

search process.

Whatever way you do it, scheme-specific attribute selection by no means

yields a uniform improvement in performance. Because of the complexity of the

process, which is greatly increased by the feedback effect of including a target

machine learning algorithm in the attribution selection loop, it is quite hard to

predict the conditions under which it will turn out to be worthwhile. As in many

machine learning situations, trial and error using your own particular source of

data is the final arbiter.

There is one type of classifier for which scheme-specific attribute selection is

an essential part of the learning process: the decision table. As mentioned in

Section 3.1, the entire problem of learning decision tables consists of selecting

the right attributes to be included. Usually this is done by measuring the table’s

cross-validation performance for different subsets of attributes and choosing the

best-performing subset. Fortunately, leave-one-out cross-validation is very cheap

for this kind of classifier. Obtaining the cross-validation error from a decision

table derived from the training data is just a matter of manipulating the class

counts associated with each of the table’s entries, because the table’s structure

doesn’t change when instances are added or deleted. The attribute space is gener-

ally searched by best-first search because this strategy is less likely to get stuck in

a local maximum than others, such as forward selection.

Let’s end our discussion with a success story. One learning method for which a

simple scheme-specific attribute selection approach has shown good results is

Naı̈ve Bayes. Although this method deals well with random attributes, it has the

potential to be misled when there are dependencies among attributes, and particu-

larly when redundant ones are added. However, good results have been reported

using the forward selection algorithm—which is better able to detect when a redun-

dant attribute is about to be added than the backward elimination approach—in

conjunction with a very simple, almost “naı̈ve,” metric that determines the quality

of an attribute subset to be simply the performance of the learned algorithm on

the training set. As was emphasized in Chapter 5, Credibility: evaluating what’s

been learned, training set performance is certainly not a reliable indicator of test set

performance; however, Naı̈ve Bayes is less likely to overfit than other learning

algorithms. Experiments show that this simple modification to Naı̈ve Bayes

markedly improves its performance on those standard datasets for which it does not

do so well as tree- or rule-based classifiers, and does not have any negative effect

on results on datasets on which Naı̈ve Bayes already does well. Selective Naı̈ve

Bayes, as this learning method is called, is a viable machine learning technique that

performs reliably and well in practice.

2958.1 Attribute Selection

8.2 DISCRETIZING NUMERIC ATTRIBUTES
Some classification and clustering algorithms deal with nominal attributes only

and cannot handle ones measured on a numeric scale. To use them on general

datasets, numeric attributes must first be “discretized” into a small number of

distinct ranges. Even learning algorithms that do handle numeric attributes some-

times process them in ways that are not altogether satisfactory. Statistical clustering

methods often assume that numeric attributes have a normal distribution—often not

a very plausible assumption in practice—and the standard extension of the Naı̈ve

Bayes classifier numeric attributes adopts the same assumption. Although most

decision tree and decision rule learners can handle numeric attributes, some imple-

mentations work more slowly when numeric attributes are present because they

repeatedly sort the attribute values. For all these reasons the question arises: what

is a good way to discretize numeric attributes into ranges before any learning

takes place?

We have already encountered some methods for discretizing numeric attributes.

The 1R learning scheme described in Chapter 4, Algorithms: the basic methods,

uses a simple but effective technique: sort the instances by the attribute’s value

and assign the value into ranges at the points that the class value changes—except

that a certain minimum number of instances in the majority class (six) must lie in

each of the ranges, which means that any given range may include a mixture of

class values. This is a “global” method of discretization that is applied to all con-

tinuous attributes before learning starts.

Decision tree learners, on the other hand, deal with numeric attributes on a

local basis, examining attributes at each node of the tree, when it is being

constructed, to see whether they are worth branching on—and only at that

point deciding on the best place to split continuous attributes. Although the

tree-building method we examined in Chapter 6, Trees and rules, only considers

binary splits of continuous attributes, one can imagine a full discretization taking

place at that point, yielding a multiway split on a numeric attribute. The pros and

cons of the local versus global approach are clear. Local discretization is tailored

to the actual context provided by each tree node, and will produce different

discretizations of the same attribute at different places in the tree if that seems

appropriate. However, its decisions are based on less data as tree depth increases,

which compromises their reliability. If trees are developed all the way out to

single-instance leaves before being pruned back, as with the normal technique of

backward pruning, it is clear that many discretization decisions will be based on

data that is grossly inadequate.

When using global discretization before applying a learning scheme, there are

two possible ways of presenting the discretized data to the learner. The most obvi-

ous is to treat discretized attributes like nominal ones: each discretization interval

is represented by one value of the nominal attribute. However, because a discre-

tized attribute is derived from a numeric one, its values are ordered, and treating it

296 CHAPTER 8 Data transformations

as nominal discards this potentially valuable ordering information. Of course, if a

learning scheme can handle ordered attributes directly, the solution is obvious:

each discretized attribute is declared to be of type “ordered.”

If the learning scheme cannot handle ordered attributes, there is still a simple

way of enabling it to exploit the ordering information: transform each discretized

attribute into a set of binary attributes before the learning scheme is applied.

If the discretized attribute has k values, it is transformed into k�1 binary attri-

butes. If the original attribute’s value is i for a particular instance, the first i�1 of

these new attributes are set to false and the remainder are set to true. In other

words, the (i�1)th binary attribute represents whether the discretized attribute is

less than i. If a decision tree learner splits on this attribute, it implicitly utilizes

the ordering information it encodes. Note that this transformation is independent

of the particular discretization method being applied: it is simply a way of coding

an ordered attribute using a set of binary attributes.

UNSUPERVISED DISCRETIZATION

There are two basic approaches to the problem of discretization. One is to quantize

each attribute in the absence of any knowledge of the classes of the instances in the

training set—so-called unsupervised discretization. The other is to take the classes

into account when discretizing—supervised discretization. The former is the only

possibility when dealing with clustering problems where the classes are unknown

or nonexistent.

The obvious way of discretizing a numeric attribute is to divide its range into a

predetermined number of equal intervals: a fixed, data-independent yardstick. This

is frequently done at the time when data is collected. But, like any unsupervised

discretization method, it runs the risk of destroying distinctions that would have

turned out to be useful in the learning process by using gradations that are too

coarse or by unfortunate choices of boundary that needlessly lump together many

instances of different classes.

Equal-interval binning often distributes instances very unevenly: some bins

contain many instances while others contain none. This can seriously impair the

ability of the attribute to help build good decision structures. It is often better

to allow the intervals to be of different sizes, choosing them so that the same

number of training examples fall into each one. This method, equal-frequency

binning, divides the attribute’s range into a predetermined number of bins based

on the distribution of examples along that axis—sometimes called histogram

equalization, because if you take a histogram of the contents of the resulting

bins it will be completely flat. If you view the number of bins as a resource, this

method makes best use of it.

However, equal-frequency binning is still oblivious to the instances’ classes,

and this can cause bad boundaries. For example, if all instances in a bin have one

class, and all instances in the next higher bin have another except for the first,

which has the original class, surely it makes sense to respect the class divisions

2978.2 Discretizing Numeric Attributes

and include that first instance in the previous bin, sacrificing the equal-frequency

property for the sake of homogeneity. Supervised discretization—taking classes

into account during the process—certainly has advantages. Nevertheless it has

been found that equal-frequency binning can yield excellent results, at least in

conjunction with the Naı̈ve Bayes learning scheme, when the number of bins is

chosen in a data-dependent fashion by setting it to the square root of the number

of instances. This method is called proportional k-interval discretization.

ENTROPY-BASED DISCRETIZATION

Because the criterion used for splitting a numeric attribute during the formation

of a decision tree works well in practice, it seems a good idea to extend it to

more general discretization by recursively splitting intervals until it is time to

stop. In Chapter 6, Trees and rules, we saw how to sort the instances by the attri-

bute’s value and consider, for each possible splitting point, the information gain of

the resulting split. To discretize the attribute, once the first split is determined the

splitting process can be repeated in the upper and lower parts of the range, and so

on, recursively.

To see this working in practice, we revisit the example given earlier for

discretizing the temperature attribute of the weather data, whose values are

64 65 68 69 70 71 72 75 80 81 83 85
Yes No Yes Yes Yes No No

Yes
Yes
Yes

No Yes Yes No

(Repeated values have been collapsed together). The information gain for each

of the 11 possible positions for the breakpoint is calculated in the usual way.

For example, the information value of the test temperature ,71.5, which splits

the range into four yes’s and two no’s versus five yes’s and three no’s, is

Infoð½4; 2�; ½5; 3�Þ5 ð6=14Þ3 infoð½4; 2�Þ1 ð8=14Þ3 infoð½5; 3�Þ5 0:939 bits:

This represents the amount of information required to specify the individual

values of yes and no given the split. We seek a discretization that makes the sub-

intervals as pure as possible; hence, we choose to split at the point where the

information value is smallest. (This is the same as splitting where the information

gain, defined as the difference between the information value without the split

and that with the split, is largest.) As before, we place numeric thresholds halfway

between the values that delimit the boundaries of a concept.

The graph labeled A in Fig. 8.2 shows the information values at each possible

cut point at this first stage. The cleanest division—smallest information value—is

at a temperature of 84 (0.827 bits), which separates off just the very final value,

a no instance, from the preceding list. The instance classes are written below

the horizontal axis to make interpretation easier. Invoking the algorithm again

on the lower range of temperatures, from 64 to 83, yields the graph labeled B.

298 CHAPTER 8 Data transformations

This has a minimum at 80.5 (0.800 bits), which splits off the next two values, both

yes instances. Again invoking the algorithm on the lower range, now from 64 to

80, produces the graph labeled C (shown dotted to help distinguish it from the

others). The minimum is at 77.5 (0.801 bits), splitting off another no instance.

Graph D has a minimum at 73.5 (0.764 bits), splitting off two yes instances. Graph

E (again dashed, purely to make it more easily visible), for the temperature range

64�72, has a minimum at 70.5 (0.796 bits), which splits off two nos and a yes.

Finally, graph F, for the range 64�70, has a minimum at 66.5 (0.4 bits).

The final discretization of the temperature attribute is shown in Fig. 8.3.

The fact that recursion only ever occurs in the first interval of each split is an

artifact of this example: in general, both the upper and lower intervals will have

to be split further. Underneath each division is the label of the graph in Fig. 8.2

that is responsible for it, and below that the actual value of the split point.

It can be shown theoretically that a cut point that minimizes the information

value will never occur between two instances of the same class. This leads to a

useful optimization: it is only necessary to consider potential divisions that sep-

arate instances of different classes. Notice that if class labels were assigned to

0.4

0.2

0.6

0

0.8

1

65 70 75 80 85

AB
C

DE
F

No No No No
No

Yes Yes Yes Yes
Yes Yes

Yes
Yes Yes

FIGURE 8.2

Discretizing the temperature attribute using the entropy method.

64 65 68 69 70 71 72 75 80 81 83 85

Yes No Yes Yes Yes No No
Yes

Yes
Yes

No Yes Yes No

F E D C B A

66.5 70.5 73.5 77.5 80.5 84

FIGURE 8.3

The result of discretizing the temperature attribute.

2998.2 Discretizing Numeric Attributes

the intervals based on the majority class in the interval, there would be no guar-

antee that adjacent intervals would receive different labels. You might be

tempted to consider merging intervals with the same majority class (e.g., the

first two intervals of Fig. 8.3), but as we will see later this is not a good thing

to do in general.

The only problem left to consider is the stopping criterion. In the temperature

example most of the intervals that were identified were “pure” in that all their

instances had the same class, and there is clearly no point in trying to split

such an interval. (Exceptions were the final interval, which we tacitly decided not

to split, and the interval from 70.5 to 73.5.) In general, however, things are not so

straightforward.

A good way to stop the entropy-based splitting discretization procedure turns

out to be the MDL principle that we encountered in Chapter 5, Credibility:

evaluating what’s been learned. In accordance with that principle, we want to

minimize the size of the “theory” plus the size of the information necessary to

specify all the data given that theory. In this case, if we do split, the “theory” is the

splitting point, and we are comparing the situation in which we split with that in

which we do not. In both cases we assume that the instances are known but their

class labels are not. If we do not split, the classes can be transmitted by encoding

each instance’s label. If we do, we first encode the split point (in log2[N�1] bits,

where N is the number of instances), then the classes of the instances below that

point, and then the classes of those above it. You can imagine that if the split is a

good one—say, all the classes below it are yes and all those above are no—then

there is much to be gained by splitting. If there is an equal number of yes and no

instances, each instance costs 1 bit without splitting but hardly more than 0 bits

with splitting—it is not quite 0 because the class values associated with the split

itself must be encoded, but this penalty is amortized across all the instances. In this

case, if there are many examples, the penalty of having to encode the split point

will be far outweighed by the information saved by splitting.

We emphasized in Section 5.10 that when applying the MDL principle,

the devil is in the details. In the relatively straightforward case of discretization, the

situation is tractable although not simple. The amounts of information can be

obtained exactly under certain reasonable assumptions. We will not go into the

details, but the upshot is that the split dictated by a particular cut point is worth-

while if the information gain for that split exceeds a certain value that depends on

the number of instances N, the number of classes k, the entropy of the instances

E, the entropy of the instances in each subinterval E1 and E2, and the number of

classes represented in each subinterval k1 and k2:

Gain.
log2ðN2 1Þ

N
1

log2ð3k 2 2Þ2 kE1 k1E1 1 k2E2

N
:

The first component is the information needed to specify the splitting point;

the second is a correction due to the need to transmit which classes correspond

to the upper and lower subintervals.

300 CHAPTER 8 Data transformations

When applied to the temperature example, this criterion prevents any splitting

at all. The first split removes just the final example, and as you can imagine very

little actual information is gained by this when transmitting the classes—in fact,

the MDL criterion will never create an interval containing just one example.

Failure to discretize temperature effectively disbars it from playing any role

in the final decision structure because the same discretized value will be given

to all instances. In this situation, this is perfectly appropriate: temperature does

not occur in good decision trees or rules for the weather data. In effect, failure to

discretize is tantamount to attribute selection.

OTHER DISCRETIZATION METHODS

The entropy-based method with the MDL stopping criterion is one of the best

general techniques for supervised discretization. However, many other methods

have been investigated. For example, instead of proceeding top-down by recur-

sively splitting intervals until some stopping criterion is satisfied, you could

work bottom-up, first placing each instance into its own interval and then

considering whether to merge adjacent intervals. You could apply a statistical

criterion to see which would be the best two intervals to merge, and merge

them if the statistic exceeds a certain preset confidence level, repeating the

operation until no potential merge passes the test. The χ2 test is a suitable one and

has been used for this purpose. Instead of specifying a preset significance

threshold, more complex techniques are available to determine an appropriate level

automatically.

A rather different approach is to count the number of errors that a discretization

makes when predicting each training instance’s class, assuming that each interval

receives the majority class. For example, the 1R method described earlier is error-

based—it focuses on errors rather than the entropy. However, the best possible

discretization in terms of error count is obtained by using the largest possible num-

ber of intervals, and this degenerate case should be avoided by restricting the

number of intervals in advance.

Let’s consider the best way to discretize an attribute into k intervals in a way

that minimizes the number of errors. The brute-force method of finding this is

exponential in k and hence infeasible. However, there are much more efficient

schemes that are based on the idea of dynamic programming. Dynamic program-

ming applies not just to the error count measure but to any given additive impurity

function, and it can find the partitioning of N instances into k intervals in a way

that minimizes the impurity in time proportional to kN2. This gives a way of finding

the best entropy-based discretization, yielding a potential improvement in the qual-

ity of the discretization (but in practice a negligible one) over the greedy recursive

entropy-based method described previously. The news for error-based discretization

is even better, because there is an algorithm that can be used to minimize the error

count in time linear in N.

3018.2 Discretizing Numeric Attributes

ENTROPY-BASED VERSUS ERROR-BASED DISCRETIZATION

Why not use error-based discretization, since the optimal discretization can be

found very quickly? The answer is that there is a serious drawback to error-based

discretization: it cannot produce adjacent intervals with the same label (such as

the first two of Fig. 8.3). The reason is that merging two such intervals will not

affect the error count, but it will free up an interval that can be used elsewhere to

reduce the error count.

Why would anyone want to generate adjacent intervals with the same label?

The reason is best illustrated with an example. Fig. 8.4 shows the instance space

for a simple two-class problem with two numeric attributes ranging from 0 to 1.

Instances belong to one class (the dots) if their first attribute (a1) is less than 0.3

or if it is less than 0.7 and their second attribute (a2) is less than 0.5. Otherwise,

they belong to the other class (triangles). The data in Fig. 8.4 has been artificially

generated according to this rule.

Now suppose we are trying to discretize both attributes with a view to learning

the classes from the discretized attributes. The very best discretization splits a1

into three intervals (0 through 0.3, 0.3 through 0.7, and 0.7 through 1) and a2 into

two intervals (0 through 0.5 and 0.5 through 1). Given these nominal attributes, it

will be easy to learn how to tell the classes apart with a simple decision tree or

rule algorithm. Discretizing a2 is no problem. For a1, however, the first and last

intervals will have opposite labels (dot and triangle, respectively). The second

will have whichever label happens to occur most in the region from 0.3 through

0.7 (it is in fact dot for the data in Fig. 8.4). Either way, this label must inevitably

be the same as one of the adjacent labels—of course this is true whatever the

0 0.2 0.4 0.6 0.8 1

a1

0

0.2

0.4

0.6

0.8

1

a2

FIGURE 8.4

Class distribution for a two-class, two-attribute problem.

302 CHAPTER 8 Data transformations

class probability happens to be in the middle region. Thus this discretization will

not be achieved by any method that minimizes the error counts, because such a

method cannot produce adjacent intervals with the same label.

The point is that what changes as the value of a1 crosses the boundary at 0.3

is not the majority class but the class distribution. The majority class remains dot.

The distribution, however, changes markedly, from 100% before the boundary

to just over 50% after it. And the distribution changes again as the boundary at

0.7 is crossed, from 50% to 0%. Entropy-based discretization methods are sensi-

tive to changes in the distribution even though the majority class does not change.

Error-based methods are not.

CONVERTING DISCRETE TO NUMERIC ATTRIBUTES

There is a converse problem to discretization. Some learning algorithms—notably

the nearest-neighbor instance-based method and numeric prediction techniques

involving regression—naturally handle only attributes that are numeric. How can

they be extended to nominal attributes?

In instance-based learning, as described in Section 4.7, discrete attributes can

be treated as numeric by defining the “distance” between two nominal values that

are the same as 0 and between two values that are different as 1—regardless of the

actual values involved. Rather than modifying the distance function, this can

be achieved by an attribute transformation: replace a k-valued nominal attribute by

k synthetic binary attributes, one for each value indicating whether the attribute

has that value or not. If the attributes are scaled appropriately, this achieves

the same effect on the distance function. The distance is insensitive to the attribute

values because only “same” or “different” information is encoded, not the shades

of difference that may be associated with the various possible values of the attri-

bute. More subtle distinctions can be made if the attributes have weights reflecting

their relative importance.

If the values of the attribute can be ordered, more possibilities arise. For a

numeric prediction problem, the average class value corresponding to each value

of a nominal attribute can be calculated from the training instances and used

to determine an ordering—this technique was introduced for model trees in

Section 7.3. (It is hard to come up with an analogous way of ordering attribute

values for a classification problem.) An ordered nominal attribute can be replaced

by an integer in the obvious way—but this implies not just an ordering but also a

metric on the attribute’s values. The implication of a metric can be avoided by

creating k�1 synthetic binary attributes for a k-valued nominal attribute, in the

manner described earlier. This encoding still implies an ordering among different

values of the attribute—adjacent values differ in just one of the synthetic attri-

butes, whereas distant ones differ in several—but does not necessarily imply an

equal distance between the attribute values.

3038.2 Discretizing Numeric Attributes

8.3 PROJECTIONS
Resourceful data miners have a toolbox full of techniques, such as discretization, for

transforming data. As we emphasized in Chapter 2, Input: concepts, instances,

attributes, data mining is hardly ever a matter of simply taking a dataset and applying

a learning algorithm to it. Every problem is different. You need to think about the

data and what it means, and examine it from diverse points of view—creatively!—to

arrive at a suitable perspective. Transforming it in different ways can help you get

started. In mathematics, a projection is a kind of function or mapping that transforms

data in some way.

You don’t have to make your own toolbox by implementing the projections your-

self. Comprehensive environments for machine learning, such as the one described

in Appendix B, contain a wide range of suitable tools for you to use. You do not

necessarily need a detailed understanding of how they are implemented. What you

do need to understand is what the tools do and how they can be applied.

Data often calls for general mathematical transformations of a set of attributes.

It might be useful to define new attributes by applying specified mathematical

functions to existing ones. Two date attributes might be subtracted to give a third

attribute representing age—an example of a semantic transformation driven by the

meaning of the original attributes. Other transformations might be suggested by

known properties of the learning algorithm. If a linear relationship involving two

attributes, A and B, is suspected, and the algorithm is only capable of axis-parallel

splits (as most decision tree and rule learners are), the ratio A/B might be defined

as a new attribute. The transformations are not necessarily mathematical ones,

but may involve world knowledge such as days of the week, civic holidays, or

chemical atomic numbers. They could be expressed as operations in a spreadsheet

or as functions that are implemented by arbitrary computer programs. Or you can

reduce several nominal attributes to one by concatenating their values, producing a

single k13 k2-valued attribute from attributes with k1 and k2 values, respectively.

Discretization converts a numeric attribute to nominal, and we saw earlier how to

convert in the other direction too.

As another kind of transformation, you might apply a clustering procedure to

the dataset and then define a new attribute whose value for any given instance

is the cluster that contains it using an arbitrary labeling for clusters. Alternatively,

with probabilistic clustering, you could augment each instance with its member-

ship probabilities for each cluster, including as many new attributes as there are

clusters.

Sometimes it is useful to add noise to data, perhaps to test the robustness of

a learning algorithm. To take a nominal attribute and change a given percentage

of its values. To obfuscate data by renaming the relation, attribute names, and

nominal and string attribute values—because it is often necessary to anonymize

sensitive datasets. To randomize the order of instances or produce a random

sample of the dataset by resampling it. To reduce a dataset by removing a given

percentage of instances, or all instances that have certain values for nominal

304 CHAPTER 8 Data transformations

attributes, or numeric values above or below a certain threshold. Or to remove out-

liers by applying a classification method to the dataset and deleting misclassified

instances.

Different types of input call for their own transformations. If you can input

sparse data files (see Section 2.4), you may need to be able to convert datasets to

nonsparse form, and vice versa. Textual input and time series input call for their

own specialized conversions, described in the subsections that follow. But first

we look at general techniques for transforming data with numeric attributes into a

lower-dimensional form that may be more useful for mining.

PRINCIPAL COMPONENT ANALYSIS

In a dataset with k numeric attributes, you can visualize the data as a cloud of

points in k-dimensional space—the stars in the sky, a swarm of flies frozen in

time, a two-dimensional scatter plot on paper. The attributes represent the coordi-

nates of the space. But the axes you use, the coordinate system itself, is arbitrary.

You can place horizontal and vertical axes on the paper and represent the points

of the scatter plot using those coordinates, or you could draw an arbitrary straight

line to represent the x-axis and one perpendicular to it to represent y. To record

the positions of the flies you could use a conventional coordinate system with a

north�south axis, an east�west axis, and an up�down axis. But other coordinate

systems would do equally well. Creatures like flies don’t know about north, south,

east and west, although, being subject to gravity, they may perceive up�down as

something special. And as for the stars in the sky, who’s to say what the “right”

coordinate system is?

Back to the dataset. Just as in these examples, there is nothing to stop you

transforming all the data points into a different coordinate system. But unlike

these examples, in data mining there often is a preferred coordinate system,

defined not by some external convention but by the very data itself. Whatever

coordinates you use, the cloud of points has a certain variance in each direction,

indicating the degree of spread around the mean value in that direction. It is a

curious fact that if you add up the variances along each axis and then transform

the points into a different coordinate system and do the same there, you get the

same total variance in both cases. This is always true provided the coordinate

systems are orthogonal, i.e., each axis is at right angles to the others.

The idea of principal component analysis is to use a special coordinate system

that depends on the cloud of points as follows: place the first axis in the direction

of greatest variance of the points to maximize the variance along that axis.

The second axis is perpendicular to it. In two dimensions there is no choice—its

direction is determined by the first axis—but in three dimensions it can lie any-

where in the plane perpendicular to the first axis, and in higher dimensions there

is even more choice, though it is always constrained to be perpendicular to

the first axis. Subject to this constraint, choose the second axis in the way that

maximizes the variance along it. And so on, choosing each axis to maximize its

share of the remaining variance.

3058.3 Projections

How do you do this? It’s not hard, given an appropriate computer program,

and it’s not hard to understand, given the appropriate mathematical tools.

Technically—for those who understand the italicized terms—you calculate the

covariance matrix of the original coordinates of the points and diagonalize it to

find the eigenvectors. These are the axes of the transformed space, sorted in order

of eigenvalue—because each eigenvalue gives the variance along its axis.

Fig. 8.5 shows the result of transforming a particular dataset with 10 numeric

attributes, corresponding to points in 10-dimensional space. Imagine the original

dataset as a cloud of points in 10 dimensions—we can’t draw it! Choose the first

axis along the direction of greatest variance, the second perpendicular to it along

the direction of next greatest variance, and so on. The table gives the variance

along each new coordinate axis in the order in which the axes were chosen.

Because the sum of the variances is constant regardless of the coordinate system,

they are expressed as percentages of that total. We call axes components and

say that each one “accounts for” its share of the variance. Fig. 8.5B plots the vari-

ance that each component accounts for against the component’s number. You can

use all the components as new attributes for machine learning, or you might want

to choose just the first few, the principal components, and discard the rest. In this

case, three principal components account for 84% of the variance in the dataset;

seven account for more than 95%.

On numeric datasets it is common to use principal component analysis prior to

data mining as a form of data cleanup and dimensionality reduction. For example,

you might want to replace the numeric attributes with the principal component

axes or with a subset of them that accounts for a given proportion—say, 95%—of

the variance. Note that the scale of the attributes affects the outcome of principal

Axis Variance Cumulative

1 61.2% 61.2%

2 18.0% 79.2%

3 4.7% 83.9%

4 4.0% 87.9%

5 3.2% 91.1%

6 2.9% 94.0%

7 2.0% 96.0%

8 1.7% 97.7%

9 1.4% 99.1%

10 0.9% 100.0%

(A) (B)

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8 9 10

P
er

ce
n

ta
g

e
o

f V
ar

ia
n

ce

Component number

FIGURE 8.5

Principal component transform of a dataset: (A) variance of each component; (B) variance plot.

306 CHAPTER 8 Data transformations

component analysis, and it is common practice to standardize all attributes to zero

mean and unit variance first.

Another possibility is to apply principal component analysis recursively in a

decision tree learner. At each stage an ordinary decision tree learner chooses to

split in a direction that is parallel to one of the axes. However, suppose a princi-

pal component transform is performed first, and the learner chooses an axis in the

transformed space. This equates to a split along an oblique line in the original

space. If the transform is performed afresh before each split, the result will be an

oblique decision tree whose splits are in directions that are not parallel with the

axes or with one another.

RANDOM PROJECTIONS

Principal component analysis transforms the data linearly into a lower-dimensional

space. But it’s expensive. The time taken to find the transformation (which is

a matrix comprising the eigenvectors of the covariance matrix) is cubic in the

number of dimensions. This makes it infeasible for datasets with a large number

of attributes. A far simpler alternative is to use a random projection of the data

into a subspace with a predetermined number of dimensions. It’s very easy to find

a random projection matrix. But will it be any good?

In fact, theory shows that random projections preserve distance relationships

quite well on average. This means that they could be used in conjunction with

kD-trees or ball trees to do approximate nearest-neighbor search in spaces

with a huge number of dimensions. First transform the data to reduce the number

of attributes; then build a tree for the transformed space. In the case of nearest-

neighbor classification you could make the result more stable, and less dependent

on the choice of random projection, by building an ensemble classifier that uses

multiple random matrices.

Not surprisingly, random projections perform worse than ones carefully chosen

by principal component analysis when used to preprocess data for a range of standard

classifiers. However, experimental results have shown that the difference is not

too great—and it tends to decrease as the number of dimensions increases. And of

course, random projections are far cheaper computationally.

PARTIAL LEAST SQUARES REGRESSION

As mentioned earlier, principal component analysis is often performed as a prepro-

cessing step before applying a learning algorithm. When the learning algorithm is

linear regression, the resulting model is known as principal component regression.

Since principal components are themselves linear combinations of the original

attributes, the output of principal component regression can be re-expressed in

terms of the original attributes. In fact, if all the components are used—not just the

“principal” ones—the result is the same as that obtained by applying least squares

regression to the original input data. Using fewer than the full set of components

results in a reduced regression.

3078.3 Projections

Partial least squares differs from principal component analysis in that it takes

the class attribute into account, as well as the predictor attributes, when constructing

a coordinate system. The idea is to calculate derived directions that, as well as

having high variance, are strongly correlated with the class. This can be advanta-

geous when seeking as small a set of transformed attributes as possible to use for

supervised learning.

There is a simple iterative method for computing the partial least squares

directions that involves only dot product operations. Starting with input attri-

butes that have been standardized to have zero mean and unit variance, the attri-

bute coefficients for the first partial least squares direction are found by taking

the dot product between each attribute vector and the class vector in turn. To find

the second direction the same approach is used, but the original attribute values

are replaced by the difference between the attribute’s value and the prediction

from a simple univariate regression that uses the first direction as the single pre-

dictor of that attribute. These differences are called residuals. The process con-

tinues in the same fashion for each remaining direction, with residuals for the

attributes from the previous iteration forming the input for finding the current par-

tial least squares direction.

Here is a simple worked example that should help make the procedure

clear. For the first five instances from the CPU performance data in Table 1.5,

Table 8.1A shows the values of CHMIN and CHMAX (after standardization to

zero mean and unit variance) and PRP (not standardized). The task is to find an

expression for the target attribute PRP in terms of the other two. The attribute

coefficients for the first partial least squares direction are found by taking the dot

product between the class and each attribute in turn. The dot product between

the PRP and CHMIN columns is �0.4472, and that between PRP and CHMAX

is 22.981. Thus the first partial least squares direction is

PLS1520:4472 CHMIN1 22:981 CHMAX:

Table 8.1B shows the values for PLS1 obtained from this formula.

Table 8.1 The First Five Instances From the CPU Performance Data;
(A) Original Values; (B) The First Partial Least Squares Direction;
(C) Residuals From the First Direction

(A) (B) (C)

CHMIN CHMAX PRP PLS1 CHMIN CHMAX PRP

1 1.7889 1.7678 198 39.825 0.0436 0.0008 198
2 20.4472 20.3536 269 27.925 20.0999 20.0019 269
3 20.4472 20.3536 220 27.925 20.0999 20.0019 220
4 20.4472 20.3536 172 27.925 20.0999 20.0019 172
5 20.4472 20.7071 132 216.05 0.2562 0.005 132

308 CHAPTER 8 Data transformations

The next step is to prepare the input data for finding the second partial least

squares direction. To this end PLS1 is regressed onto CHMIN and CHMAX in

turn, resulting in linear equations that predict each of these attributes individually

from PLS1. The coefficients are found by taking the dot product between PLS1

and the attribute in question, and dividing the result by the dot product between

PLS1 and itself. The resulting univariate regression equations are:

CHMIN5 0:0438 PLS1

CHMAX5 0:0444 PLS1:

Table 8.1C shows the CPU data in preparation for finding the second partial

least squares direction. The original values of CHMIN and CHMAX have been

replaced by residuals, i.e., the difference between the original value and the output

of the corresponding univariate regression equation given above (the target value

PRP remains the same). The entire procedure is repeated using this data as input to

yield the second partial least squares direction, which is

PLS25223:6002 CHMIN12 0:4593 CHMAX:

After this last partial least squares direction has been found, the attribute residuals

are all-zero. This reflects the fact that, as with principal component analysis, the full

set of directions account for all of the variance in the original data.

When the partial least squares directions are used as input to linear regression,

the resulting model is known as a partial least squares regression model. As with

principal component regression, if all the directions are used, the solution is the

same as that obtained by applying linear regression to the original data.

INDEPENDENT COMPONENT ANALYSIS

Principal component analysis finds a coordinate system for a feature space that

captures the covariance of the data. In contrast, independent component analysis

seeks a projection that decomposes the data into sources that are statistically

independent.

Consider the “cocktail party problem,” where people hear music and the voices

of other people: the goal is to un-mix these signals. Of course, there are many other

scenarios where a linear mixing of information must be unscrambled. Independent

component analysis finds a linear projection of the mixed signal that gives the

most statistically independent set of transformed variables.

Principal component analysis is sometimes thought of as seeking to transform

correlated variables into linearly uncorrelated variables. However, correlation

and statistical independence are two different criteria. Uncorrelated variables

have correlation coefficients of zero, corresponding to zero entries in a covariance

matrix. Two variables are considered independent when their joint probability is

the product of their marginal probabilities. (We will discuss marginal probabilities

in Section 9.1.)

3098.3 Projections

A quantity called mutual information measures the amount of information one

can obtain from one random variable given another. It can be used as an alternative

criterion for finding a projection of data, based on minimizing the mutual informa-

tion between the dimensions of the data in a linearly transformed space. Given a

model s5Ax, where A is an orthogonal matrix, x is the input data and s is the

decomposition into the source signals, it can be shown that minimizing the mutual

information between the dimensions of s corresponds to transforming the data

so that the estimated probability distribution of the sources p(s) is as far from

Gaussian as possible and the estimates s are constrained to be uncorrelated.

A popular technique for performing independent component analysis known

as fast ICA uses a quantity known as the negentropy J(s)5H(z)2H(s), where z is

a Gaussian random variable with the same covariance variance matrix as s and

H(.) is the “differential entropy,” defined as

HðxÞ52

ð
pðxÞlog pðxÞdx

Negentropy measures the departure of s’s distribution from the Gaussian

distribution. Fast ICA uses simple approximations to the negentropy allowing

learning to be performed more quickly.

LINEAR DISCRIMINANT ANALYSIS

Linear discriminant analysis is another way of finding a linear transformation of

data that reduces the number of dimensions required to represent it. It is often

used for dimensionality reduction prior to classification, but can also be used as a

classification technique itself. Unlike principal and independent component

analysis, it uses labeled data. The data is modeled by a multivariate Gaussian

distribution for each class c, with mean µc and a common covariance matrixP
. Because the covariance matrix for each class is assumed to be the same,

the posterior distribution over the classes has a linear form, and for each class

a linear discriminant function yc 5 xT
P21µc2 1=2µT

c

P21µc1 logðnc=nÞ is

computed, where nc is the number of examples of class c and n the total number

of examples. The data is classified by choosing the largest yc. Appendix A.2 gives

more information about multivariate Gaussian distributions.

QUADRATIC DISCRIMINANT ANALYSIS

Quadratic discriminant analysis is obtained simply by giving each class its own

covariance matrix
P

c and mean µc. The decision boundaries defined by the poste-

rior probability over classes will be described by quadratic equations. The quadratic

discriminant functions for each class c are

fcðxÞ52
1

2
log

X
c

			 			2 1

2
ðx2µcÞ

X21

c
ðx2µcÞT 1 log πc;

310 CHAPTER 8 Data transformations

where these functions are produced by taking the log of the corresponding

Gaussian model for each class and ignoring the constant terms, since such functions

will be compared with one another.

FISHER’S LINEAR DISCRIMINANT ANALYSIS

Linear discriminant analysis of the form discussed above has its roots in an

approach developed by the famous statistician R.A. Fisher, who arrived at linear

discriminants from a different perspective. He was interested in finding a linear

projection for data that maximizes the variance between classes relative to the

variance for data from the same class. This approach is known as Fisher’s linear

discriminant analysis, and can be formulate for two classes or multiple classes.

In the two-class case, we seek a projection vector a that can be used to compute

scalar projections y5 ax for input vectors x. It is obtained by computing the means

of each class, µ1 and µ2 in the usual way. Then the between-class scatter matrix

SB 5 ðµ22µ1Þðµ22µ1ÞT is calculated (note the use of the outer product of two

vectors here, which gives a matrix, rather than the dot product used earlier in the

book, which gives a scalar); along with the within-class scatter matrix

SW 5
X
i:ci51

ðxi2µ1Þðxi2µ1ÞT 1
X
i:ci52

ðxi2µ2Þðxi2µ2ÞT

a is found by maximizing the “Rayleigh quotient”

JðaÞ5 aTSBa

aTSWa
:

This leads to the solution a5S21
W ðµ2 2µ1Þ. The difference between principal

component analysis and Fisher’s linear discriminant analysis is nicely visualized

in Fig. 8.6, which shows the 1-dimensional linear projection obtained by both

methods for a two-class problem in two dimensions.

With more than two classes, the problem is to find a projection matrix A for

which the low-dimensional projection given by y5ATx yields a cloud of points

that are close when they are in the same class relative to the overall spread.

To do this, compute the mean µc for each class and the global mean µ, and then

find the within- and between-class scatter matrices

SW 5
XC
j51

X
i:ci 5 j

ðxi 2µjÞðxi2µjÞT

SB 5
XC
c51

ncðµc 2µÞðµc2µÞT:

A is the matrix that maximizes

JðAÞ5 ATSBA
		 		
ATSWA
		 		 :

3118.3 Projections

This ratio of determinants is a generalization of the ratio J(a) used above.

Determinants serve as analogs of variances computed in multiple dimensions and

multiplied together, but computed along the principal directions of the scatter

matrices.

Solving this requires sophisticated linear algebra. The idea is to construct

something known as a “generalized eigenvalue problem” for each column of

the matrix A. The columns of the optimal A are the generalized eigenvectors

ai corresponding to the largest eigenvalues λi for the equation SBai 5λiSWai.

(Appendix A.1 gives more information about eigenvalues and eigenvectors.)

It has been shown that solutions have the form a5 S
21=2
W U, where U is obtained

from the eigenvectors of S
21=2
W SBS

21=2
W .

Fisher’s linear discriminant analysis is quite popular for achieving dimensionality

reduction, but for C classes it is limited to finding at most a C�1 dimensional

projection. The Further reading section at the end of this chapter discusses a

variant that can go beyond C�1 dimensions and provide non-linear projections

as well.

The above analysis is based on the use of means and scatter matrices, but does

not assume an underlying Gaussian distribution as ordinary linear discriminant

analysis does. Of course, logistic regression, described in Section 4.6, is an even

more direct way to create a linear binary classifier. Logistic regression is one of

the most popular methods of applied statistics; we discuss the multiclass version

in Section 9.7.

FIGURE 8.6

Comparing principal component analysis and Fisher’s linear discriminant analysis.

Adapted from Belhumeur, Hespanha & Kriegman, 1997.

312 CHAPTER 8 Data transformations

TEXT TO ATTRIBUTE VECTORS

In Section 2.4 we introduced string attributes that contain pieces of text and

remarked that the value of a string attribute is often an entire document. String

attributes are basically nominal, with an unspecified number of values. If they are

treated simply as nominal attributes, models can be built that depend on whether

the values of two string attributes are equal or not. But that does not capture any

internal structure of the string or bring out any interesting aspects of the text it

represents.

You could imagine decomposing the text in a string attribute into paragraphs,

sentences, or phrases. Generally, however, the word is the most useful unit.

The text in a string attribute is usually a sequence of words, and is often best repre-

sented in terms of the words it contains. For example, you might transform the

string attribute into a set of numeric attributes, one for each word, that represent

how often the word appears. The set of words—i.e., the set of new attributes—is

determined from the dataset and is typically quite large. If there are several string

attributes whose properties should be treated separately, the new attribute names

must be distinguished, perhaps by a user-determined prefix.

Conversion into words—tokenization—is not such a simple operation as it

sounds. Tokens may be formed from contiguous alphabetic sequences with nonal-

phabetic characters discarded. If numbers are present, numeric sequences may

be retained too. Numbers may involve1 or2 signs, may contain decimal points,

and may have exponential notation—in other words, they must be parsed accord-

ing to a defined number syntax. An alphanumeric sequence may be regarded as

a single token. Perhaps the space character is the token delimiter; perhaps white-

space (including the tab and new-line characters), and perhaps punctuation is too.

Periods can be difficult: sometimes they should be considered part of the word

(e.g., with initials, titles, abbreviations, and numbers), but sometimes they should

not (e.g., if they are sentence delimiters). Hyphens and apostrophes are similarly

problematic.

All words may be converted to lower case before being added to the dictionary.

Words on a fixed, predetermined list of function words or stopwords—such as the,

and, and but—could be ignored. Note that stopword lists are language dependent.

In fact, so are capitalization conventions (German capitalizes all nouns), number

syntax (Europeans use the comma for a decimal point), punctuation conventions

(Spanish has an initial question mark), and, of course, character sets. Text is

complicated!

Low frequency words such as hapax legomena1 are often discarded too.

Sometimes it is found beneficial to keep the most frequent k words after stopwords

have been removed—or perhaps the top k words for each class.

Along with all these tokenization options, there is also the question of what

the value of each word attribute should be. The value may be the word count—the

1A hapax legomena is a word that only occurs once in a given corpus of text.

3138.3 Projections

number of times the word appears in the string—or it may simply indicate the

word’s presence or absence. Word frequencies could be normalized to give

each document’s attribute vector the same Euclidean length. Alternatively, the

frequencies fij for word i in document j can be transformed in various standard

ways. One standard logarithmic term frequency measure is log (11 fij). A measure

that is widely used in information retrieval is TF3 IDF, or “term frequency

times inverse document frequency.” Here, the term frequency is modulated by a

factor that depends on how commonly the word is used in other documents.

The TF3 IDF metric is typically defined as

fij log
Number of documents

Number of documents that include word i
:

The idea is that a document is basically characterized by the words that appear

often in it, which accounts for the first factor, except that words used in every

document or almost every document are useless as discriminators, which accounts

for the second. TF3 IDF is used to refer not just to this particular formula but to

a general class of measures of the same type. For example, the frequency factor

fij may be replaced by a logarithmic term such as log (11 fij).

TIME SERIES

In time series data, each instance represents a different time step and the attributes

give values associated with that time—such as in weather forecasting or stock

market prediction. You sometimes need to be able to replace an attribute’s value

in the current instance by the corresponding value in some other instance in

the past or the future. Even more common is to replace an attribute’s value by the

difference between the current value and the value in some previous instance.

For example, the difference—often called the Delta—between the current value

and the preceding one is often more informative than the value itself. The first

instance, for which the time-shifted value is unknown, may be removed, or

replaced with a missing value. The Delta value is essentially the first derivative

scaled by some constant that depends on the size of the time step. Successive

Delta transformations take higher derivatives.

In some time series, instances do not represent regular samples, but the time

of each instance is given by a timestamp attribute. The difference between

timestamps is the step size for that instance, and if successive differences

are taken for other attributes they should be divided by the step size to normal-

ize the derivative. In other cases each attribute may represent a different time,

rather than each instance, so that the time series is from one attribute to the

next rather than one instance to the next. Then, if differences are needed, they

must be taken between one attribute’s value and the next attribute’s value for

each instance.

314 CHAPTER 8 Data transformations

8.4 SAMPLING
In many applications involving a large volume of data it is necessary to come up

with a random sample of much smaller size for processing. A random sample is

one in which each instance in the original dataset has an equal chance of being

included. Given a batch of N instances, a sample of any desired size is easily

created: just generate uniform random integers between 1 and N and retrieve the

corresponding instances until the appropriate number has been collected. This is

sampling with replacement, because the same instance might be selected more than

once. (In fact, we used sampling with replacement for the bootstrap algorithm in

Section 5.4.) For sampling without replacement, simply note when selecting each

instance whether it has already been chosen and, if so, discard the second copy.

If the sample size is much smaller than the full dataset there is little difference

between sampling with and without replacement.

RESERVOIR SAMPLING

Sampling is such a simple procedure that it merits little discussion or explana-

tion. But there is a situation in which producing a random sample of a given

size becomes a little more challenging. What if the training instances arrive

one by one, but the total number of them—the value of N—is not known in

advance? Or suppose we need to be able to run a learning algorithm on a sample

of a given size from a continuous stream of instances at any time, without

repeatedly performing an entire sampling operation? Or perhaps the number of

training instances is so vast that it is impractical to store them all before taking

a sample?

All these situations call for a way of generating a random sample of an input

stream without storing all the instances up and waiting for the last one to arrive

before beginning the sampling procedure. Is it possible to generate a random

sample of a given size and still guarantee that each instance has an equal chance

of being selected? The answer is yes. Furthermore, there is a simple algorithm to

do so.

The idea is to use a “reservoir” of size r, the size of the sample that is to be

generated. To begin, place successive instances from the input stream in the reser-

voir until it is full. If the stream were to stop there, we would have the trivial case of

a random sample of size r from an input stream of the same size. But most likely

more instances will come in. The next one should be included in the sample with

probability r/(r1 1)—in fact, if the input stream were to stop there (N5 r1 1) any

instance should be in the sample with this probability. Consequently, with

probability r/(r1 1) we replace a random instance in the reservoir with this new

instance. And we carry on in the same vein, replacing a random reservoir element

with the next instance with probability r/(r1 2) and so on. In general, the ith

instance in the input stream is placed into the reservoir at a random location with

3158.4 Sampling

probability r/i. It is easy to show by induction that once this instance has been pro-

cessed the probability of any particular instance being in the reservoir is just the

same, namely r/i. Thus at any point in the procedure, the reservoir contains a random

sample of size r from the input stream. You can stop at any time, secure in the

knowledge that the reservoir contains the desired random sample.

This method samples without replacement. Sampling with replacement is a

little harder—although for large datasets and small reservoirs there is little differ-

ence between the two. But if you really want a sample of size r with replacement,

you could set up r independent reservoirs, each with size 1. Run the algorithm

concurrently for all of these, and at any time their union is a random sample with

replacement.

8.5 CLEANSING
A problem that plagues practical machine learning is poor quality of the data.

Errors in large databases are extremely common. Attribute values, and class values

too, are frequently unreliable and corrupted. Although one way of addressing

this problem is to painstakingly check through the data, machine learning techni-

ques themselves can sometimes help to solve the problem.

IMPROVING DECISION TREES

It is a surprising fact that decision trees induced from training data can often be

simplified, without loss of accuracy, by discarding misclassified instances from

the training set, relearning, and then repeating until there are no misclassified

instances. Experiments on standard datasets have shown that this hardly affects

the classification accuracy of C4.5, a standard decision tree induction scheme.

In some cases it improves slightly; in others it deteriorates slightly. The differ-

ence is rarely statistically significant—and even when it is, the advantage can

go either way. What the technique does affect is decision tree size. The resulting

trees are invariably smaller than the original ones, even though they perform

about the same.

What is the reason for this? When a decision tree induction method prunes

away a subtree, it applies a statistical test that decides whether that subtree is

“justified” by the data. The decision to prune accepts a small sacrifice in classifi-

cation accuracy on the training set in the belief that this will improve test-set per-

formance. Some training instances that were classified correctly by the unpruned

tree will now be misclassified by the pruned one. In effect, the decision has been

taken to ignore these training instances.

But that decision has only been applied locally, in the pruned subtree. Its effect

has not been allowed to percolate further up the tree, perhaps resulting in different

choices being made of attributes to branch on. Removing the misclassified instances

316 CHAPTER 8 Data transformations

from the training set and relearning the decision tree is just taking the pruning

decisions to their logical conclusion. If the pruning strategy is a good one, this

should not harm performance. And it may improve it by allowing better attribute

choices to be made.

It would no doubt be even better to consult a human expert. Misclassified

training instances could be presented for verification, and those that were found

to be wrong could be deleted—or better still, corrected.

Notice that we are assuming that the instances are not misclassified in any

systematic way. If instances are systematically corrupted in both training and

test sets—e.g., one class value might be substituted for another—it is only to be

expected that training on the erroneous training set will yield better performance

on the (also erroneous) test set.

Interestingly enough, it has been shown that when artificial noise is added to

attributes (rather than to classes), test-set performance is improved if the

same noise is added in the same way to the training set. In other words, when

attribute noise is the problem it is not a good idea to train on a “clean” set if

performance is to be assessed on a “dirty” one. A learning scheme can learn to

compensate for attribute noise, in some measure, if given a chance. In essence, it

can learn which attributes are unreliable, and, if they are all unreliable, how best

to use them together to yield a more reliable result. To remove noise from attri-

butes for the training set denies the opportunity to learn how best to combat that

noise. But with class noise (rather than attribute noise), it is best to train on noise-

free instances if possible.

ROBUST REGRESSION

The problems caused by noisy data have been known in linear regression for

years. Statisticians often check data for outliers and remove them manually.

In the case of linear regression, outliers can be identified visually—although

it is never completely clear whether an outlier is an error or just a surprising,

but correct, value. Outliers dramatically affect the usual least-squares regression

because the squared distance measure accentuates the influence of points far away

from the regression line.

Statistical methods that address the problem of outliers are called robust.

One way of making regression more robust is to use an absolute-value distance

measure instead of the usual squared one. This weakens the effect of outliers.

Another possibility is to try to identify outliers automatically and remove them

from consideration. For example, one could form a regression line and then

remove from consideration those 10% of points that lie furthest from the line.

A third possibility is to minimize the median (rather than the mean) of the squares

of the divergences from the regression line. It turns out that this estimator is very

robust and actually copes with outliers in the X-direction as well as outliers in the

Y-direction—which is the normal direction one thinks of outliers.

3178.5 Cleansing

A dataset that is often used to illustrate robust regression is a graph of international

telephone calls made from Belgium during the years 1950 to 1973, shown in

Fig. 8.7. This data is taken from the Belgian Statistical Survey published by the

Ministry of Economy. The plot seems to show an upward trend over the years,

but there is an anomalous group of points from 1964 to 1969. It turns out that during

this period, results were mistakenly recorded as the total number of minutes of the

calls. The years 1963 and 1970 are also partially affected. This error causes a large

fraction of outliers in the Y-direction.

Not surprisingly, the usual least-squares regression line is seriously affected by

this anomalous data. However, the least median of squares line remains remark-

ably unperturbed. This line has a simple and natural interpretation. Geometrically,

it corresponds to finding the narrowest strip covering half of the observations,

where the thickness of the strip is measured in the vertical direction—this strip is

marked gray in Fig. 8.7. The least median of squares line lies at the exact center

of this band. Note that this notion is often easier to explain and visualize than the

normal least-squares definition of regression. Unfortunately, there is a serious dis-

advantage to median-based regression techniques: they incur high computational

cost, which often makes them infeasible for practical problems.

DETECTING ANOMALIES

A serious problem with any form of automatic detection of apparently incorrect

data is that the baby may be thrown out with the bathwater. Short of consulting a

human expert, there is no way of telling whether a particular instance really is

an error or whether it just does not fit the type of model that is being applied.

In statistical regression, visualizations help. It will usually be visually apparent,

even to the nonexpert, if the wrong kind of curve is being fitted—a straight line

–5

0

5

10

15

20

25

1950 1955 1960 1965 1970 1975

Least squares

Least median
of squares

Year

P
ho

ne
 c

al
ls

 (
te

ns
 o

f m
ill

io
ns

)

FIGURE 8.7

Number of international phone calls from Belgium, 1950�1973.

318 CHAPTER 8 Data transformations

is being fitted to data that lies on a parabola, e.g., The outliers in Fig. 8.7

certainly stand out to the eye. But most classification problems cannot be so

easily visualized: the notion of “model type” is more subtle than a regression

line. And although it is known that good results are obtained on most standard

datasets by discarding instances that do not fit a decision tree model, this is not

necessarily of great comfort when dealing with a particular new dataset. The sus-

picion will remain that perhaps the new dataset is simply unsuited to decision

tree modeling.

One solution that has been tried is to use several different learning schemes—

such as a decision tree, and a nearest-neighbor learner, and a linear discriminant

function—to filter the data. A conservative approach is to ask that all three

schemes fail to classify an instance correctly before it is deemed erroneous and

removed from the data. In some cases, filtering the data in this way and using the

filtered data as input to a final learning scheme gives better performance than

simply using the three learning schemes and letting them vote on the outcome.

Training all three schemes on the filtered data and letting them vote can yield

even better results. However, there is a danger to voting techniques: some learn-

ing algorithms are better suited to certain types of data than others, and the most

appropriate scheme may simply get out-voted! We will examine a more subtle

method of combining the output from different classifiers, called stacking, in

Chapter 12, Ensemble learning. The lesson, as usual, is to get to know your data

and look at it in many different ways.

One possible danger with filtering approaches is that they might conceivably

just be sacrificing instances of a particular class (or group of classes) to improve

accuracy on the remaining classes. Although there are no general ways to guard

against this, it has not been found to be a common problem in practice.

Finally, it is worth noting once again that automatic filtering is a poor substitute

for getting the data right in the first place. And if this is too time-consuming and

expensive to be practical, human inspection could be limited to those instances that

are identified by the filter as suspect.

ONE-CLASS LEARNING

In most classification problems, training data is available for all classes that

can occur at prediction time, and the learning algorithm uses the data for the dif-

ferent classes to determine decision boundaries that discriminate between them.

However, some problems exhibit only a single class of instances at training time,

while at prediction time new instances with unknown class labels can belong

either to this target class or to a new class that was not available during training.

Then, two different predictions are possible: target, meaning that an instance

belongs to the class experienced during training, and unknown, where the instance

does not appear to belong to that class. This type of learning problem is known as

one-class classification.

3198.5 Cleansing

In many cases, one-class problems can be reformulated into two-class ones

because there is data from other classes that can be used for training. However,

there are genuine one-class applications where it is impossible or inappropriate

to make use of negative data during training. For example, consider password

hardening, a biometric system that strengthens a computer login process by not

only requiring the correct password to be typed, but also that it be typed with the

correct rhythm. This is a one-class problem; a single user must be verified and

during training time only data from that user is available—we cannot ask anyone

else to provide data without supplying them with the password!

Even in applications where instances from several classes are available at train-

ing time, it may be best to focus solely on the target class under consideration—if,

e.g., new classes may occur at prediction time that differ from all those available

during training. Continuing with the typing-rhythm scenario, suppose we are to

recognize typists in a situation where the text is not fixed—the current typist is to

be verified as who he or she claims to be from their rhythmic patterns on a block

of free text. This task is fundamentally different from distinguishing one user from

a group of other users, because we must be prepared to refuse attackers that the

system has never seen before.

OUTLIER DETECTION

One-class classification is often called outlier (or novelty) detection because the

learning algorithm is being used to differentiate between data that appears normal

and abnormal with respect to the distribution of the training data. Earlier in this

section we talked about making regression more robust by replacing the usual

squared distance measure with the absolute-value one, and about trying to detect

anomalies by using several different learning schemes.

A generic statistical approach to one-class classification is to identify outliers

as instances that lie beyond a distance d from a given percentage p of the training

data. Alternatively, a probability density can be estimated for the target class by

fitting a statistical distribution, such as a Gaussian, to the training data; any test

instances with a low probability value can be marked as outliers. The challenge

is to identify an appropriate distribution for the data at hand. If this cannot be

done one can adopt a non-parametric approach such as kernel density estimation

(discussed in Section 9.3). An advantage of the density estimation approach is

that the threshold can be adjusted at prediction time to obtain a suitable rate

of outliers.

Multiclass classifiers can be tailored to the one-class situation by fitting a

boundary around the target data and deeming instances that fall outside it to

be outliers. The boundary can be generated by adapting the inner workings of

existing multiclass classifiers such as support vector machines. These methods

rely heavily on a parameter that determines how much of the target data is likely

to be classified as outliers. If it is chosen too conservatively, data in the target

320 CHAPTER 8 Data transformations

class will erroneously be rejected. If it is chosen too liberally, the model will

overfit and reject too much legitimate data.

GENERATING ARTIFICIAL DATA

Rather than modify the internal workings of a multiclass classifier to form

a one-class decision boundary directly, another possibility is to generate artificial

data for the outlier class and apply any off-the-shelf classifier. Not only does this

allow any classifier to be used, but if the classifier produces class probability

estimates the rejection rate can be tuned by altering the threshold.

The most straightforward approach is to generate uniformly distributed data

and learn a classifier that can discriminate this from the target. However, different

decision boundaries will be obtained for different amounts of artificial data: if too

much is generated it will overwhelm the target class and the learning algorithm

will always predict the artificial class. This problem can be avoided if the objec-

tive of learning is viewed as accurate class probability estimation rather than

minimizing the classification error. For example, bagged decision trees (described

in Section 12.2), which have been shown to yield good class probability estimators,

can be used.

Once a class probability estimation model has been obtained in this fashion,

different thresholds on the probability estimates for the target class correspond to

different decision boundaries surrounding the target class. This means that, as

in the density estimation approach to one-class classification, the rate of outliers

can be adjusted at prediction time to yield an outcome appropriate for the applica-

tion at hand.

There is one significant problem. As the number of attributes increases, it

quickly becomes infeasible to generate enough artificial data to obtain adequate

coverage of the instance space, and the probability that a particular artificial

instance occurs inside or close to the target class diminishes to a point that makes

any kind of discrimination impossible.

The solution is to generate artificial data that is as close as possible to the

target class. In this case, because it is no longer uniformly distributed, the distri-

bution of this artificial data—call this the “reference” distribution—must be taken

into account when computing the membership scores for the resulting one-class

model. In other words, the class probability estimates of the two-class classifier

must be combined with the reference distribution to obtain membership scores for

the target class.

To elaborate a little further, let T denote the target class for which we have

training data and seek a one-class model, and A the artificial class, for which we

generate data using a known reference distribution. What we would like to obtain

is P(X|T), the density function of the target class, for any instance X—of course,

we know P(X|A), the density function of the reference distribution. Assume for

the moment that we know the true class probability function P(T |X). In practice,

we need to estimate this function using a class probability estimator learned from

3218.5 Cleansing

the training data. A simple application of Bayes’s rule can be used to express

P(X|T) in terms of P(T), P(T|X) and P(X|A):

PðXjTÞ5 ð12PðTÞÞPðTjXÞ
PðTÞð12PðTjXÞÞPðXjAÞ

To use this equation in practice, choose P(X|A), generate a user-specified

amount of artificial data from it, label it A, and combine it with instances in the

training set for the target class, labeled T. The proportion of target instances is

an estimate of P(T), and a standard learning algorithm can be applied to this

two-class dataset to obtain a class probability estimator P(T |X). Given that the

value for P(X|A) can be computed for any particular instance X, everything is at

hand to compute an estimate of the target density function P(X|T) for any instance

X. To perform classification we choose an appropriate threshold, adjusted to tune

the rejection rate to any desired value.

One question remains, namely, how to choose the reference density P(X|A).

We need to be able to generate artificial data from it, and to compute its value for

any instance X. Another requirement is that the data it generates should be close

to the target class. In fact, ideally the reference density is identical to the target

density, in which case P(T |X) becomes a constant function that any learning algo-

rithm should be able to induce—the resulting two-class learning problem becomes

trivial. This is unrealistic because it would require us to know the density of the

target class. However, this observation gives a clue as to how to proceed: apply

any density estimation technique to the target data and use the resulting function

to model the artificial class. The better the match between P(X|A) and P(X|T),

the easier the resulting two-class class probability estimation task becomes.

In practice, given the availability of powerful methods for class probability

estimation and the relative lack of such techniques for density estimation, it may

make sense to apply a simple density estimation technique to the target data first

to obtain P(X|A) and then employ a state-of-the-art class probability estimation

method to the two-class problem that is obtained by combining the artificial data

with the data from the target class.

8.6 TRANSFORMING MULTIPLE CLASSES TO BINARY ONES
Recall from Chapter 4, Algorithms: the basic methods, and Chapter 7, Extending

instance-based and linear models, that some learning algorithms—e.g., standard

support vector machines—only work with two-class problems. In most cases,

sophisticated multiclass variants have been developed, but they may be very slow

or difficult to implement. As an alternative, it is common practice to transform

multiclass problems into multiple two-class ones: the dataset is decomposed into

several two-class problems; the algorithm is run on each one; and the outputs of

the resulting classifiers are combined. There are several popular techniques that

322 CHAPTER 8 Data transformations

implement this idea. We begin with a very simple one that we already touched on

when discussing how to use linear regression for classification, and then move on

to pairwise classification and more advanced techniques—error-correcting output

codes and ensembles of nested dichotomies—that can often be profitably applied

even when the underlying learning algorithm is able to deal with multiclass pro-

blems directly.

SIMPLE METHODS

At the beginning of the subsection on Linear classification in Section 4.6 we

learned how to transform a multiclass dataset for multiresponse linear regression

to perform a two-class regression for each class. The idea essentially produces

several two-class datasets by discriminating each class against the union of all the

other classes. This technique is commonly called the one-vs-rest method (or also,

somewhat misleadingly, one-vs-all). For each class, a dataset is generated

containing a copy of each instance in the original data, but with a modified class

value. If the instance has the class associated with the corresponding dataset it is

tagged yes; otherwise no. Then classifiers are built for each of these binary data-

sets, classifiers that output a confidence figure with their predictions—e.g., the

estimated probability that the class is yes. During classification, a test instance is

fed into each binary classifier, and the final class is the one associated with the

classifier that predicts yes most confidently.

Of course, this method is sensitive to the accuracy of the confidence

figures produced by the classifiers: if some classifiers have an exaggerated opinion

of their own predictions, the overall result will suffer. That is why it can be impor-

tant to carefully tune parameter settings in the underlying learning algorithm.

For example, in standard support vector machines for classification, it is generally

necessary to tune the parameter C, which provides an upper bound to the influence

of each support vector and controls the closeness of fit to the training data, and the

value of the kernel parameter—e.g., the size of the exponent in a polynomial

kernel. This can be done based on internal cross-validation. It has been found

empirically that the one-vs-rest method can be very competitive, at least in the

case of kernel-based classifiers, when appropriate parameter tuning is done. Note

that it may also be useful to apply techniques for calibrating confidence scores,

discussed in Section 8.7: Calibrating class probabilities, to the individual two-class

models.

Another simple and general method for multiclass problems is pairwise

classification. Here a classifier is built for every pair of classes, using only the

instances from these two classes. The output on an unknown test example is based

on which class receives the most votes. This scheme generally yields accurate

results in terms of classification error. It can also be used to produce probability

estimates by applying a method called pairwise coupling, which calibrates the

individual probability estimates from the different classifiers.

3238.6 Transforming Multiple Classes to Binary Ones

If there are k classes, pairwise classification builds a total of k(k�1)/2 classifiers.

Although this sounds unnecessarily computation intensive, it is not. In fact, if the

classes are evenly populated, a pairwise classifier is at least as quick to train as any

other multiclass method. The reason is that each of the pairwise learning problems

only involves instances pertaining to the two classes under consideration. If n

instances are divided evenly among k classes, this amounts to 2n/k instances per

problem. Suppose the learning algorithm for a two-class problem with n instances

takes time proportional to n seconds to execute. Then the run time for pairwise

classification is proportional to k(k�1)/23 2n/k seconds, which is (k�1)n. In other

words, the method scales linearly with the number of classes. If the learning

algorithm takes more time—say proportional to n2—the advantage of the pairwise

approach becomes even more pronounced.

ERROR-CORRECTING OUTPUT CODES

The simple methods discussed above are often very effective. Pairwise classification

in particular can be a very useful technique. In some cases it can improve accuracy

even when the underlying learning algorithm, such as a decision tree learner,

can deal with multiclass problems directly. This may be due to the fact that pairwise

classification actually generates an ensemble of many classifiers. Ensemble learning

is a well-known strategy for obtaining accurate classifiers, and we will discuss

several ensemble learning methods in Chapter 12, Ensemble learning. It turns out

that there are methods other than pairwise classification that can be used to generate

an ensemble classifier by decomposing a multiclass problem into several two-class

subtasks. The one we discuss next is based on error-correcting output codes.

Two-class decompositions of multiclass problems can be viewed in terms of

the so-called “output codes” they correspond to. Let us revisit the simple one-

vs-rest method to see what such codes look like. Consider a multiclass problem

with four classes a, b, c, and d. The transformation can be visualized as shown

in Table 8.2A, where yes and no are mapped to 1 and 0, respectively. Each

of the original class values is converted into a 4-bit code word, 1 bit per class,

and the four classifiers predict the bits independently. Interpreting the classifica-

tion process in terms of these code words, errors occur when the wrong binary bit

receives the highest confidence.

Table 8.2 Transforming a Multiclass Problem Into a Two-Class One:
(A) Standard Method; (B) Error-Correcting Code

(A) Class Class Vector (B) Class Class Vector

a 1 0 0 0 a 1 1 1 1 1 1 1
b 0 1 0 0 b 0 0 0 0 1 1 1
c 0 0 1 0 c 0 0 1 1 0 0 1
d 0 0 0 1 d 0 1 0 1 0 1 0

324 CHAPTER 8 Data transformations

However, we do not have to use the particular code words shown. Indeed

there is no reason why each class must be represented by 4 bits. Look instead at

the code of Table 8.2B, where classes are represented by 7 bits. When applied to

a dataset, seven classifiers must be built instead of four. To see what that might

buy, consider the classification of a particular instance. Suppose it belongs to

class a, and that the predictions of the individual classifiers are 1 0 1 1 1 1 1

(respectively). Obviously, comparing this code word with those in Table 8.2B, the

second classifier has made a mistake: it predicted 0 instead of 1, no instead of

yes. However, comparing the predicted bits with the code word associated with

each class, the instance is clearly closer to a than to any other class. This can be

quantified by the number of bits that must be changed to convert the predicted

code word into those of Table 8.2B: the Hamming distance, or the discrepancy

between the bit strings, is 1, 3, 3, and 5 for the classes a, b, c, and d, respectively.

We can safely conclude that the second classifier made a mistake and correctly

identify a as the instance’s true class.

The same kind of error correction is not possible with the code words of

Table 8.2A, because any predicted string of 4 bits other than these four 4-bit

words has the same distance to at least two of them. The output codes are not

“error correcting.”

What determines whether a code is error correcting or not? Consider the Hamming

distance between the code words representing different classes. The number of

errors that can possibly be corrected depends on the minimum distance between any

pair of code words, say d. The code can guarantee to correct up to ðd2 1Þ=2
 �
1-bit

errors, because if this number of bits of the correct code word are flipped, it will still

be the closest and will therefore be identified correctly. In Table 8.2A the Hamming

distance for each pair of code words is 2. Hence, the minimum distance d is also 2,

and we can correct no more than 0 errors! However, in the code of Table 8.2B

the minimum distance is 4 (in fact, the distance is 4 for all pairs). That means it is

guaranteed to correct 1-bit errors.

We have identified one property of a good error-correcting code: the code

words must be well separated in terms of their Hamming distance. Because they

comprise the rows of the code table, this property is called row separation. There

is a second requirement that a good error-correcting code should fulfill: column

separation. The Hamming distance between every pair of columns must be large,

as must the distance between each column and the complement of every other

column. In Table 8.2B, the seven columns are separated from one another by at

least 1 bit.

Column separation is necessary because if two columns are identical (or if one

is the complement of another), the corresponding classifiers will make the same

errors. Error correction is weakened if the errors are correlated—in other words,

if many bit positions are simultaneously incorrect. The greater the distance

between columns, the more errors are likely to be corrected.

With fewer than four classes it is hard to construct a really effective error-

correcting code because good row separation and good column separation cannot

3258.6 Transforming Multiple Classes to Binary Ones

be achieved simultaneously. For example, with three classes there are only eight

possible columns (23), four of which are complements of the other four. Moreover,

columns with all zeroes or all ones provide no discrimination. This leaves just

three possible columns, and the resulting code is not error correcting at all.

(In fact, it is the standard “one-vs-rest” encoding.)

If there are few classes, an exhaustive error-correcting code such as the one

in Table 8.2B can be built. In an exhaustive code for k classes, the columns

comprise every possible k-bit string, except for complements and the trivial all--

zero or all-one strings. Each code word contains 2k�1�1 bits. The code is con-

structed as follows: the code word for the first class consists of all ones; that for

the second class has 2k�2 zeroes followed by 2k�2�1 ones; the third has 2k�3

zeroes followed by 2k�3 ones followed by 2k�3 zeroes followed by 2k�3�1 ones;

and so on. The ith code word consists of alternating runs of 2k�i zeroes and

ones, the last run being one short.

With more classes, exhaustive codes are infeasible because the number of

columns increases exponentially and too many classifiers have to be built. In that

case more sophisticated methods are employed, which can build a code with good

error-correcting properties from a smaller number of columns, or random codes

are used.

Error-correcting output codes do not work for local learning algorithms such as

instance-based learners, which predict the class of an instance by looking at nearby

training instances. In the case of a nearest-neighbor classifier, all output bits would

be predicted using the same training instance. The problem can be circumvented

by using different attribute subsets to predict each output bit, decorrelating the

predictions.

ENSEMBLES OF NESTED DICHOTOMIES

Error-correcting output codes often produce accurate classifiers for multiclass

problems. However, the basic algorithm produces classifications whereas often

we would like class probability estimates as well—e.g., to perform cost-sensitive

classification using the minimum expected cost approach discussed in Section 5.8.

Fortunately, there is a method for decomposing multiclass problems into two-class

ones that provides a natural way of computing class probability estimates, so

long as the underlying two-class models are able to produce probabilities for the

corresponding two-class subtasks.

The idea is to recursively split the full set of classes from the original multi-

class problem into smaller and smaller subsets, while splitting the full dataset of

instances into subsets corresponding to these subsets of classes. This yields a

binary tree of classes. Consider the hypothetical 4-class problem discussed earlier.

At the root node are the full set of classes {a, b, c, d}, which are split into disjoint

subsets, say {a, c} and {b, d}, along with the instances pertaining to these two

subsets of classes. The two subsets form the two successor nodes in the binary

tree. These subsets are then split further into one-element sets, yielding successors

326 CHAPTER 8 Data transformations

{a} and {c} for the node {a, c}, and successors {b} and {d} for the node {b, d}.

Once we reach one-element subsets, the splitting process stops.

The resulting binary tree of classes is called a nested dichotomy because

each internal node and its two successors define a dichotomy—e.g., discriminat-

ing between classes {a, c} and {b, d} at the root node—and the dichotomies are

nested in a hierarchy. We can view a nested dichotomy as a particular type of

sparse output code. Table 8.3 shows the output code matrix for the example just

discussed. There is one dichotomy for each internal node of the tree structure.

Hence, given that the example involves three internal nodes, there are three

columns in the code matrix. In contrast to the class vectors considered above,

the matrix contains elements marked X that indicate that instances of the corre-

sponding classes are simply omitted from the associated two-class learning

problems.

What is the advantage of this kind of output code? It turns out that, because

the decomposition is hierarchical and yields disjoint subsets, there is a simple

method for computing class probability estimates for each element in the original

set of multiple classes, assuming two-class estimates for each dichotomy in the

hierarchy. The reason is the chain rule from probability theory, which we will

encounter again when discussing Bayesian networks in Section 9.2.

Suppose we want to compute the probability for class a given a particular

instance x, i.e., the conditional probability P(a|x). This class corresponds to one

of the four leaf nodes in the hierarchy of classes in the above example. First, we

learn two-class models that yield class probability estimates for the three two-

class datasets at the internal nodes of the hierarchy. Then, from the two-class

model at the root node, an estimate of the conditional probability P({a, c}|x)—

namely, that x belongs to either a or c—can be obtained. Moreover, we can

obtain an estimate of P({a}|x, {a, c})—the probability that x belongs to a given

that we already know that it belongs to either a or c—from the model that dis-

criminates between the one-element sets {a} and {c}. Now, based on the chain

rule, P({a}|x)5P({a}|{a, c}, x)3P({a, c}|x). Hence to compute the probability

for any individual class of the original multiclass problem—any leaf node in the

tree of classes—we simply multiply together the probability estimates collected

from the internal nodes encountered when proceeding from the root node to

this leaf node: the probability estimates for all subsets of classes that contain

the target class.

Table 8.3 A Nested Dichotomy in the Form of a Code Matrix

Class Class Vector

a 0 0 X
b 1 X 0
c 0 1 X
d 1 X 1

3278.6 Transforming Multiple Classes to Binary Ones

Assuming that the individual two-class models at the internal nodes produce

accurate probability estimates, there is reason to believe that the multiclass proba-

bility estimates obtained using the chain rule will generally be accurate. However,

it is clear that estimation errors will accumulate, causing problems for very deep

hierarchies. A more basic issue is that in the above example we arbitrarily

decided on a particular hierarchical decomposition of the classes. Perhaps there

is some background knowledge regarding the domain concerned, in which case

one particular hierarchy may be preferable because certain classes are known to

be related, but this is generally not the case.

What can be done? If there is no reason a priori to prefer any particular

decomposition, perhaps all of them should be considered, yielding an ensemble of

nested dichotomies. Unfortunately, for any nontrivial number of classes there

are too many potential dichotomies, making an exhaustive approach infeasible.

But we could consider a subset, taking a random sample of possible tree struc-

tures, building two-class models for each internal node of each tree structure

(with caching of models, given that the same two-class problem may occur in

multiple trees), and then averaging the probability estimates for each individual

class to obtain the final estimates.

Empirical experiments show that this approach yields accurate multiclass

classifiers and is able to improve predictive performance even in the case of

classifiers, such as decision trees, that can deal with multiclass problems directly.

In contrast to standard error-correcting output codes, the technique often works

well even when the base learner is unable to model complex decision boundaries.

The reason is that, generally speaking, learning is easier with fewer classes, so

results become more successful the closer we get to the leaf nodes in the tree.

This also explains why the pairwise classification technique described earlier

works particularly well for simple models such as ones corresponding to hyper-

planes: it creates the simplest possible dichotomies! Nested dichotomies appear to

strike a useful balance between the simplicity of the learning problems that occur

in pairwise classification—after all, the lowest-level dichotomies involve pairs

of individual classes—and the power of the redundancy embodied in standard

error-correcting output codes.

8.7 CALIBRATING CLASS PROBABILITIES
Class probability estimation is obviously more difficult than classification. Given

a way of generating class probabilities, classification error is minimized as long

as the correct class is predicted with maximum probability. However, a method

for classification does not imply a method of generating accurate probability

estimates: the estimates that yield the correct classification may be quite poor

when assessed according to the quadratic or informational loss discussed in

Section 5.7. Yet—as we have stressed several times—it is often more important

328 CHAPTER 8 Data transformations

to obtain accurate conditional class probabilities for a given instance than to

simply place it into one of the classes. Cost-sensitive prediction based on the

minimum expected cost approach is one example where accurate class probability

estimates are very useful.

Consider the case of probability estimation for a dataset with two classes.

If the predicted probabilities are on the correct side of the 0.5 threshold commonly

used for classification, no classification errors will be made. However, this does

not mean that the probability estimates themselves are accurate. They may be

systematically too optimistic—too close to either 0 or 1—or too pessimistic—not

close enough to the extremes. This type of bias will increase the measured qua-

dratic or informational loss, and will cause problems when attempting to minimize

the expected cost of classifications based on a given cost matrix.

Fig. 8.8 demonstrates the effect of overoptimistic probability estimation for a

two-class problem. The x-axis shows the predicted probability of the multinomial

Naı̈ve Bayes model from Section 4.2 for one of two classes in a text classification

problem with about 1000 attributes representing word frequencies. The y-axis

shows the observed relative frequency of the target class. The predicted probabili-

ties and relative frequencies were collected by running a 10-fold cross-validation.

To estimate relative frequencies, the predicted probabilities were first discretized

into twenty ranges using equal-frequency discretization. Observations correspond-

ing to one interval were then pooled—predicted probabilities on the one hand and

corresponding 0/1 values on the other—and the pooled values are shown as the

twenty points in the plot.

This kind of plot, known as a reliability diagram, shows how reliable

the estimated probabilities are. For a well-calibrated class probability estimator,

the observed curve will coincide with the diagonal. This is clearly not the case

here. The Naı̈ve Bayes model is too optimistic, generating probabilities that are

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

O
bs

er
ve

d
re

la
tiv

e
fr

eq
ue

nc
ie

s

Predicted probabilities

FIGURE 8.8

Overoptimistic probability estimation for a two-class problem.

3298.7 Calibrating Class Probabilities

too close to 0 and 1. This is not the only problem: the curve is quite far from

the line that corresponds to the 0.5 threshold that is used for classification. This

means that classification performance will be affected by the poor probability

estimates that the model generates.

The fact that we seek a curve that lies close to the diagonal makes the remedy

clear: systematic mis-estimation should be corrected by using post hoc calibration

of the probability estimates to map the empirically observed curve into a diagonal.

A coarse way of doing this is to use the data from the reliability diagram directly

for calibration, and map the predicted probabilities to the observed relative fre-

quencies in the corresponding discretization intervals. Data for this can be obtained

using internal cross-validation or a holdout set, so that the actual test data remains

untouched.

Discretization-based calibration is very fast. However, determining appropriate

discretization intervals is not easy. With too few, the mapping is too coarse; with

too many, each interval contains insufficient data for a reliable estimate of relative

frequencies. However, other ways of calibrating can be devised. The key is to

realize that calibrating probability estimates for two-class problems is a function

estimation problem with one input—the estimated class probability—and one

output—the calibrated probability. In principle, complex functions could be used to

estimate the mapping—perhaps arbitrary polynomials. However, it makes sense

to assume that the observed relationship is at least monotonically increasing,

in which case increasing functions should be used.

Assuming that the calibration function is piecewise constant and monotonically

increasing, there is an efficient algorithm that minimizes the squared error between

the observed class “probabilities” (which are either 0 or 1 when no binning is

applied) and the resulting calibrated class probabilities. Estimating a piecewise

constant monotonically increasing function is an instance of isotonic regression,

for which there is a fast algorithm based on the pair-adjacent violators (PAV)

approach. The data consists of estimated probabilities and 0/1 values; assume it

has been sorted according to the estimated probabilities. The basic PAV algorithm

iteratively merges pairs of neighboring data points that violate the monotonicity

constraint by computing their weighted mean—initially this will be the mean of

0/1 values—and using it to replace the original data points. This is repeated until

all conflicts have been resolved. It can be shown that the order in which data

points are merged does not affect the outcome of the process. The result is a func-

tion that increases monotonically in a stepwise fashion. This naı̈ve algorithm is

quadratic in the number of data points, but there is a clever variant that operates in

linear time.

Another popular calibration method, which also presupposes a monotonic

relationship, is to assume a linear relation between the log-odds of the estimated

class probabilities and the target class probabilities. Here the logistic function

is appropriate, and logistic regression can be used to estimate the calibration func-

tion, with the caveat that it is important to use log-odds of the estimated class

probabilities rather than the raw values as the input for logistic regression.

330 CHAPTER 8 Data transformations

Given that logistic regression, with only two parameters, uses a simpler model

than the PAV approach, it can be more appropriate when little data is available

for calibration, but with a large volume of data PAV-based calibration is gener-

ally preferable. Logistic regression has the advantage that it can easily be applied

to calibrate probabilities for multiclass problems because multiclass versions of

logistic regression exist. In the case of isotonic regression it is common to use

the one-vs-rest method for problems with more than two classes, but pairwise

coupling or ensembles of nested dichotomies—discussed in Section 8.6 above—

offer an alternative.

Note that situations exist in which the relationship between the estimated

and true probabilities is not monotonic. However, rather than switching to a more

complex calibration method—or using discretization-based calibration, which

does not assume monotonicity—this should perhaps be taken as an indication that

the underlying class probability estimation method is not powerful enough for the

problem at hand.

8.8 FURTHER READING AND BIBLIOGRAPHIC NOTES
Attribute selection, under the term feature selection, has been investigated in the

field of pattern recognition for decades. Backward elimination, e.g., was introduced

in the early 1960s (Marill & Green, 1963). Kittler (1978) surveys the feature selec-

tion algorithms that have been developed for pattern recognition. Best-first search

and genetic algorithms are standard artificial intelligence techniques (Goldberg,

1989; Winston, 1992).

The experiments that show the performance of decision tree learners deterio-

rating when new attributes are added are reported by John (1997), who gives a

nice explanation of attribute selection. Langley and Sage (1997) showed that for

an instance-based learner to reach a given performance level, the number of train-

ing instances must grow exponentially with the number of attributes. The idea

of finding the smallest attribute set that carves up the instances uniquely is from

Almuallin and Dietterich (1991, 1992) and was further developed by Liu and

Setiono (1996). Kibler and Aha (1987) and Cardie (1993) both investigated the

use of decision tree algorithms to identify features for nearest-neighbor learning;

Holmes and Nevill-Manning (1995) used 1R to order features for selection. Kira

and Rendell (1992) used instance-based methods to select features, leading to a

scheme called RELIEF for Recursive Elimination of Features. Gilad-Bachrach,

Navot, and Tishby (2004) show how this scheme can be modified to work better

with redundant attributes. The correlation-based feature selection method was

developed by Hall (2000).

The use of wrapper methods for feature selection is due to John, Kohavi,

and Pfleger (1994) and Kohavi and John (1997), and genetic algorithms have

been applied within a wrapper framework by Vafaie and DeJong (1992) and

3318.8 Further Reading and Bibliographic Notes

Cherkauer and Shavlik (1996). The selective Naı̈ve Bayes learning scheme is due

to Langley and Sage (1994). Guyon, Weston, Barnhill, and Vapnik (2002) present

and evaluate the recursive feature elimination scheme in conjunction with

support vector machines. The method of raced search was developed by Moore

and Lee (1994). Gütlein, Frank, Hall, and Karwath (2009) investigate how to

speed up scheme-specific selection for datasets with many attributes using simple

ranking-based methods.

Dougherty, Kohavi, and Sahami (1995) give a brief account of supervised

and unsupervised discretization, along with experimental results comparing the

entropy-based method with equal-width binning and the 1R method. Frank and

Witten (1999) describe the effect of using the ordering information in discretized

attributes. Proportional k-interval discretization for Naı̈ve Bayes was proposed by

Yang and Webb (2001). The entropy-based method for discretization, including

the use of the MDL stopping criterion, was developed by Fayyad and Irani (1993).

The bottom-up statistical method using the χ2 test is due to Kerber (1992), and

its extension to an automatically determined significance level is described by

Liu and Setiono (1997). Fulton, Kasif, and Salzberg (1995) investigate the use of

dynamic programming for discretization and derive the quadratic time bound for a

general impurity function (e.g., entropy) and the linear one for error-based discreti-

zation. The example used for showing the weakness of error-based discretization

is adapted from Kohavi and Sahami (1996), who were the first to clearly identify

this phenomenon.

Principal component analysis is a standard technique that can be found in

most statistics textbooks. Fradkin and Madigan (2003) analyze the performance

of random projections. The algorithm for partial least squares regression is from

Hastie et al. (2009). The TF3 IDF metric is described by Witten et al. (1999b).

Hyvärinen and Oja (2000) created the fast ICA method. Duda et al. (2001) and

Murphy (2012) explain the algebra underlying solutions to Fisher’s linear discrimi-

nant analysis. Sugiyama (2007) has extended it in two ways in a variant called

“local Fisher discriminant analysis.” First, instead of means in the scatter matrix

computations, he uses computations between datapoints themselves, which allows

the dimensionality of the reduced representation to be increased. Second, he applies

Scholköpf and Smola (2002)’s kernel trick to obtain non-linear projections.

There are many alternatives to the type of linear data projections discussed

above. For example, multilayer perceptrons provide a way to learn data projections,

because their hidden layers can be treated as projections of the data. Chapter 10,

Deep learning, examines deep neural networks, including an approach for unsuper-

vised dimensionality reduction based on a type of neural network known as an

“autoencoder.”

The experiments on using C4.5 to filter its own training data were reported

by John (1995). The more conservative approach of a consensus filter involving

several different learning algorithms has been investigated by Brodley and Fried

(1996). Rousseeuw and Leroy (1987) describe the detection of outliers in statistical

regression, including the least median of squares method; they also present the

332 CHAPTER 8 Data transformations

telephone data of Fig. 8.7. It was Quinlan (1986) who noticed that removing noise

from the training instance’s attributes can decrease a classifier’s performance on

similarly noisy test instances, particularly at higher noise levels.

Barnett and Lewis (1994) address the general topic of outliers in statistical

data, while Pearson (2005) describes the statistical approach of fitting a distribu-

tion to the target data. Schölkopf, Williamson, Smola, Shawe-Taylor, and Platt

(2000) describe the use of support vector machines for novelty detection, while

Abe, Zadrozny, and Langford (2006), amongst others, use artificial data as a

second class. Combining density estimation and class probability estimation using

artificial data is suggested as a generic approach to unsupervised learning by

Hastie et al. (2009) and Hempstalk, Frank, and Witten (2008) describe it in the

context of one-class classification. Hempstalk and Frank (2008) discuss the fair

comparison of one-class and multiclass classification when several classes are

available at training time and we want to discriminate against an entirely new class

at prediction time.

Vitter (1985) explored the idea of reservoir sampling; he called the method

we described algorithm R. Its computational complexity is O(N) where N is the

number of instances in the stream, because a random number must be generated

for every instance in order to determine whether to place it in the reservoir, and

where. Vitter describes several other algorithms that improve upon R by reducing

the number of random numbers that must be generated in order to produce the

sample.

Rifkin and Klautau (2004) show that the one-vs-rest method for multiclass

classification can work well if appropriate parameter tuning is applied. Friedman

(1996) describes the technique of pairwise classification, Fürnkranz (2002) further

analyzes it, and Hastie and Tibshirani (1998) extend it to estimate probabilities

using pairwise coupling. Fürnkranz (2003) evaluates pairwise classification as

a technique for ensemble learning. The idea of using error-correcting output

codes for classification gained wide acceptance after a paper by Dietterich and

Bakiri (1995); Ricci and Aha (1998) showed how to apply such codes to nearest-

neighbor classifiers. Frank and Kramer (2004) introduce ensembles of nested

dichotomies for multiclass problems. Dong, Frank, and Kramer (2005) considered

using balanced nested dichotomies rather than unrestricted random hierarchies to

reduce training time.

The importance of methods for calibrating class probability estimates is

now well-established. Zadrozny and Elkan (2002) applied the PAV approach

and logistic regression to calibration, and also investigated how to deal with

multiclass problems. Niculescu-Mizil and Caruana (2005) compared a variant of

logistic regression and the PAV-based method in conjunction with a large set

of underlying class probability estimators, and found that the latter is preferable

for sufficiently large calibration sets. They also found that multilayer percep-

trons and bagged decision trees produce well-calibrated probabilities and do not

require an extra calibration step. Stout (2008) describes a linear-time algorithm

for isotonic regression based on minimizing the squared error.

3338.8 Further Reading and Bibliographic Notes

8.9 WEKA IMPLEMENTATIONS
Attribute selection

• CfsSubsetEval (correlation-based attribute subset evaluator)

• ConsistencySubsetEval (measures class consistency for a given set of

attributes, in the consistencySubsetEval package)

• ClassifierSubsetEval (uses a classifier for evaluating subsets of attributes,

in the classifierBasedAttributeSelection package)

• SVMAttributeEval (ranks attributes according to the magnitude of the

coefficients learned by a support vector machine, in the SVMAttributeEval

package)

• ReliefF (instance-based approach for ranking attributes)

• WrapperSubsetEval (uses a classifier plus cross-validation)

• GreedyStepwise (forward selection and backward elimination search)

• LinearForwardSelection (forward selection with a sliding window of attribute

choices at each step of the search, in the linearForwardSelection package)

• BestFirst (search method that uses greedy hill-climbing with backtracking)

• RaceSearch (uses the race search methodology, in the raceSearch package)

• Ranker (ranks individual attributes according to their evaluation)

Learning decision tables: DecisionTable

Discretization

• Discretize (unsupervised and supervised versions)

• PKIDiscretize (proportional k-interval discretization)

Discriminant analysis for classification

• LDA, FLDA, and QDA (in the discriminantAnalysis package)

Discriminant analysis for dimensionality reduction

• MultiClassFLDA (in the discriminantAnalysis package)

Other pre- and postprocessing operations

• PrincipalComponents and RandomProjection

• Arithmetic operations; time-series operations; obfuscation; generating

cluster membership values; adding noise; various conversions between

numeric, binary, and nominal attributes; and various data cleansing

operations

• PLSFilter (partial least squares transformation)

• Resampling and reservoir sampling

• MultiClassClassifier (includes many ways of handling multiclass problems

with two-class classifiers, including error-correcting output codes)

• FastICA (independent component analysis, in the StudentFilters package)

• StringToWordVector (text to attribute vectors)

• END (ensembles of nested dichotomies, in the

ensemblesOfNestedDichotomies package)

334 CHAPTER 8 Data transformations

9Probabilistic methods

CHAPTER OUTLINE

9.1 Foundations ...336

Maximum Likelihood Estimation ..338

Maximum a Posteriori Parameter Estimation...339

9.2 Bayesian Networks...339

Making Predictions...340

Learning Bayesian Networks ..344

Specific Algorithms ..347

Data Structures for Fast Learning...349

9.3 Clustering and Probability Density Estimation ..352

The Expectation Maximization Algorithm for a Mixture of Gaussians353

Extending the Mixture Model ...356

Clustering Using Prior Distributions ...358

Clustering With Correlated Attributes ...359

Kernel Density Estimation ...361

Comparing Parametric, Semiparametric and Nonparametric Density

Models for Classification ...362

9.4 Hidden Variable Models ...363

Expected Log-Likelihoods and Expected Gradients364

The Expectation Maximization Algorithm ..365

Applying the Expectation Maximization Algorithm to Bayesian Networks366

9.5 Bayesian Estimation and Prediction...367

Probabilistic Inference Methods...368

9.6 Graphical Models and Factor Graphs ...370

Graphical Models and Plate Notation ...371

Probabilistic Principal Component Analysis ..372

Latent Semantic Analysis ..376

Using Principal Component Analysis for Dimensionality Reduction377

Probabilistic LSA..378

Latent Dirichlet Allocation...379

Factor Graphs ..382

Markov Random Fields..385

Computing Using the Sum-Product and Max-Product Algorithms386

9.7 Conditional Probability Models ...392

Linear and Polynomial Regression as Probability Models............................392

Using Priors on Parameters ...393

Multiclass Logistic Regression...396

Gradient Descent and Second-Order Methods ...400

Generalized Linear Models ..400

Making Predictions for Ordered Classes..402

Conditional Probabilistic Models Using Kernels...402

9.8 Sequential and Temporal Models ..403

Markov Models and N-gram Methods..403

Hidden Markov Models ...404

Conditional Random Fields..406

9.9 Further Reading and Bibliographic Notes ...410

Software Packages and Implementations ..414

9.10 WEKA Implementations...416

Probabilistic methods form the basis of a plethora of techniques for data mining

and machine learning. In Section 4.2, “Simple probabilistic modeling,” we encoun-

tered the idea of choosing a model that maximizes the likelihood of an event, and

have referred to the general idea of maximizing likelihoods several times since. In

this chapter we will formalize the notion of likelihoods, and see how maximizing

them underpins many estimation problems. We will look at Bayesian networks,

and other types of probabilistic models used in machine learning. Let us begin by

establishing the foundations: some fundamental rules of probability.

9.1 FOUNDATIONS
In probability modeling, example data or instances are often thought of as being

events, observations, or realizations of underlying random variables. Given a dis-

crete random variable A, P(A) is a function that encodes the probabilities for each

of the categories, classes, or states that A may be in. Similarly, for continuous ran-

dom variables x, p(x) is a function that assigns a probability density to all possible

values of x. In contrast, P(A5 a) is the single probability of observing the specific

event A5 a. This notation is often simplified to P(a), but one needs to be careful

to remember whether a was defined as a random variable or as an observation.

Similarly for the observation that continuous random variable x has the value x1:

it is common to write this probability density as p(x1), but this is a simplification

of the longer but clearer notation pðx5 x1Þ, which emphasizes that it is the scalar

value obtained by evaluating the function at x5 x1.

There are a few rules of probability theory that are particularly relevant to this

book. They go by various names, but we will refer to them as the product rule,

336 CHAPTER 9 Probabilistic methods

the sum (or marginalization) rule, and Bayes’ rule. As we will see, these seem-

ingly simple rules can take us far.

Discrete or binary events are used below to keep the notation simple. However,

the rules can be applied to binary, discrete, or continuous events and variables. For

continuous variables, sums over possible states are replaced by integrals.

The product rule, sometimes referred to as the “fundamental rule of probability,”

states that the joint probability of random variables A and B can be written

PðA;BÞ5PðAjBÞPðBÞ:
The product rule also applies when A and B are groups or subsets of events or

random variables.

The sum rule states that given the joint probability of variables X1, X2,. . ., XN,

the marginal probability for a given variable can be obtained by summing (or

integrating) over all the other variables. For example, to obtain the marginal prob-

ability of X1, sum over all the states of all the other variables:

PðX1Þ5
X
x2

. . .
X
xN

PðX1;X2 5 x2; . . .;XN 5 xN Þ;

The sums are taken over all possible values for the corresponding variable.

This notation can be simplified by writing

pðx1Þ5
X
x2

. . .
X
xN

Pðx1; x2; . . .; xNÞ:

For continuous events and variables x1, x2,. . ., xN, the equivalent formulation

is obtained by integrating rather than summing:

pðx1Þ5
ð
x2

. . .

ð
xN

pðx1; x2; . . .; xN Þdx1. . .dxN :

This can give the marginal distribution of any random variable, or of any sub-

set of random variables.

The famous Bayes’ rule that was introduced in Chapter 4, Algorithms: the

basic methods, can be obtained from the product rule by swapping A and B,

observing that PðBjAÞPðAÞ5PðAjBÞPðBÞ, and rearranging:

PðBjAÞ5 PðAjBÞPðBÞ
PðAÞ :

Suppose we have models for PðAjBÞ and PðBÞ, observe that event A5 a, and

want to compute PðBjA5 aÞ. PðA5 ajBÞ is referred to as the likelihood, PðBÞ as
the prior distribution of B, and PðBjA5 aÞ as the posterior distribution. PðA5 aÞ
is obtained from the sum rule:

PðA5 aÞ5
X
b

PðA5 a;B5 bÞ5
X
b

PðA5 ajB5 bÞPðB5 bÞ:

These concepts can be applied to random variables, and also to parameters

when they are treated as random quantities.

3379.1 Foundations

MAXIMUM LIKELIHOOD ESTIMATION

Consider the problem of estimating a set of parameters θ of a probabilistic model,

given a set of observations x1, x2,. . ., xn. Assume they are continuous-valued

observations—but the same idea applies to discrete data too. Maximum likelihood

techniques assume that (1) the examples have no dependence on one another, in

that the occurrence of one has no effect on the others, and (2) they can each be

modeled in exactly the same way. These assumptions are often summarized by

saying that events are independent and identically distributed (i.i.d.). Although

this is rarely completely true, it is sufficiently true in many situations to support

useful inferences. Furthermore, as we will see later in this chapter, dependency

structure can be captured by more sophisticated models—e.g., by treating interde-

pendent groups of observations as part of a larger instance.

The i.i.d. assumption implies that a model for the joint probability density

function for all observations consists of the product of the same probability model

p(xi;θ) applied to each observation independently. For n observations, this could

be written

pðx1; x2; . . .; xn; θÞ5 pðx1; θÞpðx2; θÞ. . .pðxn; θÞ:

Each function p(xi;θ) has the same parameter values θ, and the aim of parame-

ter estimation is to maximize a joint probability model of this form. Since the

observations do not change, this value can only be changed by altering the choice

of the parameters θ. We can think about this value as the likelihood of the data,

and write it as

Lðθ; x1; x2; . . .; xnÞ5 L
n

i51

pðxi; θÞ:

Since the data is fixed, it is arguably more useful to think of this as a likeli-

hood function for the parameters, which we are free to choose.

Multiplying many probabilities can lead to very small numbers, and so people

often work with the logarithm of the likelihood, or log-likelihood:

log Lðθ; x1; x2; . . .; xnÞ5
Xn
i51

log pðxi; θÞ;

which converts the product into a sum. Since logarithms are strictly monotoni-

cally increasing functions, maximizing the log-likelihood is the same as maximiz-

ing the likelihood. “Maximum likelihood” learning refers to techniques that

search for parameters that do this:

θML 5 arg max
θ

Xn
i51

log pðxi; θÞ:

The same formulation also works for conditional probabilities and conditional

likelihoods. Given some labels yi that accompany each xi, e.g., class labels of

338 CHAPTER 9 Probabilistic methods

instances in a classification task, maximum conditional likelihood learning corre-

sponds to determining

θMCL 5 arg max
θ

Xn
i51

log pðyijxi; θÞ:

MAXIMUM A POSTERIORI PARAMETER ESTIMATION

Maximum likelihood assumes that all parameter values are equally likely a priori: we

do not judge some parameter values to be more likely than others before we have con-

sidered the observations. But suppose we have reason to believe that the model’s para-

meters follow a certain prior distribution. Thinking of them as random variables that

specify each instance of the model, Bayes’ rule can be applied to compute a posterior

distribution of the parameters using the joint probability of data and parameters:

pðθjx1; x2; . . .; xnÞ5
pðx1; x2; . . .; xnjθÞpðθÞ

pðx1; x2; . . .; xnÞ
:

Since we are computing the posterior distribution over the parameters, we

have used | or the “given” notation in place of the semicolon. The denominator is

a constant, and assuming i.i.d. observations, the posterior probability of the para-

meters is proportional to the product of the likelihood and prior:

pðθjx1; x2; . . .; xnÞ~ L
n

i51

pðxi; θÞpðθÞ:

Switching to logarithms again, the maximum a posteriori parameter estimation

procedure seeks a value

θMAP 5 arg max
θ

Xn

i51
log pðxi; θÞ1 log pðθÞ

h i
:

Again, the same idea can be applied to learn conditional probability models.

We have reverted to the semicolon notation to emphasize that maximum a poster-

iori parameter estimation involves point estimates of the parameters, evaluating them

under the likelihood and prior distributions. This contrasts with fully Bayesian meth-

ods (discussed below) that explicitly manipulate the distribution of the parameters,

typically by integrating over the parameter’s uncertainty instead of optimizing a

point estimate. The use of the “given” notation in place of the semicolon is more

commonly used with fully Bayesian methods, and we will follow this convention.

9.2 BAYESIAN NETWORKS
The Naı̈ve Bayes classifier of Section 4.2 and the logistic regression models of

Section 4.6 both produce probability estimates rather than hard classifications.

3399.2 Bayesian Networks

For each class value, they estimate the probability that a given instance belongs

to that class. Most other types of classifiers can be coerced into yielding this kind

of information if necessary. For example, probabilities can be obtained from a

decision tree by computing the relative frequency of each class in a leaf and from

a decision list by examining the instances that a particular rule covers.

Probability estimates are often more useful than plain predictions. They allow

predictions to be ranked, and their expected cost to be minimized (see

Section 5.8). In fact, there is a strong argument for treating classification learning

as the task of learning class probability estimates from data. What is being esti-

mated is the conditional probability distribution of the values of the class attribute

given the values of the other attributes. Ideally, the classification model represents

this conditional distribution in a concise and easily comprehensible form.

Viewed in this way, Naı̈ve Bayes classifiers, logistic regression models, decision

trees, and so on are just alternative ways of representing a conditional probability dis-

tribution. Of course, they differ in representational power. Naı̈ve Bayes classifiers

and logistic regression models can only represent simple distributions, whereas deci-

sion trees can represent—or at least approximate—arbitrary distributions. However,

decision trees have their drawbacks: they fragment the training set into smaller and

smaller pieces, which inevitably yield less reliable probability estimates, and they

suffer from the replicated subtree problem described in Section 3.4. Rule sets go

some way toward addressing these shortcomings, but the design of a good rule

learner is guided by heuristics with scant theoretical justification.

Does this mean that we have to accept our fate and live with these shortcom-

ings? No! There is a statistically based alternative: a theoretically well-founded

way of representing probability distributions concisely and comprehensibly in a

graphical manner. The structures are called Bayesian networks. They are drawn

as a network of nodes, one for each attribute, connected by directed edges in such

a way that there are no cycles—a directed acyclic graph.

In this section, to explain how to interpret Bayesian networks and how to learn

them from data we will make some simplifying assumptions. We assume that all

attributes are nominal—they correspond to discrete random variables—and that

there are no missing values, so the data is complete. Some advanced learning algo-

rithms can create new attributes in addition to the ones present in the data—so-

called hidden attributes corresponding to latent variables whose values cannot be

observed. These can support better models if they represent salient features of the

underlying problem, and Bayesian networks provide a good way of using them at

prediction time. However, they make both learning and prediction far more com-

plex and time consuming, so we will defer considering them to Section 9.4.

MAKING PREDICTIONS

Fig. 9.1 shows a simple Bayesian network for the weather data. It has a node for

each of the four attributes outlook, temperature, humidity, and windy and one

for the class attribute play. An edge leads from the play node to each of the

340 CHAPTER 9 Probabilistic methods

other nodes. But in Bayesian networks the structure of the graph is only half the

story. Fig. 9.1 shows a table inside each node. The information in the

tables defines a probability distribution that is used to predict the class probabil-

ities for any given instance.

Before looking at how to compute this probability distribution, consider the

information in the tables. The lower four tables (for outlook, temperature, humid-

ity, and windy) have two parts separated by a vertical line. On the left are the

values of play, and on the right are the corresponding probabilities for each value

of the attribute represented by the node. In general, the left side contains a col-

umn for every edge pointing to the node, in this case just an edge emanating from

the node for the play attribute. That is why the table associated with play itself

does not have a left side: it has no parents. In general, each row of probabilities

corresponds to one combination of values of the parent attributes, and the entries

in the row show the probability of each value of the node’s attribute given this

FIGURE 9.1

A simple Bayesian network for the weather data.

3419.2 Bayesian Networks

combination. In effect, each row defines a probability distribution over the values

of the node’s attribute. The entries in a row always sum to 1.

Fig. 9.2 shows a more complex network for the same problem, where three

nodes (windy, temperature, and humidity) have two parents. Again, there is one

column on the left for each parent and as many columns on the right as the

attribute has values. Consider the first row of the table associated with the

FIGURE 9.2

Another Bayesian network for the weather data.

342 CHAPTER 9 Probabilistic methods

temperature node. The left side gives a value for each parent attribute, play

and outlook; the right gives a probability for each value of temperature. For

example, the first number (0.143) is the probability of temperature taking on

the value hot, given that play and outlook have values yes and sunny,

respectively.

How are the tables used to predict the probability of each class value for a

given instance? This turns out to be very easy, because we are assuming that there

are no missing values. The instance specifies a value for each attribute. For each

node in the network, look up the probability of the node’s attribute value based

on the row determined by its parents’ attribute values. Then just multiply all these

probabilities together.

For example, consider an instance with values outlook5 rainy, temperature5
cool, humidity5 high, and windy5 true. To calculate the probability for

play5 no, observe that the network in Fig. 9.2 gives probability 0.367 from node

play, 0.385 from outlook, 0.429 from temperature, 0.250 from humidity, and

0.167 from windy. The product is 0.0025. The same calculation for play5 yes

yields 0.0077. However, these are clearly not the final answer: the final probabili-

ties must sum to 1, whereas 0.0025 and 0.0077 do not. They are actually the joint

probabilities Pðplay5 no;EÞ and Pðplay5 yes;EÞ, where E denotes all the evi-

dence given by the instance’s attribute values. Joint probabilities measure the

likelihood of observing an instance that exhibits the attribute values in E as well

as the respective class value. They only sum to 1 if they exhaust the space of all

possible attribute�value combinations, including the class attribute. This is cer-

tainly not the case in our example.

The solution is quite simple (we already encountered it in Section 4.2). To

obtain the conditional probabilities Pðplay5 nojEÞ and Pðplay5 yesjEÞ, normalize

the joint probabilities by dividing them by their sum. This gives probability 0.245

for play5 no and 0.755 for play5 yes.

Just one mystery remains: Why multiply all those probabilities together? It

turns out that the validity of the multiplication step hinges on a single assump-

tion—namely that, given values for each of a node’s parents, knowing the values

for any other set of nondescendants does not change the probability associated

with each of its possible values. In other words, other sets of nondescendants do

not provide any information about the likelihood of the node’s values over and

above the information provided by the parents. This can be written

Pðnodejparents plus any other nondescendantsÞ5PðnodejparentsÞ;
which must hold for all values of the nodes and attributes involved. In statistics

this property is called conditional independence. Multiplication is valid provided

that each node is conditionally independent of its grandparents, great grandpar-

ents, and indeed any other set of nondescendants, given its parents. We have dis-

cussed above how the product rule of probability can be applied to sets of

variables. Applying the product rule recursively between a single variable and the

rest of the variables gives rise to another rule known as the chain rule which

3439.2 Bayesian Networks

states that the joint probability of n attributes Ai can be decomposed into the fol-

lowing product:

PðA1;A2; . . .;AnÞ5PðA1Þ L
n21

i51

PðAi11 Ai;Ai21; . . .;A1Þ:
		

The multiplications of probabilities in Bayesian networks follow as a direct

result of the chain rule.

The decomposition holds for any order of the attributes. Because our Bayesian

network is an acyclic graph, its nodes can be ordered to give all ancestors of a

node ai indices smaller than i. Then, because of the conditional independence

assumption all Bayesian networks can be written in the form

PðA1;A2; . . .;AnÞ5 L
n

i51

PðAi ParentsðAiÞÞ;
		

where when a variable has no parents, we use the unconditional probability of

that variable. This is exactly the multiplication rule that we applied earlier.

The two Bayesian networks in Figs. 9.1 and 9.2 are fundamentally different.

The first (Fig. 9.1) makes stronger independence assumptions because for each of

its nodes the set of parents is a subset of the corresponding set of parents in the

second (Fig. 9.2). In fact, Fig. 9.1 is almost identical to the simple Naı̈ve Bayes

classifier of Section 4.2 (The probabilities are slightly different but only because

each count has been initialized to 0.5 to avoid the zero-frequency problem.) The

network in Fig. 9.2 has more rows in the conditional probability tables and hence

more parameters; it may be a more accurate representation of the underlying true

probability distribution that generated the data.

It is tempting to assume that the directed edges in a Bayesian network represent

causal effects. But be careful! In our case, a particular value of play may enhance the

prospects of a particular value of outlook, but it certainly does not cause it—it is

more likely to be the other way round. Different Bayesian networks can be con-

structed for the same problem, representing exactly the same probability distribution.

This is done by altering the way in which the joint probability distribution is factor-

ized to exploit conditional independencies. The network whose directed edges model

causal effects is often the simplest one with the fewest parameters. Hence, human

experts who construct Bayesian networks for a particular domain often benefit by

representing causal effects by directed edges. However, when machine learning tech-

niques are applied to induce models from data whose causal structure is unknown,

all they can do is construct a network based on the correlations that are observed in

the data. Inferring causality from correlation is always a dangerous business.

LEARNING BAYESIAN NETWORKS

The way to construct a learning algorithm for Bayesian networks is to define two

components: a function for evaluating a given network based on the data and a

344 CHAPTER 9 Probabilistic methods

method for searching through the space of possible networks. The quality of a

given network is measured by the probability of the data given the network. We

calculate the probability that the network accords to each instance and multiply

these probabilities together over all instances. In practice, this quickly yields num-

bers too small to be represented properly (called arithmetic underflow), so we use

the sum of the logarithms of the probabilities rather than their product. The result-

ing quantity is the log-likelihood of the network given the data.

Assume that the structure of the network—the set of edges—is given. It is

easy to estimate the numbers in the conditional probability tables: just com-

pute the relative frequencies of the associated combinations of attribute values

in the training data. To avoid the zero-frequency problem each count is initial-

ized with a constant as described in Section 4.2. For example, to find the prob-

ability that humidity5 normal given that play5 yes and temperature5 cool

(the last number of the third row of the humidity node’s table in Fig. 9.2),

observe from Table 1.2 that there are three instances with this combination of

attribute values in the weather data, and no instances with humidity5 high and

the same values for play and temperature. Initializing the counts for the two

values of humidity to 0.5 yields the probability (31 0.5)/(31 01 1)5 0.875

for humidity5 normal.

Let us consider more formally how to estimate the conditional and uncondi-

tional probabilities in a Bayesian network. The log-likelihood of a Bayesian net-

work with V variables and N examples of complete assignments to the network is

XN
i51

log Pðf ~A1; ~A2; . . .; ~AV giÞ5
XN
i21

XV
v51

log Pð ~Av;i Parentsð ~Av;iÞ;ΘvÞ;
		

where the parameters of each conditional or unconditional distribution are given

by Θv, and we use the B to indicate actual observations of a variable. We find

the maximum likelihood parameter values by taking derivatives. Since the log-

likelihood is a double sum over examples i and variables v, when we take the

derivative of it with respect to any given set of parameters Θv, all the terms of

the sum that are independent of Θv will be zero. This means that the estimation

problem decouples into the problem of estimating the parameters for each condi-

tional or unconditional probability distribution separately. For variables with no

parents, we need to estimate an unconditional probability. In Appendix A.2 we

give a derivation illustrating why estimating a discrete distribution with para-

meters given by the probabilities πk for k classes corresponds to the intuitive for-

mula πk 5 nk=N, where nk is the number of examples of class k and N is the total

number of examples. This can also be written

PðA5 aÞ5 1

N

XN
i51

1ð ~Ai 5 aÞ;

where 1ð ~Ai 5 aÞ is simply an indicator function that returns 1 when the ith

observed value for ~Ai 5 a and 0 otherwise. The estimation of the entries of a

3459.2 Bayesian Networks

conditional probability table for P(B|A) can be expressed using a notation similar

to the intuitive counting procedures outlined above:

PðB5 bjA5 aÞ5 PðB5 b;A5 aÞ
PðA5 aÞ 5

PN
i51

1ð ~Ai 5 a; ~Bi 5 bÞ
PN
i51

1ð ~Ai 5 aÞ
:

This derivation generalizes to the situation where A is a subset of random vari-

ables. Note that the above expressions give maximum likelihood estimates, and

do not deal with the zero-frequency problem.

The nodes in the network are predetermined, one for each attribute (including

the class). Learning the network structure amounts to searching through the space

of possible sets of edges, estimating the conditional probability tables for each

set, and computing the log-likelihood of the resulting network based on the data

as a measure of the network’s quality. Bayesian network learning algorithms dif-

fer mainly in the way in which they search through the space of network struc-

tures. Some algorithms are introduced below.

There is one caveat. If the log-likelihood is maximized based on the training

data, it will always be better to add more edges: the resulting network will simply

overfit. Various methods can be employed to combat this problem. One possibility

is to use cross-validation to estimate the goodness of fit. A second is to add a pen-

alty for the complexity of the network based on the number of parameters, i.e., the

total number of independent estimates in all the probability tables. For each table,

the number of independent probabilities is the total number of entries minus the

number of entries in the last column, which can be determined from the other col-

umns because all rows must sum to 1. Let K be the number of parameters, LL the

log-likelihood, and N the number of instances in the data. Two popular measures

for evaluating the quality of a network are the Akaike Information Criterion (AIC):

AIC score52LL1K;

and the following MDL metric based on the MDL principle:

MDL score52 LL1
K

2
log N:

In both cases the log-likelihood is negated, so the aim is to minimize these scores.

A third possibility is to assign a prior distribution over network structures and

find the most likely network by combining its prior probability with the probabil-

ity accorded to the network by the data. This is the maximum a posteriori

approach to network scoring. Depending on the prior distribution used, it can take

various forms. However, true Bayesians would average over all possible network

structures rather than singling one particular network out for prediction.

Unfortunately, this generally requires a great deal of computation. A simplified

approach is to average over all network structures that are substructures of a given

network. It turns out that this can be implemented very efficiently by changing

346 CHAPTER 9 Probabilistic methods

the method for calculating the conditional probability tables so that the resulting

probability estimates implicitly contain information from all subnetworks. The

details of this approach are rather complex and will not be described here.

The task of searching for a good network structure can be greatly simplified if

the right metric is used for scoring. Recall that the probability of a single instance

based on a network is the product of all the individual probabilities from the vari-

ous conditional probability tables. The overall probability of the data set is the

product of these products for all instances. Because terms in a product are inter-

changeable, the product can be rewritten to group together all factors relating to

the same table. The same holds for the log-likelihood, using sums instead of pro-

ducts. This means that the likelihood can be optimized separately for each node

of the network. This can be done by adding, or removing, edges from other nodes

to the node that is being optimized—the only constraint is that cycles must not be

introduced. The same trick also works if a local scoring metric such as AIC or

MDL is used instead of plain log-likelihood because the penalty term splits into

several components, one for each node, and each node can be optimized

independently.

SPECIFIC ALGORITHMS

Now we move on to actual algorithms for learning Bayesian networks. One sim-

ple and very fast learning algorithm, called K2, starts with a given ordering of the

attributes (i.e., nodes). Then it processes each node in turn and greedily considers

adding edges from previously processed nodes to the current one. In each step it

adds the edge that maximizes the network’s score. When there is no further

improvement, attention turns to the next node. As an additional mechanism for

overfitting avoidance, the number of parents for each node can be restricted to a

predefined maximum. Because only edges from previously processed nodes are

considered and there is a fixed ordering, this procedure cannot introduce cycles.

However, the result depends on the initial ordering, so it makes sense to run the

algorithm several times with different random orderings.

The Naı̈ve Bayes classifier is a network with an edge leading from the class

attribute to each of the other attributes. When building networks for classification,

it sometimes helps to use this network as a starting point for the search. This can

be done in K2 by forcing the class variable to be the first one in the ordering and

initializing the set of edges appropriately.

Another potentially helpful trick is to ensure that every attribute in the data is

in the Markov blanket of the node that represents the class attribute. A node’s

Markov blanket includes all its parents, children, and children’s parents. It can be

shown that a node is conditionally independent of all other nodes given values for

the nodes in its Markov blanket. Hence, if a node is absent from the class attri-

bute’s Markov blanket, its value is completely irrelevant to the classification. We

show an example of a Bayesian network and its Markov blanket in Fig. 9.3.

Conversely, if K2 finds a network that does not include a relevant attribute in the

3479.2 Bayesian Networks

class node’s Markov blanket, it might help to add an edge that rectifies this short-

coming. A simple way of doing this is to add an edge from the attribute’s node to

the class node or from the class node to the attribute’s node, depending on which

option avoids a cycle.

A more sophisticated but slower version of K2 is not to order the nodes but to

greedily consider adding or deleting edges between arbitrary pairs of nodes (all

the while ensuring acyclicity, of course). A further step is to consider inverting

the direction of existing edges as well. As with any greedy algorithm, the result-

ing network only represents a local maximum of the scoring function: it is always

advisable to run such algorithms several times with different random initial con-

figurations. More sophisticated optimization strategies such as simulated anneal-

ing, tabu search, or genetic algorithms can also be used.

Another good learning algorithm for Bayesian network classifiers is called tree

augmented Naı̈ve Bayes (TAN). As the name implies, it takes the Naı̈ve Bayes clas-

sifier and adds edges to it. The class attribute is the single parent of each node of a

Naı̈ve Bayes network: TAN considers adding a second parent to each node. If the

class node and all corresponding edges are excluded from consideration, and

assuming that there is exactly one node to which a second parent is not added, the

resulting classifier has a tree structure rooted at the parentless node—i.e., where

the name comes from. For this restricted type of network there is an efficient algo-

rithm for finding the set of edges that maximizes the network’s likelihood based on

computing the network’s maximum weighted spanning tree. This algorithm’s run-

time is linear in the number of instances and quadratic in the number of attributes.

The type of network learned by the TAN algorithm is called a one-

dependence estimator. An even simpler type of network is the super-parent

x6 x5 x7

x1

x9 x8 x10

x3 x2 x4

FIGURE 9.3

The Markov blanket for variable x6 in a 10-variable Bayesian network.

348 CHAPTER 9 Probabilistic methods

one-dependence estimator. Here, exactly one other node apart from the class node

is elevated to parent status, and becomes parent of every other nonclass node. It

turns out that a simple ensemble of these one-dependence estimators yields very

accurate classifiers: in each of these estimators, a different attribute becomes the

extra parent node. Then, at prediction time, class probability estimates from the

different one-dependence estimators are simply averaged. This scheme is called

AODE, for averaged one-dependence estimator. Normally, only estimators with a

certain support in the data are used in the ensemble, but more sophisticated selec-

tion schemes are possible. Because no structure learning is involved for each

super-parent one-dependence estimator, AODE is a very efficient classifier.

AODE makes strong assumptions, but relaxes the even stronger assumption of

Naı̈ve Bayes. The model can be relaxed even further by introducing a set of n super

parents instead of a single super-parent attribute and averaging across all possible

sets, yielding the AnDE algorithm. Increasing n obviously increases computational

complexity. There is good empirical evidence that n5 2 (A2DE) yields a useful

trade-off between computational complexity and predictive accuracy in practice.

All the scoring metrics that we have described so far are likelihood-based in

the sense that they are designed to maximize the joint probability Pða1; a2; . . .; anÞ
for each instance. However, in classification, what we really want to maximize is

the conditional probability of the class given the values of the other attributes—in

other words, the conditional likelihood. Unfortunately, there is no closed-form

solution for the maximum conditional-likelihood probability estimates that are

needed for the tables in a Bayesian network. On the other hand, computing the

conditional likelihood for a given network and dataset is straightforward—after

all, this is what logistic regression does. Hence it has been proposed to use stan-

dard maximum likelihood probability estimates in the network, but the condi-

tional likelihood to evaluate a particular network structure.

Another way of using Bayesian networks for classification is to build a separate

network for each class value, based on the data pertaining to that class, and com-

bine their predictions using Bayes’ rule. The set of networks is called a Bayesian

multinet. To obtain a prediction for a particular class value, take the corresponding

network’s probability and multiply it by the class’s prior probability. Do this for

each class and normalize the result as we did previously. In this case we would not

use the conditional likelihood to learn the network for each class value.

All the network learning algorithms we have introduced are score-based. A

different strategy, which we will not explain here, is to piece a network together

by testing individual conditional independence assertions based on subsets of the

attributes. This is known as structure learning by conditional independence tests.

DATA STRUCTURES FOR FAST LEARNING

Learning Bayesian networks involves a lot of counting. For each network struc-

ture considered in the search, the data must be scanned afresh to obtain the counts

needed to fill out the conditional probability tables. Instead, could they be stored

3499.2 Bayesian Networks

in a data structure that eliminated the need for scanning the data over and over

again? An obvious way is to precompute the counts and store the nonzero ones in

a table—say, the hash table mentioned in Section 4.5. Even so, any nontrivial

data set will have a huge number of nonzero counts.

Again, consider the weather data from Table 1.2. There are five attributes, two

with three values and three with two values. This gives 43 43 33 33 35 432 pos-

sible counts. Each component of the product corresponds to an attribute, and its con-

tribution to the product is one more than the number of its values because the attribute

may be missing from the count. All these counts can be calculated by treating them as

item sets, as explained in Section 4.5, and setting the minimum coverage to one. But

even without storing counts that are zero, this simple scheme runs into memory pro-

blems very quickly. The FP-growth data structure described in Section 6.3 was

designed for efficient representation of data in the case of item set mining. In the fol-

lowing, we describe a structure that has been used for Bayesian networks.

It turns out that the counts can be stored effectively in a structure called an

all-dimensions (AD) tree, which is analogous to the kD-trees used for nearest

neighbor search described in Section 4.7. For simplicity, we illustrate this using a

reduced version of the weather data that only has the attributes humidity, windy,

and play. Fig. 9.4A summarizes the data. The number of possible counts is

(A) Humidity Windy Play Count

High True Yes 1
High True No 2
High False Yes 2
High False No 2

Normal True Yes 2
Normal True No 1
Normal False Yes 4
Normal False No 0

(B)

Humidity = normal

7 instances

Any value

14 instances

Windy = true Play = no

5 instances

Play = no

3 instances

Windy = true

3 instances

Play = no

1 instance

Play = no

6 instances

1 instances

FIGURE 9.4

The weather data: (A) reduced version; (B) corresponding AD tree.

350 CHAPTER 9 Probabilistic methods

33 33 35 27, although only 8 of them are shown. For example, the count for

play5 no is 5 (count them!).

Fig. 9.4B shows an AD tree for this data. Each node says how many instances

exhibit the attribute values that are tested along the path from the root to that

node. For example, the leftmost leaf says that there is one instance with values

humidity5 normal, windy5 true, and play5 no, and the rightmost leaf says that

there are five instances with play5 no.

It would be trivial to construct a tree that enumerates all 27 counts explicitly.

However, that would gain nothing over a plain table and is obviously not what

the tree in Fig. 9.4B does, because it contains only 8 counts. There is, e.g., no

branch that tests humidity5 high. How was the tree constructed, and how can all

counts be obtained from it?

Assume that each attribute in the data has been assigned an index. In the

reduced version of the weather data we give humidity index 1, windy index 2, and

play index 3. An AD tree is generated by expanding each node corresponding to an

attribute i with the values of all attributes that have indices j . i, with two impor-

tant restrictions: the most populous expansion for each attribute is omitted (break-

ing ties arbitrarily) as are expansions with counts that are zero. The root node is

given index 0, so for it all attributes are expanded, subject to the same restrictions.

For example, Fig. 9.4B contains no expansion for windy5 false from the root

node because with eight instances it is the most populous expansion: the value

false occurs more often in the data than the value true. Similarly, from the node

labeled humidity5 normal there is no expansion for windy5 false because false

is the most common value for windy among all instances with humidity5 normal.

In fact, in our example the second restriction—namely that expansions with zero

counts are omitted—never kicks in because the first restriction precludes any path

that starts with the tests humidity5 normal and windy5 false, which is the only

way to reach the solitary zero in Fig. 9.4A.

Each node of the tree represents the occurrence of a particular combination of

attribute values. It is straightforward to retrieve the count for a combination that

occurs in the tree. However, the tree does not explicitly represent many nonzero

counts because the most populous expansion for each attribute is omitted. For

example, the combination humidity5 high and play5 yes occurs three times in

the data but has no node in the tree. Nevertheless, it turns out that any count can

be calculated from those that the tree stores explicitly.

Here’s a simple example. Fig. 9.4B contains no node for humidity5 normal,

windy5 true, and play5 yes. However, it shows three instances with humidity5
normal and windy5 true, and one of them has a value for play that is different

from yes. It follows that there must be two instances for play5 yes. Now for a

trickier case: how many times does humidity5 high, windy5 true, and play5 no

occur? At first glance it seems impossible to tell because there is no branch for

humidity5 high. However, we can deduce the number by calculating the count

for windy5 true and play5 no (3) and subtracting the count for humidity5
normal, windy5 true, and play5 no (1). This gives 2, the correct value.

3519.2 Bayesian Networks

This idea works for any subset of attributes and any combination of attribute

values, but it may have to be applied recursively. For example, to obtain the count

for humidity5 high, windy5 false, and play5 no, we need the count for windy5
false and play5 no and the count for humidity5 normal, windy5 false, and

play5 no. We obtain the former by subtracting the count for windy5 true and

play5 no (3) from the count for play5 no (5), giving 2, and the latter by subtracting

the count for humidity5 normal, windy5 true, and play5 no (1) from the count for

humidity5 normal and play5 no (1), giving 0. Thus there must be 22 05 2

instances with humidity5 high, windy5 false, and play5 no, which is correct.

AD trees only pay off if the data contains many thousands of instances. It is

pretty obvious that they do not help on the weather data. The fact that they yield

no benefit on small data sets means that, in practice, it makes little sense to

expand the tree all the way down to the leaf nodes. Usually, a cutoff parameter k

is employed, and nodes covering fewer than k instances hold a list of pointers to

these instances rather than a list of pointers to other nodes. This makes the trees

smaller and more efficient to use.

This section has only skimmed the surface of the subject of learning Bayesian

networks. We left open questions of missing values, numeric attributes, and hid-

den attributes. We did not describe how to use Bayesian networks for regression

tasks. Some of these topics are discussed later in this chapter. Bayesian networks

are a special case of a wider class of statistical models called graphical models,

which include networks with undirected edges (called Markov networks).

Graphical models have attracted a lot of attention in the machine learning com-

munity and we will discuss them in Section 9.6.

9.3 CLUSTERING AND PROBABILITY DENSITY ESTIMATION
An incremental heuristic clustering approach was described in Section 4.8. While

it works reasonably well in some practical situations, it has shortcomings: the

arbitrary division by k in the category utility formula that is necessary to prevent

overfitting, the need to supply an artificial minimum value for the standard devia-

tion of clusters, and the ad hoc cutoff value to prevent every single instance from

becoming a cluster in its own right. On top of this is the uncertainty inherent in

incremental algorithms. To what extent is the result dependent on the order of

examples? Are the local restructuring operations of merging and splitting really

enough to reverse the effect of bad initial decisions caused by unlucky ordering?

Does the final result represent even a local maximum of category utility? Add to

this the problem that one never knows how far the final configuration is to a

global maximum—and, of course, the standard trick of repeating the clustering

procedure several times and choosing the best will destroy the incremental nature

of the algorithm. Finally, does not the hierarchical nature of the result really beg

the question of which are the best clusters? There are so many clusters in

Fig. 4.21 that it is hard to separate the wheat from the chaff.

352 CHAPTER 9 Probabilistic methods

A more principled statistical approach to the clustering problem can over-

come some of these shortcomings. From a probabilistic perspective, the goal of

clustering is to find the most likely set of clusters given the data (and, inevita-

bly, prior expectations). Because no finite amount of evidence is enough to

make a completely firm decision on the matter, instances—even training

instances—should not be placed categorically in one cluster or the other: instead

they have a certain probability of belonging to each cluster. This helps to elimi-

nate the brittleness that is often associated with schemes that make hard and fast

judgments.

The foundation for statistical clustering is a statistical model called a finite

mixture model. A mixture is a set of k probability distributions, representing k

clusters, that govern the attribute values for members of that cluster. In other

words, each distribution gives the probability that a particular instance would

have a certain set of attribute values if it were known to be a member of that clus-

ter. Each cluster has a different distribution. Any particular instance “really”

belongs to one and only one of the clusters, but it is not known which one.

Finally, the clusters are not equally likely: there is some probability distribution

that reflects their relative populations.

THE EXPECTATION MAXIMIZATION ALGORITHM
FOR A MIXTURE OF GAUSSIANS

One of the simplest finite mixture situations is when there is only one numeric

attribute, which has a Gaussian or normal distribution for each cluster—but with

different means and variances. The clustering problem is to take a set of

instances—in this case each instance is just a number—and a prespecified number

of clusters, and work out each cluster’s mean and variance and the population dis-

tribution between the clusters. The mixture model combines several normal distri-

butions, and its probability density function looks like a mountain range with a

peak for each component.

Fig. 9.5 shows a simple example. There are two clusters A and B, and each

has a normal distribution with means and standard deviations μA and σA for clus-

ter A, and μB and σB for cluster B. Samples are taken from these distributions,

using cluster A with probability pA and cluster B with probability pB (where

pA1 pB5 1), resulting in a data set like that shown. Now, imagine being given

the data set without the classes—just the numbers—and being asked to determine

the five parameters that characterize the model: μA, σA, μB, σB, and pA (the

parameter pB can be calculated directly from pA). That is the finite mixture

problem.

If you knew which of the two distributions each instance came from, finding

the five parameters would be easy—just estimate the mean and standard devia-

tion for the cluster A samples and the cluster B samples separately, using the

formulas

3539.3 Clustering and Probability Density Estimation

μ5
x1 1 x2 1?1 xn

n
;

σ2 5
ðx12μÞ2 1 ðx22μÞ2 1?1 ðxn2μÞ2

n2 1
:

(The use of n�1 rather than n as the denominator in the second formula

ensures an unbiased estimate of the variance, rather than the maximum likelihood

estimate: it makes little difference in practice if n is used instead.) Here,

x1, x2,. . ., xn are the samples from the distribution A or B. To estimate the fifth

parameter pA, just take the proportion of the instances that are in the A cluster.

If you knew the five parameters, finding the (posterior) probabilities that a

given instance comes from each distribution would be easy. Given an instance xi,

the probability that it belongs to cluster A is

PðAjxiÞ5
PðxijAÞUPðAÞ

PðxiÞ
5

Nðxi;μA;σAÞpA
PðxiÞ

;

where Nðx;μA;σAÞ is the normal or Gaussian distribution function for cluster A,

i.e.:

Nðx;μ; σÞ5 1ffiffiffiffiffiffi
2π

p
σ
e2

ðx2μÞ2
2σ2 :

In practice we calculate the numerators for both P(A|xi) and P(B|xi), then nor-

malize them by dividing by their sum, which is P(xi). This whole procedure is

just the same as the way numeric attributes are treated in the Naı̈ve Bayes learn-

ing scheme of Section 4.2. And the caveat explained there applies here too:

strictly speaking, Nðxi;μA;σAÞ is not the probability P(x|A) because the probabil-

ity of x being any particular real number xi is zero. Instead, Nðxi;μA;σAÞ is a

probability density, which is turned into a probability by the normalization

Data Model

A 51
A 43
B 62
B 64
A 45
A 42
A 46
A 45
A 45
B 62
A 47
A 52
B 64
A 51
B 65
A 48
A 49

A 46
B 64
A 51
A 52
B 62
A 49
A 48
B 62
A 43
A 40
A 48
B 64
A 51
B 63
A 43
B 65
B 66

B 65
A 46
A 39
B 62
B 64
A 52
B 63
B 64
A 48
B 64
A 48
A 51
A 48
B 64
A 42
A 48
A 41

30 40 50 60 70

μA=50, A =5, pA=0.6 μB=65, B =2, pB=0.4

A B

FIGURE 9.5

A two-class mixture model.

354 CHAPTER 9 Probabilistic methods

process used to compute the posterior. Note that the final outcome is not a partic-

ular cluster but rather the (posterior) probability with which xi belongs to cluster

A or cluster B.

The problem is that we know neither of these things: not the distribution that

each training instance came from nor the five parameters of the mixture model.

So we adopt the procedure used for the k-means clustering algorithm and iterate.

Start with initial guesses for the five parameters, use them to calculate the cluster

probabilities for each instance, use these probabilities to re-estimate the para-

meters, and repeat. (If you prefer, you can start with guesses for the classes of the

instances instead.) This is an instance of the expectation�maximization or EM

algorithm. The first step, calculation of the cluster probabilities (which are the

“expected” class values) is the “expectation”; the second, calculation of the distri-

bution parameters, is our “maximization” of the likelihood of the distributions

given the data.

A slight adjustment must be made to the parameter estimation equations to

account for the fact that it is only cluster probabilities, not the clusters them-

selves, that are known for each instance. These probabilities just act like weights.

If wi is the probability that instance i belongs to cluster A, the mean and standard

deviation for cluster A are

μA 5
w1x1 1w2x2 1?1wnxn

w1 1w2 1?1wn

σ2
A 5

w1ðx12μÞ2 1w2ðx22μÞ2 1?1wnðxn2μÞ2
w1 1w2 1?1wn

where now the xi are all the instances, not just those belonging to cluster A. (This

differs in a small detail from the estimate for the standard deviation given above:

if all weights are equal the denominator is n rather than n�1, which uses the max-

imum likelihood estimator rather than the unbiased estimator.)

Now consider how to terminate the iteration. The k-means algorithm stops

when the classes of the instances do not change from one iteration to the next—a

“fixed point” has been reached. In the EM algorithm things are not quite so easy:

the algorithm converges toward a fixed point but never actually gets there. We

can see how close it is getting by calculating the overall (marginal) likelihood

that the data came from this model, given the values for the five parameters. The

marginal likelihood is obtained by summing (or marginalizing) over the two com-

ponents of the Gaussian mixture, i,e,

L
n

i51

PðxiÞ5L
n

i51

X
ci

PðxijciÞUPðciÞ

5L
n

i51

ðNðxi;μA;σAÞpA 1Nðxi;μB;σBÞpBÞ:

This is the product of the marginal probability densities of the individual

instances, which are obtained from the sum of the probability density under each

3559.3 Clustering and Probability Density Estimation

normal distribution Nðx;μ;σÞ, weighted by the appropriate (prior) class probabil-

ity. The cluster membership variable c is a so-called hidden (or latent) variable;

we sum it out to obtain the marginal probability density of an instance.

This overall likelihood is a measure of the “goodness” of the clustering and

increases at each iteration of the EM algorithm. The above equation and the

expressions Nðxi;μA;σAÞ and Nðxi;μB;σBÞ are probability densities and not prob-

abilities, so they do not necessarily lie between 0 and 1: nevertheless, the result-

ing magnitude still reflects the quality of the clustering. In practical

implementations the log-likelihood is calculated instead: this is done by summing

the logarithms of the individual components, avoiding multiplications. But the

overall conclusion still holds: you should iterate until the increase in log-

likelihood becomes negligible. For example, a practical implementation might

iterate until the difference between successive values of log-likelihood is less than

10210 for 10 successive iterations. Typically, the log-likelihood will increase very

sharply over the first few iterations and then converge rather quickly to a point

that is virtually stationary.

Although the EM algorithm is guaranteed to converge to a maximum, this is a

local maximum and may not necessarily be the same as the global maximum. For

a better chance of obtaining the global maximum, the whole procedure should be

repeated several times, with different initial guesses for the parameter values. The

overall log-likelihood figure can be used to compare the different final configura-

tions obtained: just choose the largest of the local maxima.

EXTENDING THE MIXTURE MODEL

Now that we have seen the Gaussian mixture model for two distributions, let us

consider how to extend it to more realistic situations. The basic method is just the

same, but because the mathematical notation becomes formidable we will not

develop it in full detail.

Changing the algorithm from two-cluster problems to situations with multiple

clusters is completely straightforward, so long as the number k of normal distribu-

tions is given in advance.

The model can easily be extended from a single numeric attribute per instance

to multiple attributes as long as independence between attributes is assumed. The

probabilities for each attribute are multiplied together to obtain the joint probabil-

ity (density) for the instance, just as in the Naı̈ve Bayes method.

When the dataset is known in advance to contain correlated attributes, the

independence assumption no longer holds. Instead, two attributes can be modeled

jointly by a bivariate normal distribution, in which each has its own mean value

but the two standard deviations are replaced by a “covariance matrix” with four

numeric parameters. In Appendix A.2 we show the mathematics for the multivari-

ate Gaussian distribution; the special case of a diagonal covariance model leads

to a Naı̈ve Bayesian interpretation. Several correlated attributes can be handled

using a multivariate distribution. The number of parameters increases with the

356 CHAPTER 9 Probabilistic methods

square of the number of jointly varying attributes. With n independent attributes,

there are 2n parameters, a mean and a standard deviation for each. With n covari-

ant attributes, there are n1 n(n1 1)/2 parameters, a mean for each, and an n3 n

covariance matrix that is symmetric and therefore involves n(n1 1)/2 different

quantities. This escalation in the number of parameters has serious consequences

for overfitting, as we will explain later.

To cater for nominal attributes, the normal distribution must be abandoned.

Instead, a nominal attribute with v possible values is characterized by v numbers

representing the probability of each one. A different set of numbers is needed for

every cluster; kv parameters in all. The situation is very similar to the Naı̈ve

Bayes method. The two steps of expectation and maximization correspond exactly

to operations we have studied before. Expectation—estimating the cluster to

which each instance belongs given the distribution parameters—is just like deter-

mining the class of an unknown instance. Maximization—estimating the para-

meters from the classified instances—is just like determining the attribute�value

probabilities from the training instances, with the small difference that in the EM

algorithm instances are assigned to classes probabilistically rather than categori-

cally. In Section 4.2 we encountered the problem that probability estimates can

turn out to be zero, and the same problem occurs here too. Fortunately, the solu-

tion is just as simple—use the Laplace estimator.

Naı̈ve Bayes assumes that attributes are independent—i.e., why it is called

“naı̈ve.” A pair of correlated nominal attributes with v1 and v2 possible values,

respectively, can be replaced by a single covariant attribute with v1v2 possible

values. Again, the number of parameters escalates as the number of dependent attri-

butes increases, and this has implications for probability estimates and overfitting.

The presence of both numeric and nominal attributes in the data to be clus-

tered presents no particular problem. Covariant numeric and nominal attributes

are more difficult to handle, and we will not describe them here.

Missing values can be accommodated in various different ways. In principle,

they should be treated as unknown and the EM process adapted to estimate them

as well as the cluster means and variances. A simple way is to replace them by

means or modes in a preprocessing step.

With all these enhancements, probabilistic clustering becomes quite sophisti-

cated. The EM algorithm is used throughout to do the basic work. The user must

specify the number of clusters to be sought, the type of each attribute (numeric or

nominal), which attributes are to modeled as covarying, and what to do about

missing values. Moreover, different distributions can be used. Although the nor-

mal distribution is usually a good choice for numeric attributes, it is not

suitable for attributes (such as weight) that have a predetermined minimum (zero,

in the case of weight) but no upper bound; in this case a “log-normal” distribution

is more appropriate. Numeric attributes that are bounded above and below can be

modeled by a “log-odds” distribution. Attributes that are integer counts rather

than real values are best modeled by the “Poisson” distribution. A comprehensive

system might allow these distributions to be specified individually for each

3579.3 Clustering and Probability Density Estimation

attribute. In each case, the distribution involves numeric parameters—probabili-

ties of all possible values for discrete attributes and mean and standard deviation

for continuous ones.

In this section we have been talking about clustering. But you may be thinking

that these enhancements could be applied just as well to the Naı̈ve Bayes algo-

rithm too—and you could be right. A comprehensive probabilistic modeler could

accommodate both clustering and classification learning, nominal and numeric

attributes with a variety of distributions, various possibilities of covariation, and

different ways of dealing with missing values. The user would specify, as part of

the domain knowledge, which distributions to use for which attributes.

CLUSTERING USING PRIOR DISTRIBUTIONS

However, there is a snag: overfitting. You might say that if we are not sure which

attributes are dependent on each other, why not be on the safe side and specify that

all the attributes are covariant? The answer is that the more parameters there are,

the greater the chance that the resulting structure is overfitted to the training data—

and covariance increases the number of parameters dramatically. The problem of

overfitting occurs throughout machine learning, and probabilistic clustering is no

exception. There are two ways that it can occur: through specifying too large a

number of clusters and through specifying distributions with too many parameters.

The extreme case of too many clusters occurs when there is one for every data

point: clearly, that will be overfitted to the training data. In fact, in the mixture

model, problems will occur whenever any one of the normal distributions

becomes so narrow that it is centered on just one data point. Consequently, imple-

mentations generally insist that clusters contain at least two different data values.

Whenever there are a large number of parameters, the problem of overfitting

arises. If you were unsure of which attributes were covariant, you might try out dif-

ferent possibilities and choose the one that maximized the overall probability of the

data given the clustering that was found. Unfortunately, the more parameters there

are, the larger the overall data probability will tend to be—not necessarily because

of better clustering but because of overfitting. The more parameters there are to

play with, the easier it is to find a clustering that seems good.

It would be nice if somehow you could penalize the model for introducing new

parameters. One principled way of doing this is to adopt a Bayesian approach in

which every parameter has a prior probability distribution whose effect is incorpo-

rated into the overall likelihood figure. In a sense, the Laplace estimator that we

met in Section 4.2, and whose use we advocated earlier to counter the problem of

zero probability estimates for nominal values, is just such a device. Whenever there

are few observations, it exacts a penalty because it makes probabilities that are

zero, or close to zero, greater, and this will decrease the overall likelihood of the

data. In fact, the Laplace estimator is tantamount to using a particular prior distri-

bution for the parameter concerned. Making two nominal attributes covariant will

exacerbate the problem of sparse data. Instead of v11 v2 parameters, where v1 and

358 CHAPTER 9 Probabilistic methods

v2 are the number of possible values, there are now v1v2, greatly increasing the

chance of a large number of small observed frequencies.

The same technique can be used to penalize the introduction of large numbers

of clusters, just by using a prespecified prior distribution that decays sharply as

the number of clusters increases.

AutoClass is a comprehensive Bayesian clustering scheme that uses the finite

mixture model with prior distributions on all the parameters. It allows both

numeric and nominal attributes, and uses the EM algorithm to estimate the para-

meters of the probability distributions to best fit the data. Because there is no

guarantee that the EM algorithm converges to the global optimum, the procedure

is repeated for several different sets of initial values. But that is not all.

AutoClass considers different numbers of clusters and can consider different

amounts of covariance and different underlying probability distribution types for

the numeric attributes. This involves an additional, outer level of search. For

example, it initially evaluates the log-likelihood for 2, 3, 5, 7, 10, 15, and 25 clus-

ters: after that, it fits a log-normal distribution to the resulting data and randomly

selects from it more values to try. As you might imagine, the overall algorithm is

extremely computation intensive. In fact, the actual implementation starts with a

prespecified time bound and continues to iterate as long as time allows. Give it

longer and the results may be better!

A simpler way of selecting an appropriate model—e.g., to choose the number

of clusters—is to compute the likelihood on a separate validation set that has not

been used to fit the model. This can be repeated with multiple train-validation

splits, just as in the case of classification models—e.g., with k-fold cross-

validation. In practice, the ability to pick a model in this way is a big advantage

of probabilistic clustering approaches compared to heuristic clustering methods.

Rather than showing just the most likely clustering to the user, it may be best to

present all of them, weighted by probability. Recently, fully Bayesian techniques

for hierarchical clustering have been developed that produce as output a probabil-

ity distribution over possible hierarchical structures representing a dataset. Fig. 9.6

is a visualization, known as a DensiTree, that shows the set of all trees for a partic-

ular dataset in a triangular shape. The tree is best described in terms of its “clades,”

a biological term from the Greek klados, meaning branch, for a group of the same

species that includes all ancestors. Here there are five clearly distinguishable

clades. The first and fourth correspond to a single leaf, while the fifth has two

leaves that are so distinct they might be considered clades in their own right. The

second and third clades each have five leaves, and there is large uncertainty in their

topology. Such visualizations make it easy for people to grasp the possible hierar-

chical clusterings of their data, at least in terms of the big picture.

CLUSTERING WITH CORRELATED ATTRIBUTES

Many clustering methods make the assumption of independence among the attri-

butes. An exception is AutoClass, which does allow the user to specify in advance

3599.3 Clustering and Probability Density Estimation

that two or more attributes are dependent and should be modeled with a joint prob-

ability distribution. (There are restrictions, however: nominal attributes may vary

jointly, as may numeric attributes, but not both together. Moreover, missing values

for jointly varying attributes are not catered for.) It may be advantageous to prepro-

cess a data set to make the attributes more independent, using statistical techniques

such as the independent component transform described in Section 8.3. Note that

joint variation that is specific to particular classes will not be removed by such

techniques; they only remove overall joint variation that runs across all classes.

If all attributes are continuous, more advanced clustering methods can help

capture joint variation on a per-cluster basis, without having the number of para-

meters explode when there are many dimensions. As discussed above, if each

covariance matrix in a Gaussian mixture model is “full” we need to estimate

n(n1 1)/2 parameters per mixture component. However, as we will see in

Section 9.6, principal component analysis can be formulated as a probabilistic

model, yielding probabilistic principal component analysis (PPCA), and

approaches known as mixtures of principal component analyzers or mixtures of

factor analyzers provide ways of using a much smaller number of parameters to

represent large covariance matrices. In fact, the problem of estimating n(n1 1)/2

parameters in a full covariance matrix can be transformed into the problem of

estimating as few as n3 d parameters in a factorized covariance matrix, where d

FIGURE 9.6

DensiTree showing possible hierarchical clusterings of a given data set.

360 CHAPTER 9 Probabilistic methods

can be chosen to be small. The idea is to decompose the covariance matrix M
into the form M5 ðWWT 1DÞ, where W is typically a long and skinny matrix of

size n3 d, with as many rows as there are dimensions n of the input, and as

many columns d as there are dimensions in the reduced space. Standard PCA cor-

responds to setting D5 0; PPCA corresponds to using the form D5σ2I, where
σ2 is a scalar parameter and I is the identity matrix; and factor analysis corre-

sponds to using a diagonal matrix for D. The mixture model versions give each

mixture component this type of factorization.

KERNEL DENSITY ESTIMATION

Mixture models can provide compact representations of probability distributions

but do not necessarily fit the data well. In Chapter 4, Algorithms: the basic meth-

ods, we mentioned that when the form of a probability distribution is unknown,

an approach known as kernel density estimation can be used to approximate the

underlying distribution more accurately. This estimates the underlying true proba-

bility distribution p(x) of data x1, x2,. . ., xn using a kernel density estimator,

which can be written in the following general form

p̂ðxÞ5 1

n

Xn
i51

Kσðx; xiÞ5
1

nσ

Xn
i51

K
x2 xi

σ

h i
;

where K() is a nonnegative kernel function that integrates to one. Here, we use

the notation p̂ðxÞ to emphasize that this is an estimation of the true (unknown) dis-

tribution p(x). The parameter σ. 0 is the bandwidth of the kernel, and serves as

a form of smoothing parameter for the approximation. When the kernel function

is defined using σ as a subscript it is known as a “scaled” kernel function and is

given by KσðxÞ5 1=σ Kðx=σÞ. Estimating densities using kernels is also known as

Parzen window density estimation.

Popular kernel functions include the Gaussian, box, triangle, and Epanechnikov

kernels. The Gaussian kernel is popular because of its simple and attractive mathe-

matical form. The box kernel implements a windowing function, whereas the trian-

gle kernel implements a smoother, but still conceptually simple, window. The

Epanechnikov kernel can be shown to be optimal under a mean squared error met-

ric. The bandwidth parameter affects the smoothness of the estimator and the qual-

ity of the estimate. There are several methods for coming up with an appropriate

bandwidth, ranging from heuristics motivated by theoretical results on known dis-

tributions to empirical choices based on validation sets and cross-validation techni-

ques. Many software packages offer the choice between simple heuristic default

values, bandwidth selection through cross-validation methods, and the use of plug-

in estimators derived from further analytical analysis.

Kernel density estimation is closely related to k-nearest neighbor density esti-

mation, and it can be shown that both techniques converge to the true distribution

p(x) as the amount of data grows towards infinity. This result, combined with the

3619.3 Clustering and Probability Density Estimation

fact that they are easy to implement, makes kernel density estimators attractive

methods in many situations.

Consider, e.g., the practical problem of finding outliers in data, given only

positive or only negative examples (or perhaps with just a handful of examples of

the other class). One effective approach is to do the best possible job of modeling

the probability distribution of the data for the plentiful class using a kernel density

estimator, and considering new data to which the model assigns low probability

as outliers.

COMPARING PARAMETRIC, SEMIPARAMETRIC
AND NONPARAMETRIC DENSITY MODELS FOR CLASSIFICATION

One might view a mixture model as intermediate between two extreme ways of

modeling distributions by estimating probability densities. One extreme is a single

simple parametric form such as the Gaussian distribution. It is easy to estimate

the relevant parameters. However, data often arises from a far more complex dis-

tribution. Mixture models use two or more Gaussians to approximate the distribu-

tion. In the limit, at the other extreme, one Gaussian is used for each data point.

This is kernel density estimation with a Gaussian kernel function.

Fig. 9.7 shows a visual example of this spectrum of models. A density esti-

mate for each class of a 3-class classification problem has been created using

three different techniques. Fig. 9.7A uses a single Gaussian distribution for each

class, an approach that is often referred to as a “parametric” technique. Fig. 9.7B

uses a Gaussian mixture model with two components per class, a “semipara-

metric” technique in which the number of Gaussians can be determined using a

variety of methods. Fig. 9.7C uses a kernel density estimate with a Gaussian ker-

nel on each example, a “nonparametric” method. Here the model complexity

grows in proportion to the volume of data.

All three approaches define density models for each class, so Bayes’ rule can

be used to compute the posterior probability over all classes for any given input.

FIGURE 9.7

Probability contours for three types of model, all based on Gaussians.

362 CHAPTER 9 Probabilistic methods

In this way, density estimators can easily be transformed into classifiers. For sim-

ple parametric models, this is quick and easy. Kernel density estimators are

guaranteed to converge to the true underlying distribution as the amount of data

increases, which means that classifiers constructed from them have attractive

properties. They share the computational disadvantages of nearest-neighbor classi-

fication, but, just as for nearest-neighbor classification, fast data structures exist

that can make them applicable to large datasets.

Mixture models, the intermediate option, give control of model complexity

without it growing with the amount of data. For this reason this approach has

been standard practice for initial modeling in fields such as in speech recognition,

which deal in large datasets. It allows speech recognizers to be created by first

clustering data into groups, but in such a way that more complex models of tem-

poral relationships can be added later using a hidden Markov model. (We will

consider sequential and temporal probabilistic models, such as hidden Markov

models, in Section 9.6.)

9.4 HIDDEN VARIABLE MODELS
We now move on to advanced learning algorithms that can infer new attributes in

addition to the ones present in the data—so-called hidden (or latent) variables

whose values cannot be observed. As noted in Section 9.3, a quantity called the

marginal likelihood can be obtained by summing (or integrating) these variables

out of the model. It is important not to confuse random variables with observa-

tions or hard assignments of random variables. We write pðxi 5 ~xiÞ5 pð ~xiÞ to

denote the probability of the random variable xi associated with instance i taking

the value represented by the observation ~xi. We use hi to represent a hidden dis-

crete random variable, and zi to denote a hidden continuous one. Then, given a

model with observations given by ~xi, the marginal likelihood is

Lðθ; ~x1; ~x2; . . .; ~xnÞ5 L
n

i51

pð ~xi; θÞ5 L
n

i51

ð
zi

X
hi

pð ~xi; zi; hi; θÞdzi;

where the sum is taken over all possible discrete values of hi and the integral is

taken over the entire domain of zi. The end result of all this integrating and sum-

ming is a single number—a scalar quantity—that gives the marginal likelihood

for any value of the parameters.

Maximum likelihood based learning for hidden variable models can some-

times be done using marginal likelihood, just as when no hidden variables are

present, but the additional variables usually affect the parameterization used to

define the model. In fact, these additional variables are often very important: they

are used to represent precisely the things we wish to mine from our data, be it

clusters, topics in a text mining problem, or the factors that underlie variation in

the data. By treating parameters as random variables and using functions that are

easy to manipulate, marginal likelihoods can also be used to define sophisticated

3639.4 Hidden Variable Models

Bayesian models that involve integrating over parameters. This can create models

that are less prone to overfitting.

EXPECTED LOG-LIKELIHOODS AND EXPECTED GRADIENTS

It is not always possible to obtain a form for the marginal likelihood that is easy

to optimize. An alternative is to work with another quantity, the expected log-

likelihood. Writing the set of all observed data as ~X, the set of all discrete hidden

variables as H, and the set of all continuous hidden variables as Z, the expected

log-likelihood can be expressed as

E½log Lðθ; ~X; Z;HÞ�
PðH;Zj ~X; θÞ5

Xn
i51

ð
zi

X
hi

pðzi; hij ~xi; θÞlog pð ~xi; zi; hi; θÞdzi
" #

5E
Xn
i51

log pð ~xi; zi; hi; θÞ
" #

pðzi ;hij ~xi;θÞ
:

Here, E½:�pðzi;hi j ~xi;θÞ means that an expectation is performed under the posterior

distribution over hidden variables: pðzi; hij ~xi; θÞ.
It turns out that there is a close relationship between the log marginal likeli-

hood and the expected log-likelihood: the derivative of the expected log-

likelihood with respect to the parameters of the model equals the derivative of the

log marginal likelihood. The following derivation, based on applying the chain

rule from calculus and considering a single training example for simplicity,

demonstrates why this is true:

@

@θ
log pð ~xi; θÞ5

1

pð ~xi; θÞ
@

@θ

ð
zi

X
hi

pð ~xi; zi; hi; θÞdzi

5

ð
zi

X
hi

pð ~xi; zi; hi; θÞ
pð ~xi; θÞ

@

@θ
log pð ~xi; zi; hi; θÞdzi

5

ð
zi

X
hi

pðzi; hij ~xi; θÞ
@

@θ
log pð ~xi; zi; hi; θÞdzi

5E @
@θ log pð ~xi; zi; hi; θÞ
" #

pðzi ;hi j ~xi;θÞ

The final expression is the expectation of the derivative of the log joint likeli-

hood. This relationship is with respect to the derivative of the log marginal likeli-

hood and the expected derivative of the log joint likelihood. However, it is also

possible to establish a direct relationship between the log marginal and expected

log joint probabilities. The variational analysis in Appendix A.2 shows that

log Pð ~xi; θÞ5E½log pð ~xi; zi; hi; θÞ�pðzi ;hij ~xi;θÞ 1H½pðzi; hij ~xi; θÞ�;

where H[.] is the entropy.

364 CHAPTER 9 Probabilistic methods

As a consequence of this analysis, to perform learning in a probability model

with hidden variables, the marginal likelihood can be optimized using gradient

ascent by instead computing and following the gradient of the expected log-

likelihood, assuming that the posterior distribution over hidden variables can be

computed. This prompts a general approach to learning in a hidden variable

model based on following the expected gradient. This can be decomposed into

three steps: (1) a P-step, which computes the posterior over hidden variables; (2)

an E-step, which computes the expectation of the gradient given the posterior;

and (3) a G-step, which uses gradient-based optimization to maximize the objec-

tive function with respect to the parameters.

THE EXPECTATION MAXIMIZATION ALGORITHM

Using the expected log joint probability as a key quantity for learning in a proba-

bility model with hidden variables is better known in the context of the celebrated

“expectation maximization” or EM algorithm, which we encountered in “The

expectation maximization algorithm for a mixture of Gaussians” section. We

discuss the general EM formulation next. Section 9.6 gives a concrete example

comparing and contrasting the expected gradient approach and the EM approach,

using the probabilistic formulation of principal component analysis.

The EM algorithm follows the expected gradient approach. However, EM is

often used with models in which the M-step can be computed in closed form—in

other words, when exact parameter updates can be found by setting the derivative

of the expected log-likelihood with respect to the parameters to 0. These updates

often take the same form as the simple maximum likelihood estimates that one

would use to compute the parameters of a distribution, and are essentially just

modified forms of the equations used for observed data that involve averages

weighted over the posterior distribution in place of observed counts.

The EM algorithm consists of two steps: (1) an E-step that computes the

expectations used in the expected log-likelihood and (2) an M-step in which the

objective is maximized—typically using a closed-form parameter update.

In the following, we assume that we have only discrete hidden variables H.

The probability of the observed data ~X can be maximized by maximizing the log-

likelihood log Pð ~X; θÞ of the parameters θ arising from an underlying latent vari-

able model PðX;H; θÞ as follows. Initialize the parameters as θold and repeat the

following steps, where convergence is measured in terms of either the change to

the log-likelihood or the degree of change to the parameters:

1. E-step: Compute required expectations involving PðHjX; θoldÞ
2. M-step: Find θnew 5 arg maxθ

P
H PðHjX; θoldÞlog PðX;H; θÞ�

3. If the algorithm has not converged, set θold 5 θnew and return to step 1.

Note that the M-step corresponds to maximizing the expected log-likelihood.

Although discrete hidden variables are used above, the approach generalizes to

continuous ones.

3659.4 Hidden Variable Models

For many latent variable models—Gaussian mixture models, PPCA, and hid-

den Markov models—the required posterior distributions can be computed

exactly, which accounts for their popularity. However, for many other probabilis-

tic models it is simply not possible to compute an exact posterior distribution.

This can easily happen with multiple hidden random variables, because the poste-

rior needed in the E-step is the joint posterior of the hidden variables. There is a

vast literature on the subject of how to compute approximations to the true poste-

rior distribution over hidden variables in more complex models.

APPLYING THE EXPECTATION MAXIMIZATION ALGORITHM
TO BAYESIAN NETWORKS

Bayesian networks capture statistical dependencies between attributes using an

intuitive graphical structure, and the EM algorithm can easily be applied to such

networks. Consider a Bayesian network with a number of discrete random vari-

ables, some of which are observed while others are not. Its marginal probability,

in which hidden variables have been integrated out, can be maximized by maxi-

mizing the expected log joint probability over the posterior distribution of the hid-

den variables given the observed data—the expected log-likelihood.

For a network consisting of only discrete variables, this means that the E-step

involves computing a distribution over hidden variables fHg given observed vari-

ables f ~Xg or PðfHgjf ~Xg; θcurrentÞ. If the network is a tree, this can be computed effi-

ciently using the sum-product algorithm, which is explained in Section 9.6. If

not, it can be computed efficiently using the junction tree algorithm. However, if

the model is large, exact inference algorithms may be intractable, in which case a

variational approximation or sampling procedure can be used to approximate the

distribution.

The M-step seeks

θnew 5 arg max
θ

X
fHg

PðfHgjf ~Xg; θoldÞlog Pðf ~Xg; fHg; θÞ
" #

:

Recall that the log joint probability given by a Bayesian network decomposes

into a sum over functions of subsets of variables. Notice also that the expression

above involves an expectation using the joint conditional distribution or posterior

over hidden variables. Using the EM algorithm, taking the derivative with respect

to any given parameter leaves just terms that involve the marginal expectation

over the distribution of variables that participate in the function for the gradient

of the relevant parameter. This means, e.g., that to find the unconditional proba-

bility of an unobserved variable A in a network, it is necessary to determine the

parameters θA of PðA; θAÞ for which
@

@θA

X
A

PðAjf ~Xg; θoldÞlog PðA; θAÞ
" #

5 0;

366 CHAPTER 9 Probabilistic methods

along with the further constraint that the probabilities in the discrete distribution

sum to 1. This can be achieved using a Lagrange multiplier (Appendix A.2 gives

an example of using this technique to estimate a discrete distribution). Setting the

derivative of the constrained objective to 0 gives this closed form result:

θnewA5a 5PðA5 aÞ5 1

N

XN
i51

PðAi 5 ajf ~Xgi; θoldÞ:

In other words, the unconditional probability distribution is estimated in the

same way in which it would be computed if the variables Ai had been observed,

but with each observation replaced by its probability. Applying this procedure to

the entire data set is tantamount to replacing observed counts with expected

counts under the current model settings. If many examples have the same config-

uration, the distribution need only be computed once, and multiplied by the num-

ber of times that configuration has been seen.

Estimating entries in the network’s conditional probability tables also has an

intuitive form. To estimate the conditional probability of unobserved random vari-

able B given unobserved random variable A in a Bayesian network, simply com-

pute their joint (posterior) probability and the marginal (posterior) probability of

A for each example. Just as when the data is observed, the update equation is

PðB5 bjA5 aÞ5
PN

i51 PðAi 5 a;Bi 5 bjf ~Xgi; θoldÞPN
i51 PðAi 5 ajf ~Xgi; θoldÞ

:

This is just a ratio of the expected numbers of counts. If some of the variables

are fully observed, the expression can be adapted by replacing the inferred proba-

bilities by observed values—effectively assigning the observations a probability

of 1. Furthermore, if variable B has multiple parents, A can be replaced by the set

of parents.

9.5 BAYESIAN ESTIMATION AND PREDICTION
If there is reason to believe that a certain parameter has been drawn from a partic-

ular distribution, we can adopt a more Bayesian perspective. A common strategy

is to employ a hyperparameter α to represent that distribution. Define the joint

distribution of data and parameters as

pðx1; x2; . . .; xn; θ;αÞ5Ln

i51
pðxijθÞpðθ;αÞ

Bayesian-style predictions use a quantity known as the posterior predictive

distribution, which consists of the probability model for a new observation

marginalized over the posterior probability inferred for the parameters given the

observations so far. Again using a notation that explicitly differentiates variables

xi from their observations ~xi, the posterior predictive distribution is

3679.5 Bayesian Estimation and Prediction

pðxnewj ~x1; ~x2; . . .; ~xn;αÞ5
ð
θ
pðxnewjθÞpðθj ~x1; ~x2; . . .; ~xn;αÞd θ:

Given a Bayesian model that uses distributions over parameters, so-called

“empirical Bayesian” methods can be employed to find a suitable value for the

hyperparameter α. One such approach is obtained by maximizing the log mar-

ginal likelihood with respect to the model’s hyperparameters:

αMML 5 arg max
α

log

ð
L
n

i51

pðxijθÞpðθ;αÞdθ
� �

:

The remainder of this section demonstrates several techniques for creating

complex structured probabilistic models.

PROBABILISTIC INFERENCE METHODS

With complex probability models—and even with some seemingly simple ones—

computing quantities such as posterior distributions, marginal distributions, and

the maximum probability configuration, often require specialized methods to

achieve results efficiently—even approximate ones. This is the field of probabilis-

tic inference. Below we review some widely used probabilistic inference methods,

including probability propagation, sampling and simulated annealing, and varia-

tional inference.

Probability propagation
Structured probability models like the Bayesian networks and Markov random

fields discussed in Section 9.6 decompose a joint probability distribution into a

factorized structure consisting of products of functions over subsets of variables.

Then the task of computing marginal probabilities to find a maximum-probability

configuration can be computationally demanding using brute force computation.

In some cases even a naı̈ve approach is completely infeasible in practice.

However, it is sometimes possible to take advantage of the model’s structure to

perform inference more efficiently. When Bayesian networks and related graphi-

cal models have an underlying tree connectivity structure, then belief propagation

(also known as probability propagation) based on the sum-product and max-

product algorithms presented in Section 9.6 can be applied to compute exact mar-

ginals, and hence the most probable model configuration.

Sampling, simulated annealing, and iterated conditional modes
With fully Bayesian methods that use distributions on parameters, or graphical

models with cyclic structures, sampling methods are popular in both statistics and

machine learning. Markov chain Monte Carlo methods are widely used to gener-

ate random samples from probability distributions that are difficult to compute.

For example, as we have seen above, posterior distributions are often needed for

expectations required during learning, but in many settings these can be difficult

368 CHAPTER 9 Probabilistic methods

to compute. Gibbs sampling is a popular special case of the more general

Metropolis�Hastings algorithm that allows one to generate samples from a joint

distribution even when the true distribution is a complex continuous function.

These samples can then be used to approximate expectations of interest, and also

to approximate marginal distributions of subsets of variables by simply ignoring

parts pertaining to other variables.

Gibbs sampling is conceptually very simple. Assign an initial set of states to

the random variables of interest. With n random variables, this initial assignment

or set of samples can be written x1 5 x
ð0Þ
1 ; . . .; xn 5 xð0Þn . We then iteratively update

each variable by sampling from its conditional distribution given the others:

x
ði11Þ
1 Bpðx1jx2 5 x

ðiÞ
2 ; . . .; xn 5 xðiÞn Þ;

^
xði11Þ
n Bpðxnjx1 5 x

ðiÞ
1 ; . . .; xn21 5 x

ðiÞ
n21Þ:

In practice, these conditional distributions are often easy to compute.

Furthermore, the idea of a “Markov blanket” introduced in Section 9.2 can often

be used to reduce the number of variables necessary, because conditionals in

structured models may depend on a much smaller subset of the variables.

To ensure an unbiased sample it is necessary to cycle through the data discard-

ing samples in a process known as “burn-in.” The idea is to allow the Markov

chain defined by the sampling procedure to approach its stationary distribution,

and it can be shown that in the limit one will indeed obtain a sample from this

distribution, and that the distribution corresponds to the underlying joint probabil-

ity we wish to sample from. There is considerable theory concerning how much

burn-in is required, but in practice it is common to discard samples arising from

the first 100�1000 cycles. Sometimes, if more than one sample configuration is

desired, averages are taken over k additional configurations of the sampler

obtained after periods of about 100 cycles. We see how this procedure is used in

practice in Section 9.6, under latent Dirichlet allocation.

Simulated annealing is a procedure that seeks an approximate most probable

configuration or explanation. It adapts the Gibbs sampling procedure, described

above, to include an iteration-dependent “temperature” term ti. Starting with an

initial assignment x15 x
ð0Þ
1 ; . . .; xn 5 xð0Þn , subsequent samples take the form

x
ði11Þ
1 Bpðx1jx25x

ðiÞ
2 ; . . .; xn5xðiÞn Þ

1
ti
;

^

xði11Þ
n Bpðxnjx15x

ðiÞ
1 ; . . .; xn215x

ðiÞ
n21Þ

1
ti
;

Where the temperature is decreased at each iteration: ti11 , ti. If the schedule is

slow enough, this process will converge to the true global minimum. But therein

lies the catch: the temperature may have to decrease very slowly. However, this

is often possible, particularly with an efficient implementation of the sampler.

Another well-known algorithm is the iterated conditional modes procedure,

consisting of iterations of the form

3699.5 Bayesian Estimation and Prediction

x
ði11Þ
1 Barg max

x1

pðx1jx2 5 x
ðiÞ
2 ; . . .; xn 5 xðiÞn Þ;

^

xði11Þ
n Barg max

xn

pðxnjx1 5 x
ðiÞ
1 ; . . .; xn21 5 x

ðiÞ
n21Þ:

This can be very fast, but prone to local minima. It can be useful when con-

structing more interesting graphical models and optimizing them quickly in an

analogous, greedy way.

Variational inference
Rather than sampling from a distribution that is difficult to manipulate, the distri-

bution can be approximated by a simpler, more tractable, function. Suppose we

have a probability model with a set H of hidden variables and a set X of observed

variables. Let p5 pðHj ~X; θÞ be the exact posterior distribution of the model and

q5 qðHj ~X;ΦÞ be an approximation to it, where Φ is a set of so-called “variational

parameters.” Variational methods for probability models commonly involve defin-

ing a simple form for q that makes it easy to optimize Φ in a way that brings q

closer to p. The theory of variation EM optimizes latent variable models by maxi-

mizing a lower bound on the log marginal likelihood. This so-called “variational

bound” is described in Appendix A.2, where we see how the EM algorithm can

be viewed through a variational analysis. This allows one to create EM algorithms

using either exact or approximate posterior distributions. While statisticians often

prefer sampling methods to variational ones, variational methods are popular in

machine learning because they can be faster—and can also be combined with

sampling methods.

9.6 GRAPHICAL MODELS AND FACTOR GRAPHS
Bayesian networks give an intuitive picture of a probabilistic model that corre-

sponds directly with how we have decided to decompose the joint probability of

the random variables representing attributes into a product of conditional and

unconditional probability distributions. Mixture models, such as the Gaussian

mixture models of Section 9.3, are alternative ways of approximating joint distri-

butions. This section shows how such models can be illustrated using Bayesian

networks, and introduces a generalization of Bayesian networks, the so-called

“plate notation,” that allows one to visualize the result of techniques that treat

parameters as random quantities. A further generalization, “factor graphs,” can

represent and visualize an even wider class of probabilistic graphical models. As

before, we view attributes as random variables and instances as observations of

them; we also represent things like the label of a cluster by a random variable in

a graph.

370 CHAPTER 9 Probabilistic methods

GRAPHICAL MODELS AND PLATE NOTATION

Consider a simple two-cluster Gaussian mixture model. It can be illustrated in the

form of a Bayesian network with a binary random variable C for the cluster mem-

bership and a continuous random variable x for the real-valued attribute. In the

mixture model, the joint distribution P(C, x) is the product of the prior P(C) and

the conditional probability distribution P(x|C). This structure is illustrated by the

Bayesian network in Fig. 9.8A, where for each state of C a different Gaussian is

used for the conditional distribution of the continuous variable x.

Multiple Bayesian networks can be used to visualize the underlying joint like-

lihood that results when parameter estimation is performed. The probability model

for N observations x15 x1, x25 x2, and xN5 xN can be conceptualized as N

Bayesian networks, one for each variable xi observed or instantiated to the value

xi. Fig. 9.8B illustrates this, using shaded nodes to indicate which random vari-

ables are observed.

A “plate” is simply a box around a Bayesian network that denotes a certain

number of replications of it. The plate in Fig. 9.8C indicates i5 1,. . .,N networks,

each with an observed value for xi. Plate notation captures a model for the joint

probability of the entire data with a simple picture.

Bayesian networks, and more complex models comprising plates of Bayesian

networks, are known as generative models because the probabilistic definition of

the model can be used to randomly generate data governed by the probability dis-

tribution that the model represents. Bayesian hierarchical modeling involves

defining a hierarchy of levels for the parameters of a model and using the rules

of probability arising from the application of Bayesian methods to infer the

parameter values given observed data. These can be drawn with graphical models

in which both random variables and parameters are treated as random quantities.

The section on latent Dirichlet allocation below gives an example of this

technique.

...

i=1:N

CiCN C2 C1 C

(A) (B) (C)

x x1 x2 xN xi

FIGURE 9.8

(A) Bayesian network for a mixture model; (B) multiple copies of the Bayesian network,

one for each observation; (C) plate notation version of (B).

3719.6 Graphical Models and Factor Graphs

PROBABILISTIC PRINCIPAL COMPONENT ANALYSIS

Principal component analysis can be viewed as the consequence of performing

parameter estimation in a special type of linear Gaussian hidden variable model.

This connects the traditional view of this standard technique, presented in

Chapter 8, Data transformations, with the probabilistic formulation discussed

here, and leads to more advanced methods based on Boltzmann machines and

autoencoders that are introduced in Chapter 10, Deep learning. The probabilistic

formulation also helps deal with missing values. The underlying idea is to repre-

sent data as being generated by a Gaussian distributed continuous hidden latent

variable that is linearly transformed under a Gaussian model. As a result, the prin-

cipal components of a given data set correspond to an underlying factorized

covariance model for a corresponding multivariate Gaussian distribution model

for the data. This factorized model becomes apparent when the hidden variables

of the underlying latent variable model are integrated out.

More specifically, a set of hidden variables is used to represent the input data

in a space of reduced dimensionality. Each dimension corresponds to an indepen-

dent random variable drawn from a Gaussian distribution with zero mean and unit

variance. Let x be a random variable corresponding to the d-dimensional vectors

of observed data, and h be a k-dimensional vector of hidden random variables. k

is typically smaller than d (but need not be). Then the underlying joint probability

model has this linear Gaussian form:

pðx;hÞ5 pðxjhÞpðhÞ
5Nðx;Wh1μ;DÞNðh; 0; IÞ;

where the zero vector 0 and identity matrix I denote the mean and covariance

matrix for the Gaussian distribution used for p(h), and p(x|h) is Gaussian with

mean Wh1μ and a diagonal covariance matrix D. (The expression for the mean

is where the term “linear” in “linear Gaussian” comes from.) The mean μ is

included as a parameter, but it would be zero if we first mean-centered the data.

Fig. 9.9A shows a Bayesian network for PPCA; it reveals intuitions about the

...
hKh2 h1

x1 x2 xP

(A) (B)

FIGURE 9.9

(A) Bayesian network for probabilistic PCA; (B) equal-probability contour for a Gaussian

distribution along with its covariance matrix’s principal eigenvector.

372 CHAPTER 9 Probabilistic methods

probabilistic interpretation of principal component analysis based on hidden vari-

ables that will help in understanding other models discussed later.

Probabilistic PCA is a form of generative model, and Fig. 9.9A visualizes the

associated underlying generative process. Data is generated by sampling each

dimension of h from an independent Gaussian distribution and using the matrix

Wh1μ to project this lower dimensional representation of the data into the

observed, higher dimensional representation. Noise, specified by the diagonal

covariance matrix D, is added separately to each dimension of the higher dimen-

sional representation.

If the noise associated with the conditional distribution of x given h is the

same in each dimension (i.e., isotropic) and infinitesimally small (such that

D5 limσ2-0 σ2I), a set of estimation equations can be derived that give the same

principal components as those obtained by conventional principal component

analysis. Restricting the covariance matrix D to be diagonal produces a model

known as factor analysis). If D is isotropic (i.e., has the form D5 σ2I), then after

optimizing the model and learning σ2 the columns of W will be scaled and

rotated principal eigenvectors of the covariance matrix of the data. The contours

of equal probability for a multivariate Gaussian distribution can be drawn with an

ellipse whose principal axis corresponds to the principal eigenvector of the

covariance matrix, as illustrated in Fig. 9.9B.

Because of the nice properties of Gaussian distributions, the marginal distribu-

tions of x in these models are also Gaussian, with parameters that can be com-

puted analytically using simple algebraic expressions. For example, a model with

D5σ2I has pðxÞ5Nðx;μ;WWT 1 σ2IÞ, which is the marginal distribution of x

under the joint probability model, obtained by integrating out the uncertainty

associated with h from the joint distribution p(x,h) defined earlier. Integrating out

the hidden variables h from a PPCA model defines a Gaussian distribution whose

covariance matrix M has the special form WWT1D. Appendix A.2 relates this

factorization to an eigenvector analysis of the covariance matrix, resulting in the

standard matrix factorization view of principal component analysis.

Inference with PPCA
As a result of the underlying linear Gaussian formulation, various other quantities

needed for making inferences and performing parameter estimation can also be

obtained analytically. For example, given M5 ðWWT 1 σ2IÞ, the posterior distri-

bution for h can be obtained from Bayes’ rule, along with some Gaussian identi-

ties given in Appendix A.2. The posterior can be written

pðhjxÞ5Nðh;M21WTðx2μÞ; σ2M21Þ: (9.1)

Once the model parameters have been estimated, the mean of the posterior

for a new example can be calculated, which can then serve as a reduced dimen-

sional representation for it. The mathematics (though still perhaps daunting) is

greatly simplified by the fact that marginalizing, multiplying and dividing

3739.6 Graphical Models and Factor Graphs

Gaussians distributions produces other Gaussian distributions that are functions

of observed values, mean vectors, and covariance matrices. In fact, many more

sophisticated methods and models for data analysis rely on the ease with which

key quantities can be computed when the underlying model is based on linear

Gaussian forms.

Marginal log-likelihood for PPCA
Given a probabilistic model with hidden variables, the Bayesian philosophy is to

integrate out the uncertainly associated with them. As we have just seen, linear

Gaussian models make it possible to obtain the marginal probability of the data, p

(x), which takes the form of a Gaussian distribution. Then, the learning problem

is tantamount to maximizing the probability of the given data under the model.

The probability that variable x is observed to be ~x is indicated by pð~xÞ5 pðx5 ~xÞ.
The log (marginal) likelihood of the parameters given all the observed data ~X can

be maximized using this objective function:

Lð ~X; θÞ5 log L
N

i51

Pð~xi; θÞ
� �

5
XN
i51

log½Nð~xi;μ; WWT 1σ2IÞ�;

where the parameters θ5 fW;μ;σ2g, consist of a matrix, a vector, and a scalar.

We will assume henceforth that the data has been mean-centered: μ5 0.

(However, when creating generalizations of this approach there can be advantages

to retaining the mean as an explicit parameter of the model.)

Expected log-likelihood for PPCA
Section 9.4 showed that the derivative of the log marginal likelihood of a hidden

variable model with respect to its parameters equals the derivative of the expected

log joint likelihood, where the expectation is taken with respect to the exact poste-

rior distribution over the model’s hidden variables. The underlying Gaussian for-

mulation of PPCA means that an exact posterior can be computed, which provides

an alternative way to optimize the model based on the expected log-likelihood. The

log joint probability of all data and all hidden variables H under the model is

Lð ~X;H; θÞ5 log L
N

i51

pð~xi;hi; θÞ
� �

5
XN
i51

log½pð~xijhi;WÞpðhi;σ2Þ�:

Notice that while the data ~X is observed, the hidden variables hi are unknown,

so for a given parameter value θ5 ~θ this expression does not evaluate to a scalar

quantity. It can be converted into a scalar-valued function using the expected log-

likelihood, which can then be optimized. As we saw in Section 9.4, the expected

log-likelihood of the data using the posterior distribution of each example for the

expectations is given by

E½Lð ~X;H; θÞ�
pðHj ~XÞ5

XN
i51

E½log½pð~xi;hi; θÞ��pðhij~xiÞ:

374 CHAPTER 9 Probabilistic methods

Expected gradient for PPCA
Gradient descent can be used to learn the parameter matrix W using the expected

log-likelihood as the objective, an example of the expected gradient approach dis-

cussed in Section 9.4. The gradient is a sum over examples, and a fairly lengthy

derivation shows that each example contributes the following term to this sum:

@

@W
E Lð~x;hÞ½ �5E½WhhT�2E½~xhT �

5WE½hhT�2 ~xE½h�T ;
(9.2)

where in all cases the expectations are taken with respect to the posterior, pðhj~xÞ,
using the current settings of the model parameters. This partial derivative has a

natural interpretation as a difference between two expectations. The second term

creates a matrix the same size as W, consisting of an observation and the hidden

variable representation. The first term simply replaces the observation with a sim-

ilar Wh factor, which could be thought of as the model’s prediction of the input.

(We will revisit this interpretation when we examine conditional probability mod-

els in Section 9.7 and restricted Boltzmann machines in Section 10.5.)

This shows that the model reconstructs the data as it ascends the gradient. If

the optimization converges to a model that perfectly reconstructs the data, the

derivative in (9.2) will be zero. Other probabilistic models examined show similar

forms for the gradients for key parameters, consisting of differences of expecta-

tions—but different types of expectation are involved.

To compute these quantities, note that the expected value

E½h�5M21WTðx2μÞ can be obtained from the mean of the posterior distribution

for each example given by (9.1). The E[hhT] term can be found using the fact

that E[hhT]5 cov[h]1E[h]E[h]T, where cov[h] is the posterior covariance

matrix, which we also know from (9.1) is σ2M21.

EM for PPCA
An alternative to gradient ascent using the expected log-likelihood is to formulate

the model as an expected gradient-based learning procedure using the classical

EM algorithm. The M-step update can be obtained by setting the derivative in

(9.2) to zero and solving for W. This can be expressed in closed form: W in the

first term is independent of the expectation and can therefore be moved out of the

expectation and terms re-arranged into a closed-form M-step. In a zero mean

model with D5 σ2I and some small value for σ2, the E and M steps of the PPCA

EM algorithm can be rewritten

E-Step: E½hi�5M21WT ~xi, E½hihTi �5 σ2M21 1E½hi�E½hTi �,

M-Step: WNew 5
PN
i51

~xi E½hi�T
� � PN

i51

E½hihiT�
� �21

;

where all expectations are taken with respect to each example’s posterior distribu-

tion, pðhij~xiÞ, and, as above, M5 ðWWT 1σ2IÞ.

3759.6 Graphical Models and Factor Graphs

The EM algorithm can be further simplified by taking the limit as σ2

approaches zero. This is the zero input noise case, and it implies M5WWT.

Define the matrix Z5E[H], each column of which contains the expected vector

from Pðhij~xiÞ for one of the hidden variables hi, so that

E½HHT �5E½H�E½HT �5ZZT . This yields simple and elegant equations for the E

and M steps:

E-Step: Z5E½H�5 ðWTWÞ21WT ~X,
M-Step: WNew 5 ~XZT ½ZZT �21:

where both equations operate on the entire data matrix ~X.
The probabilistic formulation of principal component analysis permits tradi-

tional likelihoods to be defined, which supports maximum likelihood based learn-

ing and probabilistic inference. This in turn leads to natural methods for dealing

with missing data. It also leads on to the other models discussed below.

LATENT SEMANTIC ANALYSIS

Chapter 8, Data transformations, introduced principal component analysis, which,

as we have seen above, can be viewed as a form of linear Gaussian latent variable

model. We now discuss an influential early form of data driven document analy-

sis known as “latent semantic analysis” (LSA), which uses singular value decom-

position to decompose each document in a collection into topics. If documents

and terms are projected into the topic space, comparisons can be made that cap-

ture semantic structure in the documents resulting from the cooccurrence of words

across the collection. Characterizing documents in this way is called “latent

semantic indexing.” Probabilistic LSA (pLSA) addresses similar goals but applies

a statistical model based on multinomial distributions. Latent Dirichlet allocation

is a related model that uses a hierarchical Bayesian approach in which Dirichlet

priors are placed on the underlying multinomial distributions.

To motivate the introduction of these techniques, let us examine the relation-

ship between the original LSA method and singular value decomposition.

Imagine a term by document matrix X, with t rows and d columns, each element

of which contains the number of times the word associated with its row occurs in

the document associated with its column. LSA decomposes X into a product

X5USVT, where U and V have orthogonal columns and S is a diagonal matrix

containing the singular values, which are conventionally sorted in decreasing

order. This factorization is known as the singular value decomposition, and has

the property that for every value k, if all but the k largest singular values are

discarded the data matrix can be reconstructed in a way that is optimal in a least

squares sense. For any given approximation level k, we can write

X � ~X5UkSkV
T
k .

Fig. 9.10 illustrates how this works. The Uk matrix can be thought of as k

orthogonal “topics” that are combined according to the appropriate proportions for

each document, encoded in the k3 d matrix VT
k . The matrix A5 SkV

T
k represents

376 CHAPTER 9 Probabilistic methods

the activity level of the topics associated with each document. Thus the learning

phase of LSA simply performs singular value decomposition on the data matrix.

The dot (or scalar) product of any two columns of the approximated data

matrix ~X provides a measure of the similarity of term usage in the two docu-

ments. The dot products between all pairs of documents used to compute the sin-

gular value decomposition are

~X
T ~X5VkS

2
kV

T
k :

To analyze a new document (or query) xq that is not in the original collection

used for the decomposition, it can be projected into the semantic space of topic

activity defined by the model using

aq 5 S21
k UT

k xq: (9.3)

USING PRINCIPAL COMPONENT ANALYSIS FOR DIMENSIONALITY
REDUCTION

The singular value decomposition is widely used to project data into a space of

reduced dimensions, often before applying other analysis techniques. For instance,

data can be projected into a lower dimensional space in order to effectively apply

nearest neighbor techniques, which tend to break down in high dimensional

spaces.

LSA is in fact a form of principal component analysis. When viewed as a

probability model, the projection of a document into a lower dimensional seman-

tic space is, in effect, a latent variable representation for the document. The

equivalent quantity in PPCA is given by the expected value of the posterior distri-

bution over the hidden variables. This gives an intuitive view of what it means to

project a document or query vector into a lower dimensional space.

For a PPCA model with no noise in the observed variables x, we have seen

that an input vector x can be projected into a reduced dimensional random vector

z by computing the mean value of the posterior for the latent variables using

z5E½h�5 ðWTWÞ21WTx. Appendix A.2 details the relationships between PCA,

PPCA, the singular value decomposition and eigendecompositions, and shows

Uk Vk
T

t k k k k dt d

s2

s1

FIGURE 9.10

The singular value decomposition of a t by d matrix.

3779.6 Graphical Models and Factor Graphs

that for mean-centered data the U matrix in (9.3) equals the matrix of eigenvec-

tors Φ of the eigendecomposition of the corresponding covariance matrix of the

data, i.e. U5Φ. The diagonal matrix S in (9.3) is related to the diagonal matrix

of eigenvalues Λ by S5Λ
1
2. Furthermore, the eigendecomposition of the covari-

ance matrix implies that W5ΦΛ
1
2 in the corresponding PPCA. Thus, under the

probabilistic interpretation of principal component analysis with no noise for

observed variables,W5US. Using the fact that U is orthogonal and S is diagonal,

this means that computing a principal component analysis of mean-centered data

using the singular value decomposition and interpreting the result as a linear

Gaussian hidden variable model yields the following expression for projecting

results into the reduced dimensional space based on the mean of the posterior:

z5 ðWTWÞ21WTx

5 ðSUTUSÞ21SUTx

5 ðS2Þ21SUTx

5 S21UTx:

This is the same expression as the LSA projection in (9.3) to compute aq, the

semantic representation of a document, and it represents a general expression for

dimensionality reduction using principal component analysis. This means that prin-

cipal component analysis can be performed using the singular value decomposition

of the data matrix, or an eigendecomposition of the covariance matrix, the EM

algorithm, or even expected gradient descent. When working with large datasets or

data with missing values there are advantages and disadvantages to each method.

The input data X need not arise from documents: LSA is just a concrete exam-

ple of applying singular value decomposition to a real problem. Indeed, the gen-

eral idea of computing such projections is widely used across machine learning

and data mining. Because of the relationships discussed above the methods are

often discussed using different terminology, even when they refer to the same

underlying analysis.

PROBABILISTIC LSA

PPCA is based on continuous valued representations of data and an underlying

Gaussian model. In contrast, the pLSA approach, also known as an “aspect

model,” is based on a formulation using the multinomial distribution; it was origi-

nally applied to the cooccurrences of words and documents. The multinomial dis-

tribution is a natural distribution for modeling word occurrence counts. In the

pLSA framework one considers the index of each document as being encoded

using observations of discrete random variables di for i5 1,. . .,n documents. Each

variable di has n states, and over the document corpus there is one observation of

the variable for each state. Topics are represented with discrete variables zij, while

words are represented with random variables wij, where mi words are associated

378 CHAPTER 9 Probabilistic methods

with each document and each word is associated with a topic. There are two var-

iants: an asymmetric and a symmetric formulation.

Fig. 9.11A illustrates the asymmetric formulation; the symmetric formulation

reverses the arrow from d to z. D is a set of random variables for the document

index observations, and W is a set of random variables for all the words observed

across the documents. The asymmetric formulation corresponds to

PðW ;DÞ5 L
n

i51

PðdiÞL
mn

j51

X
zij

PðzijjdiÞPðwijjzijÞ:

Because d, an index over the training documents, is a random variable in the

graph, pLSA is not a generative model for new documents. However, it does cor-

respond to a valid probabilistic model with hidden variables, so the EM algorithm

can be used to estimate parameters and obtain a representation of each document

in a corpus in terms of its distribution over the topic variables.

LATENT DIRICHLET ALLOCATION

pLSA can be extended into a hierarchical Bayesian model with three levels,

known as latent Dirichlet allocation. We refer to this as LDAb (“b” for Bayesian)

j=1:mn

zij

wjj

di

i=1:n

(A)

j=1:mn

zij

(B)

wij

i=1:n

i

j=1:mn

zij

(C)

wij

i=1:n

i

FIGURE 9.11

Graphical models for (A) pLSA, (B) LDAb, and (C) smoothed LDAb.

3799.6 Graphical Models and Factor Graphs

to distinguish it from linear discriminant analysis which is commonly referred to

as LDA. LDAb was proposed in part to reduce the overfitting that has been

observed with pLSA, and has been extended in many ways. Extensions of LDAb

can be used to determine trends over time and identify “hot” and “cold” topics.

Such analyses are particularly interesting today, with the recent explosion of

social media and the interest in analyzing it.

Latent Dirichlet allocation is a hierarchical Bayesian model that reformu-

lates pLSA by replacing the document index variables di with the random

parameter θi, a vector of multinomial parameters for the documents. The distri-

bution of θi is influenced by a Dirichlet prior with hyperparameter α, which is

also a vector. (Appendix A.2 explains Dirichlet distributions and their use as

priors for the parameters of the discrete distribution.) Finally, the relationship

between the discrete topic variables zij and the words wij is also given an

explicit dependence on a hyperparameter, namely, the matrix B. Fig. 9.11B
shows the corresponding graphical model. The probability model for the set of

all observed words W is

PðWjα;BÞ5L
n

i51

ð
PðθijαÞ L

mn

j51

X
zij

PðzijjθiÞPðwijjzij;BÞ
" #

dθi

5L
n

i51

ð
PðθijαÞ L

mn

j51

Pðwijjθi;BÞ
" #

dθi;

which marginalizes out the uncertainty associated with each θi and zij. PðθijαÞ is
given by a k-dimensional Dirichlet distribution, which also leads to k-dimensional

topic variables zij. For a vocabulary of size V, Pðwijjzij;BÞ encodes the probability

of each word given each topic, and prior information is therefore captured by the

k3V dimensional matrix B.

The marginal log-likelihood of the model can be optimized using an empirical

Bayesian method by adjusting the hyperparameters α and B via the variational

EM procedure. To perform the E-step of EM, the posterior distribution over the

unobserved random quantities is needed. For the model defined by the above

equation, with a random θ for each document, word observations w, and hidden

topic variables z, the posterior distribution is

Pðθ; zjw;α;BÞ5 Pðθ; z;wjα;BÞ
Pðwjα;BÞ

which, unfortunately, is intractable. For the M-step it is necessary to update

hyperparameters α and B, which can be done by computing the maximum likeli-

hood estimates using the expected sufficient statistics from the E-step. The varia-

tional EM procedure amounts to computing and using a separate approximate

posterior for each θi and each zij.

A method called “collapsed Gibbs sampling” turns out to be a particularly

effective alternative to variational methods for performing LDAb. Consider first

that the model in Fig. 9.11B can be expanded to that shown in Fig. 9.11C,

380 CHAPTER 9 Probabilistic methods

which was originally cast as the smoothed version of LDAb. Then add another

Dirichlet prior with parameters given by Γ on the topic parameters of B, a for-

mulation that further reduces the effects of overfitting. Standard Gibbs sampling

involves iteratively sampling the hidden random variables zij, the θi’s and the

elements of matrix B. Collapsed Gibbs sampling is obtained by integrating out

the θi’s and B analytically, which deals with these distributions exactly.

Consequently, conditioned by the current estimates of Γ, α, and the observed

words of a document corpus, the Gibbs sampler proceeds by simply iteratively

updating each zij to compute the required approximate posterior. Using either

samples or variational approximations it is then relatively straightforward to

obtain estimates for the θi’s and B.

The overall approach of using a smoothed, collapsed LDAb model to extract

topics from a document collection can be summarized as follows: first define a

hierarchical Bayesian model for the joint distribution of documents and words fol-

lowing the structure of Fig. 9.11C. We could think of there being a Bayesian E-
step that performs approximate inference using Gibbs’ sampling to sample from

the joint posterior over all topics for all documents in the model, or

Pðzijjwij;Γ;αÞ, where the θi’s and B have been integrated out. This is followed by

an M-step that uses these samples to update the estimates of the θi’s and B, using

update equations that are functions of Γ, α, and the samples. This procedure is

performed within a hierarchical Bayesian model, so the updated parameters can

be used to create a Bayesian predictive distribution over new words and new

topics given the observed words.

Table 9.1 shows the highest probability words from a sampling of topics

mined by Griffiths and Steyvers (2004) through applying LDAb to 28,154

abstracts of papers published in the Proceedings of the National Academy of

Science from 1991 to 2001 and tagged by authors with subcategory information.

Analyzing the distribution over these tags identifies the highest probability user

tags for each topic, which are shown at the bottom of Table 9.1. Note that the

user tags were not used to create the topics, but we can see how well the extracted

topics match with human labels.

Table 9.1 Highest Probability Words and User Tags From a Sample of Topics
Extracted From a Collection of Scientific Articles

Topic 2 Topic 39 Topic 102 Topic 201 Topic 210

Species Theory Tumor Resistance Synaptic
Global Time Cancer Resistant Neurons
Climate Space Tumors Drug Postsynaptic
Co2 Given Human Drugs Hippocampal
Water Problem Cells Sensitive Synapses
Geophysics,
geology, ecology

Physics, math,
applied math

Medical
sciences

Pharmacology Neurobiology

3819.6 Graphical Models and Factor Graphs

FACTOR GRAPHS

Bayesian networks are a special kind of probability model that factorize a joint

probability distribution into the product of conditional and unconditional distribu-

tions. Factor graphs provide an even more general framework for representing

general functions by factoring them into the product of local functions, each of

which acts on a subset of the full argument set:

Fðx1; . . .; xnÞ5 L
S

j51

fjðXjÞ;

where Xj is a subset of the original set of arguments {x1,. . .,xn}, fj(Xj) is a function

of Xj, and j5 1,. . .,S enumerates the argument subsets. A factor graph consists of

variable nodes—circles—for each variable xk and factor nodes—rectangles—for

each function, with edges that connect each factor node to its variables.

Fig. 9.12A and B shows a Bayesian network and its factor graph correspond-

ing to the factorization

Fðx1; . . .; x5Þ5 fAðx1ÞfBðx2ÞfCðx3; x1ÞfDðx4; x1; x2ÞfEðx5; x2Þ
5Pðx1ÞPðx2ÞPðx3jx1ÞPðx4jx1; x2ÞPðx5jx2Þ:

Factor graphs make concepts such as the Markov blanket for a given variable

in a Bayesian network easy to identify. For example, Fig. 9.13 shows the Markov

blanket for variable x6 in a factor graph that corresponds to the Bayesian network

in Fig. 9.3: it consists of all nodes that are connected to it through a factor. Factor

graphs are more powerful than Bayesian networks because they can represent a

wider class of factorizations and models. These include Markov random fields,

which we will meet shortly.

Factor graphs, Bayesian networks, and the logistic regression model
It is instructive to compare the factor graph for a naı̈vely constructed Bayesian

model with the factor graph for a Naı̈ve Bayes model of the same set of variables

(and, later, with the factor graph for a logistic regression formulation of the same

x2 x1

x3 x4 x5

x2 x1

x3 x4 x5

x2x1

(A) (B)

fA fB

fC

fD

fE

FIGURE 9.12

(A) Bayesian network and (B) corresponding factor graph.

382 CHAPTER 9 Probabilistic methods

problem). Fig. 9.14A and B shows the Bayesian network and its factor graph for

a network with a child node y that has several parents xi, i5 1,. . .,n. Fig. 9.14B
involves a large conditional probability table for Pðyjx1; . . .; xnÞ, with many para-

meters that must be estimated or specified, because in

Pðy; x1; . . .; xnÞ5Pðyjx1; . . .; xnÞL
n

i21

PðxiÞ

the number of parameters increases exponentially with the number of parent vari-

ables. In contrast, Fig. 9.14C and D shows the Bayesian network and its factor

graph for the Naı̈ve Bayes model. Here the number of parameters is linear in the

number of children because the model breaks down into the product of functions

involving y and just one xi, because the underlying factorization is

Pðy; x1; . . .; xnÞ5PðyÞL
n

i21

PðxijyÞ:

The factor graphs show the different complexities very clearly. The graph in

Fig. 9.14B has a factor involving n1 1 variables, while the factors in Fig. 9.14D

involve no more than two variables.

Factor graphs can be extended to clarify an important distinction for condi-

tional models. The Bayesian network of Fig. 9.15A involves a large table for the

conditional distribution of y given many xi’s, but a logistic regression model could

be used to reduce the number of parameters for Pðyjx1; . . .; xnÞ from exponential

to linear, depicted in Fig. 9.15B.

x6 x5 x7

x1

x9 x8 x10

x3 x2 x4

FIGURE 9.13

The Markov blanket for variable x6 in a 10-variable factor graph.

3839.6 Graphical Models and Factor Graphs

Let us assume that all variables are binary. Given a separate function fi(y,xi)

for each binary variable xi, the conditional distribution defined by a logistic

regression model has the form

Pðyjx1; . . .; xnÞ5 1

Zðx1; . . .; xnÞ
exp

Xn
i51

wifiðy; xiÞ
 !

5
1

Zðx1; . . .; xnÞ
L
n

i51

φiðxi; yÞ:

where the denominator Z is a data-dependent normalization term that makes the

conditional distribution sum to 1, and φiðxi; yÞ5 expðwifiðy; xiÞÞ. This corresponds

x2 x1

y

(C) (D)xn… x2 x1

y

xn…

x2 x1

y

(A) (B)xn… x2 x1

y

xn…

y

x2x1

y

xn…

FIGURE 9.14

(A) and (B) Bayesian network and corresponding factor graph; (C) and (D) Naı̈ve Bayes

model and corresponding factor graph.

x2 x1

y(A) (B)

xn…

a2

x2 x1 xn…

a2

FIGURE 9.15

(A) Bayesian network representing the joint distribution of y and its parents; (B) factor

graph for a logistic regression for the conditional distribution of y given its parents.

384 CHAPTER 9 Probabilistic methods

to a factor graph that resembles the Naı̈ve Bayes model, but with the factorized

conditional distribution shown in Fig. 9.15B. Here, curved rectangles represent

variables that are not explicitly defined as random variables. This graph represents

the conditional probability function Pðyjx1; . . .; xnÞ, and the number of parameters

scales linearly because each function is connected to just a pair of variables.

MARKOV RANDOM FIELDS

Markov random fields define another factorized model for a set of random vari-

ables X, where these variables are divided into so-called “cliques” Xc and a factor

Ψc(Xc) is defined for each clique:

PðXÞ5 1

Z
L
C

c51

ΨcðXcÞ;

A clique is a group of nodes in an undirected graph that all connect to every

other node in the clique. Z, known as the partition function, normalizes the model

to ensure that it is a probability distribution, and consists of a sum over all possi-

ble values for all variables in the model. It could be written

Z5
X
xAX

L
C

c51

ΨcðXcÞ:

Fig. 9.16A and B shows an undirected graph corresponding to a Markov ran-

dom field, and its factor graph. Again the factor graph makes explicit the nature

of the underlying functions used to create the model. For example, it shows that

functions are associated with each node, which is not clear from the undirected

graph notation. The Markov random field structure in Fig. 9.16 has been widely

used for images: this general structure is typically repeated over an entire image,

with each node representing a property of a pixel—e.g., a label, or its depth.

x2 x1

x4 x3

x2 x1

x4 x3

(A) (B)

y2 y1

y4 y3

x2x1

x4 x3

y2

y

y2 y1

y4 y3

FIGURE 9.16

(A) Undirected graph representing a Markov random field structure; (B) corresponding

factor graph.

3859.6 Graphical Models and Factor Graphs

Fig. 9.16 factorizes the joint probability for four variables as follows:

Pðx1; x2; x3; x4Þ5 1

Z
fAðx1ÞfBðx2ÞfCðx1ÞfDðx2ÞfEðx1; x2ÞfFðx2; x3ÞfGðx3; x4ÞfHðx4; x1Þ

5
1

Z
L
U

u51

φuðXuÞL
V

v51

ΨvðXvÞ;

where φuðXuÞ5φuðxiÞ represents a set of unary functions of just one variable,

while ΨvðXvÞ5Ψvðxi; xjÞ represents a set of pairwise functions of two variables.

Subscripts u and v index both the functions and the sets of single variables

Xu5 fxigu and variable pairs Xv 5 fxi; xjgv that serve as their arguments.

This representation can equivalently be expressed using an energy function

F(X) of this form:

FðXÞ5
XU
u51

UðXuÞ1
XV
v51

VðXvÞ:

Then a Markov random field can be written

PðXÞ5 1

Z
expð2FðXÞÞ5 1

Z
exp 2

XU
u51

UðXuÞ2
XV
v51

VðXvÞ
 !

:

Since Z is constant for any assignment of the variables X, the negative log

probability under the model can be written

2 log Pðx1; x2; x3; x4Þ5 2 log LU

u51
φuðXuÞLV

V51
ψV ðXV Þ

h i
2 log Z

α
PU

u51 UðXuÞ1
PV

V51 VðXV Þ;
This leads to the commonly used strategy of minimizing an energy function in

this form to perform tasks such as image segmentation and entity resolution in

text documents. When such minimization tasks are “submodular,” a term that

denotes a particular category of optimization problems, an exact minimum can be

found using algorithms based on graph-cuts; otherwise methods such as tree-

reweighted message passing are used.

COMPUTING USING THE SUM-PRODUCT AND MAX-PRODUCT
ALGORITHMS

Key quantities of interest for any probability model are the marginal probabilities

and the most probable explanation of the model. For tree-structured graphical

models, exact solutions for these can be found efficiently by the sum-product and

max-product algorithms. When applied to the hidden Markov models discussed in

Section 9.8, these are known as the forwards-backwards and Viterbi algorithms,

respectively. We begin with some simple examples for motivation, and then pres-

ent the algorithms themselves.

386 CHAPTER 9 Probabilistic methods

Marginal probabilities
Given a Bayesian network, an initial step is to determine the marginal probability

of each node given no observations whatsoever. These single node marginals dif-

fer from the conditional and unconditional probabilities that were used to specify

the network. Indeed, software packages for manipulating Bayesian networks often

take the definition of a network in terms of the underlying conditional and uncon-

ditional probabilities and show the user the single node marginals for each node

in a visual interface. The marginal for variable xi is

PðxiÞ5
X
xj6¼i

Pðx1; . . .; xnÞ;

where the sum is over the states of all variables xj 6¼xi, and can be computed by

the sum-product algorithm. In fact, the same algorithm serves in many other situa-

tions, such as when some variables are observed and we wish to compute the

belief of others, and also for finding the posterior distributions needed for

learning—e.g., using the EM algorithm.

Consider the task of computing the marginal probability of variable x3 given

the observation x4 5 ~x4 from the Bayesian network in Fig. 9.12A. Since we are

conditioning on a variable, we need to compute a marginal conditional probabil-

ity. This corresponds to the practical notion of posing a query, where the model is

used to infer an updated belief about x3 given the state of variable x4.

Since other variables in the graph have not been observed, they should be inte-

grated out of the graphical model to obtain the desired result:

Pðx3j ~x4Þ5
Pðx3; ~x4Þ
Pð ~x4Þ

5
Pðx3; ~x4ÞP
x3
ðx3; ~x4Þ

;

Here the key probability of interest is

Pðx3; ~x4Þ5
X
x1

X
x2

X
x5

Pðx1; x2; x3; ~x4; x5Þ

5
X
x1

X
x2

X
x5

Pðx1ÞPðx2ÞPðx3jx1ÞPð ~x4jx1; x2ÞPðx5jx2Þ:

However, this sum involves a large data structure containing the joint proba-

bility, composed of the products over the individual probabilities. The sum-

product algorithm refers to a much better solution: simply push the sums as far

as possible to the right before computing products of probabilities. Here, the

required marginalization can be computed by

Pðx3; ~x4Þ5
X
x1

Pðx3jx1ÞPðx1Þ
X
x2

Pð ~x4jx1; x2ÞPðx2Þ
X
x5

Pðx5jx2Þ

5
X
x1

Pðx3jx1ÞPðx1ÞPð ~x4jx1Þ

5
X
x1

Pðx1; x3; ~x4Þ:

3879.6 Graphical Models and Factor Graphs

The sum-product algorithm
The approach illustrated by this simple example can be generalized into an algo-

rithm for computing marginals that can be transformed into conditional marginals

if desired. Conceptually, it is based on sending messages between the variables

and functions defined by a factor graph.

Begin with variable or function nodes that have only one connection. Function

nodes send the message μf-xðxÞ5 f ðxÞ to the variable connected to them, while

variable nodes send μx-f ðxÞ5 1. Each node waits until it has received a message

from all neighbors except the one it sent its message to. Then function nodes send

messages of the following form to variable x:

μf-xðxÞ5
X

x1 ;...;xK

f ðx; x1; . . .; xK Þ L
kANðf Þ x

μxk-f ðxkÞ;

where N(f)\x represents the set of the function node f’s neighbors, excluding the

recipient variable x; we write these variables of the K other neighboring nodes as

x1,. . .,xK. If a variable is observed, messages for functions involving it no longer

need a sum over the states of the variable, the function is evaluated with the

observed state. One could think of the associated variable node as being trans-

formed into the new modified function. There is then no variable to function mes-

sage for the observed variable.

Variable nodes send messages of this form to functions:

μx-f ðxÞ5μf1-xðxÞ. . .μfK-xðxÞ5 L
kANðxÞ f

μfk-xðxÞ;

where the product is over the messages from all neighboring functions N(x) other

than the recipient function f; i.e., fkANðxÞ f . When the algorithm terminates, the

marginal probability of each node is the product over all incoming messages from

all functions connected to the variable:

PðxiÞ5μf1-xðxÞ. . .μfK-xðxÞμfK11-xðxÞ5 L
K11

k51

μfk-xðxÞ;

This is written as a product over K1 1 function messages to emphasize its simi-

larity to the variable-to-function-node messages. After sending a message to any

given function f consisting of the product of K messages, the variable simply needs

to receive one more incoming message back from f to compute its marginal.

If some of the variables in the graph are observed, the algorithm yields the

marginal probability of each variable and the observations. The marginal condi-

tional distribution for each variable can be obtained by normalizing the result by

the probability of the observation, obtainable from any node by summing over xi
in the resulting distributions, which have the form Pðxi; f ~xjAOgÞ where O is the set

of indices of the observed variables.

As is often the case with probability models, multiplying many probabilities

quickly leads to very small numbers. The sum-product algorithm is often imple-

mented with rescaling. Alternatively, the computations can be performed in log

388 CHAPTER 9 Probabilistic methods

space (as they are in the max-product algorithm; see below), leading to computa-

tions of the form c5 logðexpðaÞ1 expðbÞÞ. To help prevent loss of precision when

computing the exponents, note that

c5 logðea 1 ebÞ5 a1 logð11 eb2aÞ5 b1 logð11 ea2bÞ;
and pick the expression with the smaller exponent.

Sum-product algorithm example
The idea behind the sum-product algorithm is to push sums as far to the right

as possible, and this is done efficiently for all variables simultaneously. When

the algorithm is used to compute Pðx3; ~x4Þ from the Bayesian network in

Fig. 9.12A and the corresponding factor graph in Fig. 9.17, the key messages

involved are:

Pðx3; ~x4Þ5
X
x1

Pðx3jx1Þ Pðx1Þ|ffl{zffl}
1d

X
x2

Pð ~x4jx1; x2Þ Pðx2Þ|ffl{zffl}
1c

X
x5

Pðx5jx2Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
2a|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

3a|ffl{zffl}
4a|ffl{zffl}

5a|ffl{zffl}
6a

� 1|{z}
1a

These numbered messages can be written

1a: μx5-fE
ðx5Þ5 1; 1c :μfB-x2

ðx2Þ5 fBðx2Þ; 1d:μfA-x1
ðx1Þ5 fAðx1Þ

2a: μfE-x2
ðx2Þ5

P
x5
fEðx5; x2Þ

3a: μx2-fD
ðx5Þ5μfB-x2

ðx2ÞμfE-x2
ðx2Þ

4a: μfD-x1
ðx1Þ5

P
x2
fDð ~x4jx1; x2Þμx2-fD

ðx5Þ
5a: μx1-fC

ðx1Þ5μfA-x1
ðx1ÞμfD-x1

ðx1Þ
6a: μfC-x3

ðx3Þ5
P

x1
fCðx3; x1Þμx1-fC

ðx1Þ

x2 x1 x3

x4

x5

fA
fB

fC fD fE

x2x1

fCff fDff fEff
1d 1c

1a

1b

2a

2b 3b

3a

4b

4a

5b 6b

5c

5a 6a

5d

FIGURE 9.17

Message sequence in an example factor graph.

3899.6 Graphical Models and Factor Graphs

Keep in mind that the complete algorithm will yield all single-variable mar-

ginals in the graph using the other messages shown in Fig. 9.17, but not enumer-

ated above. This simple example is based on a Bayesian network, which

transforms into a chain-structured factor graph when ~x4 is observed, and the mes-

sage passing structure resembles the computations used for the hidden Markov

models and conditional random fields discussed below. For long chains or large

tree-structured networks, such computations are essential for computing the nec-

essary quantities efficiently, without recourse to approximate methods.

Most probable explanation example
Finding the most probable configuration of all other variables in our example

given x45 ~x4 involves searching for

x
�
1; x

�
2; x

�
3; x

�
5

� �
5 arg max

x1;x2;x3 ;x5

Pðx1; x2; x3; x5j ~x4Þ;

for which

Pðx�
1; x

�
2; x

�
3; x

�
5j ~x4Þ5 max

x1;x2 ;x3;x5
Pðx1; x2; x3; x5j ~x4Þ:

The joint probability is related to the conditional by a constant, so one could

equally well find the maximum of Pðx1; x2; x3; ~x4; x5Þ. Because max behaves in a

similar way to sum, we can take a tip from the sum-product and push the max opera-

tions as far to the right as possible, noting that maxðab; acÞ5 a maxðb; cÞ. Here,
max
x1

max
x2

max
x3

max
x5

Pðx1; x2; x3; ~x4; x5Þ
5max

x3
max
x1

Pðx1ÞPðx3jx1Þ max
x2

Pðx2ÞPð ~x4jx1; x2Þ max
x5

Pðx5jx2Þ:

Consider the max over x5 at the far right, which seeks the greatest probability

among the possible states of x5 for each of the possible states of x2. This involves

creating a table giving the maximum values of x5 for each configuration of x2.

The next operation to the left, the max over x2, involves multiplying the current

maximum values in the table for x2 by the corresponding probabilities for

Pðx2ÞPð ~x4jx1; x2Þ. We thus need to find the maximum for each state of x2 for each

state of x1, which can be modeled by producing a message over the states of x1
with the greatest values obtained for each possible state based on all information

propagated so far from the right.

This process continues until eventually we have a final max over x3. This

gives a single value, the probability of the most probable explanation, which cor-

responds to the entry in the data structure with scores for each state of x3. By

changing which variable is used to compute the final max, we can extract it from

any variable, because this will lead to the same maximum value. However, taking

the arg max for each variable will yield the desired most probable explanation

x
�
1; x

�
2; x

�
3; x

�
5—the configuration of all variables which has the greatest probability.

Generalizing these ideas and performing them efficiently leads to the max-

product algorithm, a general template for performing such computations exactly

in arbitrary tree-structured graphs.

390 CHAPTER 9 Probabilistic methods

The max-product or max-sum algorithm
The max-product algorithm can be used to find the most probable explanation

in a tree-structured probability model. It is generally implemented in logarith-

mic space to alleviate problems with numerical stability, where it is better char-

acterized as the max-sum algorithm. Since the log function increases

monotonically, logðmaxx pðxÞÞ5 maxx log pðxÞ, and, as mentioned above,

maxðc1 a; c1 bÞ5 c1maxða; bÞ. These properties allow the maximum proba-

bility configuration in a tree-structured probability model to be computed as

follows.

As in the sum-product algorithm, variables or factors that have only one con-

nection in the graph begin by sending either a function-to-variable message con-

sisting of μx-f ðxÞ5 0, or a variable-to-function message consisting of

μf-xðxÞ5 log f ðxÞ. Each function and variable node in the graph waits until it has

received a message from all neighbors other than the node that will receive its

message. Then function nodes send messages of the following form to variable x

μf-xðxÞ5 max
x1 ;...;xK

log f ðx; x1; . . .; xKÞ1
X

kANðf Þ x
μxk-f ðxkÞ

" #
;

where the notation N(f)\x is the same as for the sum-product algorithm above.

Likewise, variables send messages of this form to functions:

μx-f ðxÞ5
X

kANðxÞ f
μfk-xðxÞ;

where the sum is over the messages from all functions other than the recipient

function. When the algorithm terminates, the probability of the most probable

configuration can be extracted from any node using

p� 5 max
x

X
kANðxÞ

μfk-xðxÞ
" #

:

The most probable configuration itself can be obtained by applying this com-

putation to each variable:

x� 5 arg max
x

X
kANðxÞ

μfk-xðxÞ
" #

:

To understand how this works for a concrete example, follow the sequence of

messages illustrated in Fig. 9.17, but use the max-product messages defined above

and the final computations for the max and arg max in place of the sum-product

messages we examined earlier.

The max-product algorithm is widely used to make final predictions for tree-

structured Bayesian networks, as well as for sequences of labels in conditional

random fields and hidden Markov models, discussed in Sections 9.7 and 9.8,

respectively.

3919.6 Graphical Models and Factor Graphs

9.7 CONDITIONAL PROBABILITY MODELS
You may be surprised to learn that the regression models of Section 4.6 corre-

spond to the simplest and most popular types of conditional probability model.

The Linear and Polynomial Regression as Probability Models section views

linear regression through the lens of probability, and we go on to examine the

multiclass extension to logistic regression, expressing this in both scalar and

matrix-vector forms. The leap to the matrix-vector form reveals that key

aspects of modeling and learning can be expressed in compact and elegant

ways. This allows computer implementations to be accelerated by using

libraries—or hardware—for matrix-vector manipulation, which are highly opti-

mized and exploit modern computing hardware. Graphics processing units

(GPUs) can yield execution speeds that are orders of magnitude faster than

standard implementations.

LINEAR AND POLYNOMIAL REGRESSION AS PROBABILITY MODELS

Suppose the conditional probability distribution for the observations of a con-

tinuous variable yi given observations of another variable xi is a linear

Gaussian:

pðyijxiÞ5 1ffiffiffiffiffiffi
2π

p
σ
exp 2

fyi2ðθ01θ1xiÞg2
2σ2

� �
;

where the parameters θ0 and θ1 represent the slope and intercept. The conditional

distribution for the observed yi’s given the corresponding observed xi’s can be

defined as

pðy1; . . .; yN jx1; . . .; xN Þ5 L
N

i51

pðyijxiÞ:

As usual, we work with the log-likelihood instead:

Lyjx 5 logL
N

i51

pðyijxiÞ5
XN
i51

log pðyijxiÞ:

This simplifies to

Lyjx 5
XN
i51

log
1

σ
ffiffiffiffiffiffi
2π

p exp 2
fyi2ðθ01θ1xiÞg2

2σ2

2
4

3
5

8<
:

9=
;

52N log σ
ffiffiffiffiffiffi
2π

ph i
2
XN
i51

fyi2ðθ01θ1xiÞg2
2σ2

:

392 CHAPTER 9 Probabilistic methods

The first term is independent of the data. Thus to find the parameters that

maximize the log-likelihood, it suffices to find the parameters that minimize the

squared error:

arg max
θ0;θ1

ðLyjxÞ5 arg min
θ0;θ1

XN
i51

fyi2ðθ01θ1xiÞg2
 !

:

This is ordinary linear regression!

Although xi is a scalar here, the method generalizes to a vector xi. Categorical
variables can be encoded into a subset of the dimensions of x using the so-called

“one-hot” method, placing a 1 in the dimension corresponding to the category

label and 0s in all other dimensions allocated to the variable. If all input variables

are categorical, this corresponds to the classic analysis of variance (ANOVA)

method.

USING PRIORS ON PARAMETERS

Placing a Gaussian prior on the parameters w leads to the method of ridge regres-

sion (Section 7.2)— also called “weight decay.” Consider a regression that uses a

D-dimensional vector x to make predictions. The regression’s bias term can be

represented by defining the first dimension of x as the constant 1 for every exam-

ple. Defining ½θ1. . .θD�5wT and using the usual Nðx;μ;σÞ notation for scalar

Gaussians, the underlying probability model is

LN

i51
pðyijxi; θÞpðθ; τÞ5 LN

i51
Nðyi;wTxi; σ2Þ

h i
LD

d51
Nðwd; 0; τ2Þ

h i
;

where τ is the hyperparameter specifying the prior. Setting λ � σ2=τ2, it is pos-
sible to show that maximum a posteriori parameter estimation based on the log

conditional likelihood is equivalent to minimizing the squared error loss

function

FðwÞ5
XN
i51

fyi2wTxig2 1λwTw; (9.4)

which includes an L2-based regularization term given by RL2 ðwÞ5wTw5 jjwjj22.
(“Regularization” is another term for overfitting avoidance.)

Using a Laplace prior for the distribution over weights and taking the log of

the likelihood function yields an L1-based regularization term RL1 ðwÞ5 jjwjj1. To
see why, note that the Laplace distribution has the form

Pðw;μ; bÞ5 Lðw;μ; bÞ5 1

2b
exp 2

jw2μj
b

� �
;

where μ and b are parameters. Modeling the prior probability for each weight by

a Laplace distribution with μj 5 0 yields

3939.7 Conditional Probability Models

2log L
D

d51

Lðwd; 0; bÞ
" #

5 logð2bÞ1 1

b

XD
d51

jwdj~ jjwjj1:

Since the Laplace distribution places more probability at zero than the

Gaussian distribution does, it can provide both regularization and variable selec-

tion in regression problems. This technique has been popularized as a regression

approach known as the LASSO, “Least Absolute Shrinkage and Selection

Operator.”

An alternative approach known as the “elastic net” combines L1 and L2 regu-

larization techniques using

λ1RL1 ðθÞ1λ2RL2 ðθÞ5λ1jjwjj1 1λ2jjwjj22:

This corresponds to a prior distribution that consist of the product of a

Gaussian and a Laplacian distribution. The result leads to convex optimization

problems—i.e., problems where any local minimum must be a global minimum—

if the loss is convex, which applies to models like logistic or linear regression.

Matrix vector formulations of linear and polynomial regression
This section formulates linear regression using matrix operations. Observe that

the loss in (9.4)—without the penalty term—can be written

XN
i51

fyi2ðθ01θ1x1i1θ2x2i1. . .1θDxDiÞg2

5
y1
^
yN

2
4

3
52 1 x11 x21 xD1

^ ^ ^ ? ^
1 x1N x2N xDN

2
4

3
5 θ0

^
θD

2
4

3
5

0
@

1
AT

y1
^
yN

2
4

3
52 1 x11 x21 xD1

^ ^ ^ ? ^
1 x1N x2N xDN

2
4

3
5 θ0

^
θD

2
4

3
5

0
@

1
A

5 ðy2AwÞT ðy2AwÞ:

where the vector y is just the individual yi’s stacked up, and w is the vector of

parameters (or weights) for the model. Taking the partial derivative with respect

to w and setting the result to zero yields a closed form expression for the

parameters:

@

@w
ðy2AwÞT ðy2AwÞ5 0

.ATAw5ATy

w5 ðATAÞ21ATy:

(9.5)

These are famous equations. ATAw5ATy is known as the normal equations,

and the quantity A15 ðATAÞ21AT is known as the pseudoinverse. Note that

ATA is not always invertible, but this problem can be addressed using

regularization.

For ridge regression, a prior is added to make the objective function

394 CHAPTER 9 Probabilistic methods

FðwÞ5 ðy2AwÞT ðy2AwÞ1λwTw; (9.6)

for a suitably defined matrix A with vectors xi in the rows, and λ as defined

above. Again, setting the partial derivative of F(w) to zero yields a closed form

solution:

@

@w
FðwÞ5 0

.ATAw1λw5ATy
w5 ðATA1λIÞ21ATy:

This modification to the pseudoinverse equation allows solutions to be found

that would otherwise not exist, often using a very small λ. It is often presented as

a regularization method that avoids numerical instability, but the analysis in terms

of a prior on parameters gives more insight. For example, it may be appropriate

to use Gaussian priors of different strengths for different terms. In fact, it is com-

mon practice to impose no penalty at all on the bias weight. This could be imple-

mented by replacing the λwTw term in (9.6) by wTDw, where D is a diagonal

matrix containing the λi’s to be used for each weight, transforming the solution

into w5 ðATA1DÞ21ATy. While the above expression for the partial derivative

is fairly simple, care must still be taken during implementation to avoid numeri-

cally instable results.

The linear regression model can be transformed into a nonlinear polynomial

model. Although the polynomial regression model yields nonlinear predictions,

the estimation problem is linear in the parameters. To see this, express the prob-

lem in matrix form, using a suitably defined matrix A to encode the polynomial’s

higher order terms and a vector c to encode the coefficients, including those used

for the higher order terms:

XN
i51

fyi2ðθ01θ1xi1θ2x2i1?1θKxKi Þg2

5
y1
^
yN

2
4

3
52 1 x1 x21 xK1

^ ^ ^ ? ^
1 xN x2N xKN

2
4

3
5 θ0

^
θK

2
4

3
5

0
@

1
AT

y1
^
yN

2
4

3
52 1 x1 x21 xK1

^ ^ ^ ? ^
1 xN x2N xKN

2
4

3
5 θ0

^
θK

2
4

3
5

0
@

1
A

5 ðy2AcÞT ðy2AcÞ:
Eq. (9.5) can be used to solve for the parameters in closed form.

This trick of transforming a linear prediction method into a nonlinear one

while keeping the underlying estimation problem linear can be generalized. The

general approach goes by the name of basis function expansion. For polynomial

regression, the polynomial basis given by the rows of the matrix A (the powers

of x) is used. However, any nonlinear function of the inputs φðxÞ could be used to

define models of the form

pðyjxÞ5Nðy;wTφðxÞ;σ2Þ;
which also give closed form solutions for a linear parameter estimation problem.

We will return to this when discussing kernelizing probabilistic models below.

3959.7 Conditional Probability Models

MULTICLASS LOGISTIC REGRESSION

Binary logistic regression was introduced in Section 4.6. Consider now a multi-

class classification problem where class values are encoded as instances of the

random variable yAf1; . . .;Ng, and, as before, feature vectors are instances of a

variable x. Assume there is no significance to the order of the classes.

A simple linear probabilistic classifier can be created using this parametric

form:

pðyjxÞ5 exp
PK

k51 wkfkðy; xÞ
� �P

y exp
PK

k51 wkfkðy; xÞ
� � 5 1

ZðxÞ exp
XK
k51

wkfkðy; xÞ
 !

; (9.7)

which employs K feature functions fk(y,x) and K weights, wk as the parameters

of the model. This is one way of formulating multinomial logistic regression.

The feature functions could encode complex features extracted from the input

vector x. To perform learning using maximum conditional likelihood and obser-

vations that are instances of y and x, f ~y1; . . .; ~yN ; ~x1; . . .; ~xNg, write the objective

function as

Lyjx 5 logL
N

i51

pð ~yij~xiÞ5
XN
i51

log pð ~yij~xiÞ:

Unfortunately there is no closed form solution for the parameter values that

maximize this conditional likelihood, and optimization is usually performed

using a gradient based procedure. On taking the partial derivative with respect

to one of the weights of the log conditional probability for just one observation

we have

@

@wj

pð ~yj~xÞ 5
@

@wj

log
1

Zð~xÞ exp
XK
k51

wkfkð ~y; ~xÞ
 !0

@
1
A

8<
:

9=
;

5
@

@wj

XK
k51

wkfkð ~y; ~xÞ|fflfflfflfflffl{zfflfflfflfflffl}
easy part

2
6664

3
77752 log Zð~xÞ|fflfflfflffl{zfflfflfflffl}

cool part

8>>><
>>>:

9>>>=
>>>;

5 fk5jð ~y; ~xÞ2
@

@wj

X
y

exp
XK
k51

wkfkðy; ~xÞ
 !()

:

The derivative breaks apart into two terms. The first is easy because all terms

involving weights where wk 6¼ wj are 0, leaving the sum with just one term. The

second, while seemingly daunting, has a derivative that yields an intuitive and

interpretable result:

396 CHAPTER 9 Probabilistic methods

@

@wj

2 log Zð~xÞ52
@

@wj

X
y

exp
XK
k51

wkfkðy; ~xÞ
 !()

52

P
y exp

PK
k51 wkfkðy; ~xÞ

� �
fjðy; ~xÞP

y exp
PK

k51 wkfkðy; ~xÞ
� �

52
X
y

pðyj~xÞfjðy; ~xÞ52E½fjðy; ~xÞ�
pðy ~xÞ;
		

which corresponds to the expectation E½:�
Pðyj~xÞ of the feature function fjðyj~xÞ under

the probability distribution pðyj~xÞ given by the model with the current parameter

settings. Write the feature functions as a function fð ~yj~xÞ in vector form. Then for

a vector of weights w, the partial derivative of the conditional log-likelihood for

the entire dataset with respect to w is

@

@w
Lyjx 5

XN
i51

½fð ~yij~xiÞ2E½fðyij~xiÞ�Pðyij~xiÞ�:

This consists of the sum of the differences between the observed feature vec-

tor for a given example and the expected value of the feature vector under the

current model settings. If the model were perfect, classifying each example cor-

rectly with probability 1, the partial derivative would be zero. Intuitively, the

learning procedure adjusts the model parameters so as to produce predictions that

are closer to the observed data.

Matrix vector formulation of multiclass logistic regression
The model in (9.7) for a multiclass linear probabilistic classifier using vectors wc

for the weights associated with each class can be written

pðy5 cjxÞ5 expðwT
c xÞP

y expðwT
y xÞ

;

where y is an index, the weights are encoded into a vector of length K, and the

features x have been re-defined as the result of evaluating the feature functions

fk(y,x) in such a way that there is no difference between the features given by

fk(y5 i,x) and fk(y5 j,x). This form is widely used for the last layer in neural net-

work models, where it is referred to as the softmax function.

The information concerning class labels can be encoded into a multinomial

vector y, which is all 0s except for a single 1 in the dimension that represents the

correct class label—e.g., y5 0 1 0 . . . 0 �T�
for the second class. The

weights form a matrix W5 w1 w2 . . . wK �T�
, and the biases form a vector

b5 b1 b2 . . . bK �T�
. Then the model yields vectors of probabilities

3979.7 Conditional Probability Models

pðyjxÞ5 expðyTWTx1 yTbÞP
yAY expðyTWTx1 yTbÞ ;

where the denominator sums over each possible label yAY , which is

Y 5 f 1 0 0 . . . 0 �T ; 0 1 0 . . . 0 �T ; . . .; 0 0 0 . . . 1 �Tg���
. Re-

defining x as x5 [xT 1]T and the parameters as a matrix of the form

θ5 ½W b�5
wT

1 b1
wT

2 b2
^ ^
wT

k bk

2
664

3
775;

the conditional model can be written in this compact matrix-vector form:

pðyjxÞ5 expðyTθxÞP
yAY expðyTθxÞ

5
1

ZðxÞ expðy
TθxÞ:

Then the gradient of the log-conditional-likelihood with respect to the parame-

ter matrix θ can be expressed as

@

@θ
logL

i

pð~yij~xi; θÞ 5
XN
i51

@

@θ
ð~yTi θ~xiÞ2

@

@θ
log Zð~xiÞ

2
4

3
5

5
XN
i51

~yi ~x
T
i 2

XN
i51

X
yAY

Pðyj~xiÞy~xTi

5
XN
i51

~yi ~x
T
i 2

XN
i51

E½y~xTi �Pðyj~xiÞ;

where the notation E½y~xTi �Pðyj~xiÞ denotes the expectation of the random vector y

under Pðyj~xiÞ, the vector of conditional probabilities that the model yields for the

observed input ~xi under the current parameter settings. The first term corresponds

to a matrix that is computed just once, when the procedure commences. The sec-

ond corresponds to a matrix that approaches the first term more closely as the

model learns to make predictions that match the observed data.

Formulating these equations as vector and matrix operations allows highly

optimized numerical libraries to be applied. Fast libraries for vector and matrix

operations are key facilitators of big data techniques. In particular, state-of-the-art

methods for deep learning with large datasets rely heavily on the dramatic perfor-

mance improvements enabled by GPUs.

Note that we have not taken account of the fact that the final prediction need

only yield probabilities for N�1 of the N classes, the remaining one being

inferred from the fact that they must all sum to 1. Multinomial logistic regression

models can be formulated that exploit this fact and involve fewer parameters.

Priors on parameters, and the regularized loss function
Logistic regression is frequently performed with some regularizer or prior on the

parameters to combat overfitting. From a probabilistic perspective, this means

398 CHAPTER 9 Probabilistic methods

that the conditional probability for the set of all labels Y given the set of all input

vectors X can be rewritten

pðY ; θjXÞ5 pðθ;σÞL
N

i51

pðyijxi; θÞ;

where pðθ;σÞ is a prior distribution for the parameters. Given observed data ~Y ; ~X,
finding the value of θ that maximizes this expression is an instance of maximum

a posteriori parameter estimation with a conditional probability model. The goal,

then, is to minimize

2log pð ~Y ; θj ~XÞ52
XN
i51

log pð ~yij~xiÞ2 log pðθ;λÞ

The first term is the negative log-likelihood, corresponding to the loss func-

tion, and the second is the negative log of the prior for the parameters, also

known as the “regularization” term. L2 regularization is often used for the weights

in a logistic regression model. A prior could be applied to the bias too; but in

practice it is often better not to do this (or, equivalently, to use a uniform distribu-

tion as the prior).

So-called “L2 regularization” is based on the L2 norm, which is just the

Euclidean distance jjwjj2 5
ffiffiffiffiffiffiffiffiffiffi
wTw

p
. If a Gaussian distribution with zero mean and

a common variance for each weight is used as the prior for the weights, the corre-

sponding regularization term is the squared L2 distance weighted by λ, plus a

constant:

2log pðθ;σÞ5λjjwjj22 1 const:

The constant can be ignored during the optimization and is often omitted

from the regularized loss function. However, using λ=2 or 1=2 σ2 as the regular-

ization term gives a more direct correspondence with the σ2 parameter of the

Gaussian distribution.

Solving a regularized multiclass logistic regression with M weight parameters

corresponds to finding the weights and biases that minimize

2
XN
i51

log pð ~yij~xi;W; bÞ1λ
XM
j51

w2
j ;

the regularization term will encourage the weights to be small. In the context of

multilayer perceptrons, this sort of regularization is known as weight decay; in

statistics it is known as ridge regression.

In regression, the elastic net regularization introduced earlier combines L1 and

L2 regularization using λ2RL2 ðθÞ1λ1RL1 ðθÞ, which corresponds to a prior on

weights consisting of the product of Laplacian and Gaussian distributions. In

terms of a matrix representation, given a weight matrix W with row and column

entries given by wr;c, this can be written

3999.7 Conditional Probability Models

RL2 ðθÞ5
X
r

X
c

ðwr;cÞ2; @

@W
RL2 ðθÞ5 2W;

RL1 ðθÞ5
X
r

X
c

jwr;cj; @

@wr;c
RL1 ðθÞ5

1;

0;

21;

wr;c . 0

wr;c 5 0

wr;c , 0

;

8><
>:

where we have set the derivative of the L1 prior to zero at zero despite the fact

that it is technically undefined at this point. This is common practice, since the

goal of this type of regularization is to induce sparsity: once a weight is zero the

gradient will be zero. Notice that regularization has not been applied to the bias

terms. This regularizer leads to convex optimization problems if the loss is con-

vex, which is the case for logistic regression and linear regression.

GRADIENT DESCENT AND SECOND-ORDER METHODS

By formulating maximum likelihood learning with a prior on parameters as the

problem of minimizing the negative log probability, gradient descent can be used

to optimize the model’s parameters. Given a conditional probability model

pðyjx; θÞ with parameter vector θ and data ~yi; ~xi; i5 1; . . .;N, along with a prior on

parameters given by pðθ;λÞ, with hyperparameter λ, the gradient descent proce-

dure with learning rate η is:

θ5 θo==initialize parameters

while converged55 FALSE

g5
@

@θ
2
XN
i51

log pð ~yij~xi; θÞ2 log pðθ;λÞ
" #

θ’θ2 ηg

Convergence is usually determined by monitoring the change in the loss or the

parameters and terminating when one of them stabilizes. Appendix A.1 shows

how a Taylor series expansion can be used to interpret and justify the learning

rate parameter η.
Alternatively, gradient descent can be based on the second derivative by com-

puting the Hessian matrix H at each iteration and replacing the above update by

H5
@2

@θ2
2
XN
i51

log pð ~yij~xi; θÞ2 log pðθ;λÞ
" #

;

θ’θ2H21g:

GENERALIZED LINEAR MODELS

Linear regression and logistic regression are special cases of a family of condi-

tional probability models known in statistics as “generalized linear models,”

which were proposed to unify and generalize linear and logistic regression. In this

400 CHAPTER 9 Probabilistic methods

formulation, linear models may be related to a response variable using distribu-

tions other than the Gaussian distribution used for linear regression. Generalized

linear models can be created for any distribution in the exponential family

(Appendix A.2 introduces exponential-family distributions).

In this context, the data can be thought of in terms of response variables yi
and explanatory variables organized as p-dimensional vectors xi, i5 1,. . ., n.

Response variables can be expressed in different ways, ranging from binary to

categorical or ordinal data. A model is then defined where the expected value

E½y� of the distribution used for the response variable consists of an initial linear

prediction ηi 5 βTxi using a parameter vector β, which is then subjected to a

smooth, invertible, and potentially nonlinear transformation using the mean func-

tion g21:

μi 5E½yi�5 g21ðβTxiÞ:
The mean function is the inverse of the link function g. In generalized linear

modeling the entire set of explanatory variables for all the observations is

arranged as an n3 p matrix X, so that a vector of linear predictions for the entire

data set is η5Xβ. The variance of the underlying distribution can also be mod-

eled; typically as a function of the mean. Different distributions, link functions,

and corresponding mean functions give a great deal of flexibility in defining prob-

abilistic models; Table 9.2 shows some examples.

The multiclass extension of logistic regression discussed above is another

example of a generalized linear model that uses the multinomial distribution for

the response variable y. Because this model is defined in terms of probability dis-

tributions, the parameters can be estimated using maximum likelihood techniques.

Since these models are fairly simple, the coefficients βj are interpretable.

Applied statisticians are often interested not only in the estimated values but in

other information such as the standard error of the estimates and statistical signifi-

cance tests.

Table 9.2 Link Functions, Mean Functions, and Distributions Used
in Generalized Linear Models

Link Name
Link Function
η5βTx5gðμÞ

Mean Function
μ5g21ðβTxÞ5g21ðηÞ Typical Distribution

Identity η5μ μ5 η Gaussian
Inverse η5μ21 μ5 η21 Exponential

Log η5 loge μ μ5 expðηÞ Poisson
Log-log η52 logð2 loge μÞ μ5 expð2 expð2 ηÞÞ Bernoulli
Logit η5 loge

μ
12μ μ5 1

11 expð2 ηÞ Bernoulli

Probit η5Φ21ðμÞ μ5ΦðηÞ Bernoulli

Note: ΦðUÞ is the cumulative normal distribution.

4019.7 Conditional Probability Models

MAKING PREDICTIONS FOR ORDERED CLASSES

In many situations class values are categorical but possess a natural ordering. To deal

with ordinal class attributes, the class probabilities can be expressed in terms of

cumulative distributions, which are then modeled to construct an underlying proba-

bility distribution function for each class. To define a model with M ordinal catego-

ries, M�1 cumulative probability models of the form PðYi # jÞ are used for the

random variable Yi that represents the category of a given instance i. Models for

PðYi 5 jÞ are then obtained using differences between the cumulative distribution

models. Here we will use complementary cumulative probabilities, known as sur-

vival functions, of the form PðYi . jÞ5 12PðYi # jÞ, because this sometimes simpli-

fies the interpretation of parameters. Then the class probabilities are obtained by:

PðYi 5 1Þ5 12PðYi . 1Þ
PðYi 5 jÞ5PðYi . j2 1Þ2PðYi . jÞ
PðYi 5MÞ5PðYi .M2 1Þ:

The generalized linear models discussed above can be further generalized to

ordinal categorical data. In fact, the general approach can be applied to various

model classes by modeling complementary cumulative probabilities with a smooth

and invertible link function that transforms them nonlinearly and equates the result

to a linear predictor. For binary predictions, the models often take this form:

logitðγijÞ5 log
γij

12 γij
5 bj 1wTxi;

where w is a vector of weights, xi are vectors of features, and γij represent the
probability that example i is greater than the discretized, ordinal category j. Such

models are called “proportional odds” models, or “ordered logit” models. The

model above uses a different bias for each inequality, but the same set of weights.

This guarantees a consistent set of probabilities.

CONDITIONAL PROBABILISTIC MODELS USING KERNELS

Linear models can be transformed into nonlinear ones by applying the “kernel

trick” mentioned in Section 7.2 under kernel regression, or, alternatively, through

basis expansion as mentioned in the section above on matrix formulations of lin-

ear and polynomial regression. This can be applied to both kernel regression and

kernel logistic regression.

Suppose the features x are replaced by the vector k(x) whose elements are

determined using a kernel function k(x,xj) for every training example (or for some

subset of training vectors):

kðxÞ5
kðx; x1Þ

^
kðx; xV Þ

1

2
664

3
775

402 CHAPTER 9 Probabilistic methods

A “1” has been appended to this vector to implement the bias term in the

parameter matrix. A kernel regression is then

pðyjxÞ5Nðy;wTkðxÞ;σ2Þ:
For classification, an analogous kernel logistic regression is

pðyjxÞ5 expðyT θkðxÞÞP
y expðyT θkðxÞÞ 5

1

ZðkðxÞÞ expðy
TθkðxÞÞ:

Since every example in the training set can have a different kernel vector, it is

necessary to compute a kernel matrix K with entries given by Kij5 k(xi,xj). For

large datasets this operation can be time- and memory-intensive.

Support vector machines have a similar form, although they are not formulated

probabilistically, and multiclass support vector machines are not as easily formu-

lated as multiclass kernel logistic regression. Because they use an underlying hinge

loss and weight regularization term, support vector machines often assign zero

weights to many of the terms; they also have the appealing feature of placing non-

zero weights only on vectors that reside at the boundary of the decision surface. In

many applications this results in a significant reduction in the number of kernel

evaluations needed at test time. Neither kernel logistic regression nor kernel ridge

regression produce such sparse solutions, even when a Gaussian or (squared) L2
regularization is used: in general there is a nonzero weight for every exemplar.

However, kernel logistic regression can outperform support vector machines, and

several techniques have been proposed to make these methods sparse. They are

mentioned in the Further Reading section at the end of the chapter.

9.8 SEQUENTIAL AND TEMPORAL MODELS
Consider the task of creating a probability model for a sequence of observations.

If they correspond to words, random variables could be defined with as many

states as there are words in the vocabulary. If they are continuous, some paramet-

ric form is needed to create suitable continuous distributions.

MARKOV MODELS AND N-GRAM METHODS

One simple and effective probabilistic model for discrete sequential data is known

as a “Markov model.” A first-order Markov model assumes that each symbol in a

sequence can be predicted using its conditional probability given the preceding

symbol. (For the very first symbol, an unconditional probability is used.) Given

observation variables O5 {O1,. . .,OT}, this can be written

PðOÞ5PðO1ÞL
T

t51

PðOt11jOtÞ:

4039.8 Sequential and Temporal Models

Usually, every conditional probability used in such models is the same. The

corresponding Bayesian networks consist simply of a linear chain of variables

with directed edges between each successive pair; Fig. 9.18A shows an example.

The method generalizes naturally to second-order models (Fig. 9.18B), and to

higher orders. N-gram models correspond to the use of an (N�1)-th order Markov

model. For example, first-order models involve the use of 2-grams (or

“bigrams”); third-order models use trigrams, and zero-th order models correspond

to single observations or “unigrams.” Such models are widely used for modeling

biological sequences such as DNA, as well as for text mining and computational

linguistics applications.

All probabilistic models raise the issue of what to do when there is no data for

certain configurations of variables. Zero-valued parameters cause problems, as we

saw in Section 4.2. This is particularly severe with high-order Markov models,

and smoothing techniques—such as Laplace or Dirichlet smoothing, which can be

derived from a Bayesian analysis—become critical. See the Further Reading sec-

tion for some pointers to some specialized methods for smoothing n-grams.

Large n-gram models are extremely useful for applications ranging from

machine translation and speech recognition to spelling correction and information

extraction. Indeed, Google has made available English language word counts for

a billion five-word sequences that appear at least 40 times in a trillion-word cor-

pus After discarding words that appear less than 200 times, there remain 13 mil-

lion unique words (unigrams), 300 million bigrams; and around a billion each of

trigrams, four-grams, and five-grams.

HIDDEN MARKOV MODELS

Hidden Markov models have been widely used for pattern recognition since at

least the 1980s. Until recently most of the major speech recognition systems have

consisted of large Gaussian mixture models combined with hidden Markov

(A) (B)

…(C) (D)

……

…
…

… …

FIGURE 9.18

(A) and (B) First- and second-order Markov models for a sequence of variables;

(C) Hidden Markov model; (D) Markov random field.

404 CHAPTER 9 Probabilistic methods

models. Many problems in biological sequence analysis can also be formulated in

terms of hidden Markov models, with various extensions and generalizations.

A hidden Markov model is a joint probability model of a set of discrete

observed variables O5 {O1,. . .,OT} and discrete hidden variables H5 {H1,. . .,
HT} for T observations that factors the joint distribution as follows:

PðO;HÞ5PðH1ÞL
T

t51

PðHt11jHtÞL
T

t51

PðOtjHtÞ;

Each Ot is a discrete random variable with N possible values, and each Ht is a

discrete random variable with M possible values. Fig. 9.18C illustrates a hidden

Markov model as a type of Bayesian network that is known as a “dynamic”

Bayesian network because variables are replicated dynamically over the appropri-

ate number of time steps. They are an obvious extension of first-order Markov

models, and it is common to use “time-homogeneous” models where the transi-

tion matrix P(Ht11|Ht) is the same at each time step. Define A to be a transition

matrix whose elements encode P(Ht115 j|Ht5 i), and B to be an emission matrix

B whose elements bij correspond to P(Ot5 j|Ht5 i). For the special t5 1 the ini-

tial state probability distribution is encoded in a vector π with elements πi5P

(Ht5 i). The complete set of parameters is θ5 fA;B;πg, a set containing two

matrices and one vector. We write a particular observation sequence as a set of

observations ~O5 fO1 5 o1; . . .;OT 5 oTg.
Hidden Markov models pose three key problems:

1. Compute Pð ~O; θÞ, the probability of a sequence under the model with

parameters θ.
2. Find the most probable explanation—the best sequence of states

H
�
5 fH1 5 h1; . . .;HT 5 hTg that explains an observation.

3. Find the best parameters θ for the model given a data set of observed

sequences.

The first problem can be solved using the sum-product algorithm, the second

using the max-product algorithm, and the third using the EM algorithm for which

the required expectations are computed using the sum-product algorithm. If there

is labeled data for the sequences of hidden variables that correspond to observed

sequences, the required conditional probability distributions can be computed

from the corresponding counts in the same way as we did with Bayesian

networks.

The only difference between the parameter estimation task when using an hid-

den Markov model viewed as a dynamic Bayesian network and the updates used

for learning the conditional probability tables in a Bayesian network is that one

can average over the statistics obtained at each time step, because the same emis-

sion and transition matrices are used at each step. The basic hidden Markov

model formulation serves as a point of reference when coupling more complex

probabilistic models over time using more general dynamic Bayesian network

models.

4059.8 Sequential and Temporal Models

CONDITIONAL RANDOM FIELDS

Hidden Markov models are not the only models that are useful when working

with sequence data. Conditional random fields are a statistical modeling technique

that takes context into account, and are often structured as linear chains. They are

widely used for sequence processing tasks in data mining, but are also popular in

image processing and computer vision. Fig. 9.19 illustrates the problem of

extracting locations and dates of meetings from email text, which can be

addressed using chain-structured conditional random fields. A major advantage is

that these models can be given arbitrarily complex features of the input sequence

to be used for making predictions—e.g., matching words to lists of organizations

and processing variations of known abbreviations.

Inference for chain-structured conditional random fields can be performed

efficiently using the sum- and max-product algorithms discussed above. The sum-

product algorithm can be used to compute the expected gradients needed to learn

them, and the max-product algorithm serves to label new sequences—with tags

such as “where” indicating the location or room and “time” labels associated with

a meeting.

We begin with a general definition, and then focus on the simpler case of lin-

ear conditional random fields. Fig. 9.20D shows a chain-structured conditional

FIGURE 9.19

Mining emails for meeting details.

406 CHAPTER 9 Probabilistic methods

random field, illustrated as a factor graph, which can be contrasted with the

Markov random field depicted in Fig. 9.20B and the hidden Markov model in

Fig. 9.20C, also shown as a factor graph. Circles are not used to represent the

observed variables in Fig. 9.20D because the underlying conditional random field

model does not explicitly encode these as random variables in the graph.

From Markov random fields to conditional random fields
Whereas both Bayesian networks and Markov random fields define a joint proba-

bility model for data, conditional random fields (also known as “structured predic-

tion” techniques) define a joint conditional distribution for multiple predictions.

For a set X of random variables, we have already seen how a Markov random field

factorizes the joint distribution for X using an exponentiated energy function F(X):

PðXÞ5 1

Z
expð2FðXÞÞ;

Z5
X
X

expð2FðXÞÞ;

where the sum is over all states of all variables in X. Conditional random fields

condition on some observations, yielding a conditional distribution:

PðYjXÞ5 1

ZðXÞ expð2FðY ;XÞÞ;

ZðXÞ5
X
Y

expð2FðY ;XÞÞ;

where the sum is over all states of all variables in Y. Both Markov and conditional

random fields can be defined for general model structures, but the energy func-

tions usually include just one or two variables—unary and pairwise potentials.

Conceptually, to create a conditional random field for P(Y|X) based on U unary

and V pairwise functions of variables in Y, the energy function takes the form

FðY ; ~XÞ5
XU
u51

UðYu; ~XÞ1
XV
v51

VðYv; ~XÞ:

(A) (B)

(C) (D)

FIGURE 9.20

(A) Dynamic Bayesian network representation of a hidden Markov model; (B) similarly

structured Markov random field; (C) factor graph for (A); and (D) factor graph for a linear

chain conditional random field.

4079.8 Sequential and Temporal Models

Such energy functions can be transformed into so-called potential functions by

negation, exponentiation, and normalization. The conditional probability model

takes this form:

PðY j ~XÞ5 1

Zð ~XÞ exp
XU
u51

UðYu; ~XÞ1
XV
v51

VðYv; ~XÞ
" #

5
1

Zð ~XÞ L
U

u51

φuðYu; ~XÞL
V

v51

ΨvðYv; ~XÞ:
(9.8)

Lattice-structured models like this are used in image processing applications,

as mentioned earlier. Processing sequences with chain-structured conditional

random fields is even simpler. Note that logistic regression could be thought of

as a simple conditional random field, one that arises naturally from a condi-

tional version of a Markov random field with a factorization shown in

Fig. 9.15B.

Linear chain conditional random fields
Consider observations ~Y 5 fy1 5 ~y1; . . .; yN 5 ~yNg of a sequence of discrete random
variables Y 5 fy1; . . .; yNg, using integers to encode the relevant states, and an

observed input sequence ~X5 f ~x1; . . .; ~xNg, which can be of any data type. A condi-

tional random field defines the conditional probability PðYjXÞ of a label sequence

given an input sequence. This contrasts with hidden Markov models, which treat

both Y and X as random variables and defines a joint probability model for P(Y,

X). Note that X above was intentionally not defined as a sequence of random vari-

ables because we will define the conditional distribution of Y given X and need

not have an explicit model for P(X). Of course, an implicit model for P(X) could

be defined as the empirical distribution of the data, or the distribution produced

by placing a Dirac or Kronecker delta function on each observation and normaliz-

ing by the number of examples. Not defining X as a sequence leaves open what

type of variables these are, and whether it is just a set of variables or a set of for-

mally defined random variables. Fig. 9.20D uses shaded rectangles to emphasize

this point. In this chain model, for a given sequence of length N, Eq. (9.8) could

be re-written

PðYj ~XÞ5 1

Zð ~XÞ L
N

u51

φuðyu; ~XÞ L
N

v51

Ψvðyv; yv11; ~XÞ:

Focusing on a linear chain structure reveals some analogies with the emission

and transition matrices of hidden Markov models. There are two types of features:

a set of J single variable (state) features ujðyi;X; iÞ that are a function of a single

yi, and which are computed for each yi in the sequence i5 1,. . ., N; and a set of K

pairwise (transition) features vkðyi21; yi;X; iÞ for i. 1. Each type has associated

unary weights θuj and pairwise weights θvk. Note that these features can be a func-

tion of the entire observed sequence ~X, or of some subset. This global dependence

408 CHAPTER 9 Probabilistic methods

on the input is a major advantage of conditional random fields over hidden

Markov models. The analog of the Markov model transition matrix are the per-

position pairwise potential functions: these can be written as a set of matrices that

depend upon the observation sequence and consist of a sum over the product of

pairwise weights θvk and pairwise features

Ψi½yi; yi11�5 exp
XK
k51

θvkvkðyi; yi11; ~X; iÞ
" #

:

The unary potential functions play a similar role to the terms arising from the

hidden Markov model emission matrices, and can be written as the following set

of vectors that involve exponentiated weighted combinations of unary features

φi½yi�5 exp
XJ
j51

θuj ujðyi; ~X; iÞ
" #

:

Sometimes, rather than keeping the unary and pairwise features and their para-

meters separate, it is useful to work with all features for a given position i. To do

this, define fðyi; yi11;X; iÞ as a length-L vector containing all single-variable and

pairwise features, and define the global feature vector to be the sum over each of

these position dependent feature vectors:

gðY ;XÞ5
XN
i51

fðyi; yi11;X; iÞ:

Now a conditional random field can be written in a particularly compact form

PðY jXÞ5 expðθTgðY ;XÞÞP
Y expðθTgðY ;XÞÞ

:

If we turn to the problem of learning based on maximizing the conditional

likelihood for this model, an analogy can be drawn to the simpler case of logistic

regression. The gradient of the log-likelihood of a conditional random field for a

set of M input sequences A5 f ~X1; . . .; ~XMg and corresponding output sequences

B5 f ~Y1; . . .; ~YMg, is

@

@θ
log PðBjAÞ5

XM
m51

½gð ~Ym; ~XmÞ2Em½gðYm; ~XmÞ��:

Here, Em[.] is an expectation taken with respect to PðYmj ~XmÞ. It is stan-

dard practice to include a Gaussian prior or L2 regularization on parameters

by adding a regularization term to this expression. Unlike logistic regression,

this expectation involves the joint distribution of the label sequence and not

just the distribution for a single label variable. However, in chain-structured

graphs it can be computed efficiently and exactly using the sum-product

algorithm.

4099.8 Sequential and Temporal Models

Learning for chain-structured conditional random fields
To compute the gradient for a linear chain conditional random field, it is useful to

expose each parameter in the L2 regularized log-likelihood in scalar form:

log PðBjAÞ5
XM
m51

XNm

i51

XL
l51

θlglð ~ym;i; ~ym;i11; ~XmÞ2
XM
m51

log Zð ~XmÞ2
XL
l51

θ2l
2σ2

:

where σ is the regularization parameter. Taking the derivative with respect to a

single parameter and training example, the contribution to the gradient of each

example is

@

@θl
log Pð ~Ymj ~XmÞ5

XNm

i51

glð ~yi; ~yi11; ~XÞ2
XNm

i51

X
yi

X
yi11

glðyi; yi11; ~XÞPðyi; yi11j ~XÞ2
θl
σ2

:

This is simply the difference between the observed occurrence of the feature

and its expectation under the current prediction of the model, taken with respect

to Pðyi; yi11j ~XÞ, minus the partial derivative of the regularization term. Similar

terms arise for unary functions, but the expectation is taken with respect to

Pðyij ~XÞ. These distributions are the single- and pairwise-variable marginal condi-

tional distributions, and can be computed efficiently using the sum-product

algorithm.

Using conditional random fields for text mining
The text information extraction scenario in Fig. 9.19 is just one example of apply-

ing data mining to extract information from natural language. Such information

might be other named entities such as locations, personal names, organizations,

money, percentages, dates, and times; or fields in a seminar announcement such

as speaker name, seminar room, start time, and end time. In such tasks, input fea-

tures often consist of current, previous, and next word; character n-grams; part-of-

speech tag sequences; the presence of certain key words in windows to the left or

right of the current position. Other features can be defined using lists of known

words, such as first and last names and honorifics; locations and organizations.

Features such as capitalization and alphanumeric characters can be defined using

regular expressions and integrated into an underlying probabilistic model based

on conditional random fields.

9.9 FURTHER READING AND BIBLIOGRAPHIC NOTES
The field of probabilistic machine learning and data mining is enormous: it essen-

tially subsumes all classical and modern statistical techniques. This chapter has

focused on foundational concepts and some widely used probabilistic techniques

in data mining and machine learning. Excellent books that focus on statistical and

probabilistic methods include Hastie, Tibshirani, and Friedman (2009), and

410 CHAPTER 9 Probabilistic methods

Murphy (2012). Koller and Friedman (2009)’s excellent book specializes in

advanced techniques and principles of probabilistic graphical models.

The K2 algorithm for learning Bayesian networks was introduced by Cooper

and Herskovits (1992). Bayesian scoring metrics are covered by Heckerman et al.

(1995). Friedman, Geiger, and Goldszmidt (1997) introduced the tree augmented

Naı̈ve Bayes algorithm, and also describe multinets. Grossman and Domingos

(2004) show how to use the conditional likelihood for scoring networks. Guo and

Greiner (2004) present an extensive comparison of scoring metrics for Bayesian

network classifiers. Bouckaert (1995) describes averaging over subnetworks.

AODEs are described by Webb, Boughton, and Wang (2005), and AnDEs by

Webb et al. (2012). AD trees were introduced and analyzed by Moore and Lee

(1998)—the same Andrew Moore whose work on kD-trees and ball trees was

mentioned in Section 4.10. Komarek and Moore (2000) introduce AD trees for

incremental learning that are also more efficient for data sets with many attributes.

The AutoClass program is described by Cheeseman and Stutz (1995). Two

implementations have been produced: the original research implementation, writ-

ten in LISP, and a follow-up public implementation in C that is 10 or 20 times

faster but somewhat more restricted—e.g., only the normal distribution model is

implemented for numeric attributes. DensiTrees were developed by Bouckaert

(2010).

Kernel density estimation is an effective and conceptually simple probabilistic

model. Epanechnikov (1969) showed the optimality of the Epanechnikov kernel

under the mean-squared error metric. Jones, Marron, and Sheather (1996) recom-

mends using a so-called “plug-in” estimate to select the kernel bandwidth. Duda

and Hart (1973) and Bishop (2006) show theoretically that kernel density estima-

tion converges to the true distribution as the amount of data grows.

The EM algorithm, which originates in the work of Dempster, Laird, and

Rubin (1977), is the key to learning in hidden or latent variable models. The mod-

ern variational view provides a solid theoretical justification for the use of

approximate posterior distributions, as discussed in Appendix A.2 and in Bishop

(2006). This perspective originated in the 1990s with work by Neal and Hinton

(1998), Jordan, Ghahramani, Jaakkola, and Saul (1998), and others.

Salakhutdinov, Roweis and Ghahramani (2003) explore the EM approach and

compare it with the expected gradient, including the more sophisticated expected

conjugate gradient based optimization.

Markov chain Monte Carlo methods are popular in Bayesian statistical model-

ing; see, e.g., Gilks (2005). Geman and Geman (1984) first described the Gibbs

sampling procedure, naming it after the physicist Josiah Gibbs because of the

analogy between sampling, the underlying functional forms of random fields and

statistical physics. Hastings’ (1970) generalization of the Metropolis, Rosenbluth,

Rosenbluth, Teller, and Teller (1953) algorithm has been influential in laying the

foundation for present-day methods. The iterated conditional modes approach for

finding an approximate most probable explanation was proposed by Besag

(1986).

4119.9 Further Reading and Bibliographic Notes

Plate notation has been widely used in artificial intelligence (Buntine, 1994),

machine learning (Blei, Ng, & Jordan, 2003) and computational statistics (Lunn,

Thomas, Best, & Spiegelhalter, 2000) to define complex probabilistic graphical

models, and forms the basis of the BUGS (Bayesian inference Using Gibbs

Sampling) software project (Lunn et al., 2000). Our presentation of factor graphs

and the sum-product algorithm follows their origins in Kschischang, Frey, and

Loeliger (2001) and Frey (1998). The sum- and max-product algorithms only

apply to trees. However, Bayesian networks and other models that contain cycles

can be manipulated into a structure known as a junction tree by clustering vari-

ables, and Lauritzen and Spiegelhalter (1988)’s junction tree algorithm permits

exact inference. Ripley (1996) covers the junction tree algorithm, with practical

examples; Huang and Darwiche (1996)’s procedural guide is an excellent resource

for those who need to implement the algorithm. Probability propagation in a junction

tree yields exact results, but is sometimes infeasible because the clusters become too

large—in which case one must resort to sampling or variational methods.

Roweis (1998) gives an early EM formulation for PPCA: he examines the

zero input noise case and provides the elegant mathematics for the simplified EM

algorithm presented above. Tipping and Bishop (1999a, 1999b) give further anal-

ysis, and show that after optimizing the model and learning the variance of the

observation noise the columns of the matrix W are scaled and rotated principal

eigenvectors of the covariance matrix of the data. The probabilistic formulation

of principal component analysis opens the door to probabilistic formulations of

further generalizations, such as mixtures of principal component analyzers (Dony

& Haykin, 1995; Tipping & Bishop, 1999a, 1999b) and mixtures of factor analy-

zers (Ghahramani & Hinton, 1996). Of particular utility is the ability of PPCA

and factor analysis to easily deal with missing data: providing the data is missing

at random one can marginalize over the distribution associated with unobserved

values, as detailed by Ilin and Raiko (2010).

PPCA corresponds to factorizing a covariance matrix. Another way to

reduce the number of parameters in a continuous Gaussian model is to use

sparse inverse covariance models, which, when combined with mixture models

and EM, yield another form of clustering with correlated attributes. Edwards

(2012) provides a nice introduction to graphical modeling, including mixed

models with discrete and continuous components. Unlike any other treatments,

he also examines graphical Gaussian models and delves further into the

correspondence between a graphical model and the sparsity structure of an

inverse covariance matrix. These concepts are better grasped using the “cano-

nical” parameterization of the Gaussian distribution in terms of β5Σ21μ, and
Ω5Σ21, rather than the usual “moment” parameterization that uses the mean

μ and covariance matrix Σ.

LSA was introduced by Deerwester, Dumais, Landauer, Furnas, and

Harshman (1990). pLSA has its origins in Hofmann (1999). Latent

Dirichlet allocation (LDAb) was proposed in Blei et al (2003). The highly effec-

tive “collapsed Gibbs sampling” approach for LDAb was proposed by Teh et al.

412 CHAPTER 9 Probabilistic methods

(2006), who also extended the concept to variational methods. Rather than apply-

ing LDAb naı̈vely when looking for trends over time, Blei and Lafferty (2006)’s

dynamic topic models treat the temporal evolution of topics explicitly; they exam-

ined topical trends in the journal Science. Griffiths and Steyvers (2004) used

Bayesian model selection to determine the number of topics in their LDAb analy-

sis of Proceedings of the National Academy of Science abstracts. Griffiths and

Steyvers (2004) and Teh et al. (2006) give more details on the collapsed Gibbs

sampling and variational approaches to LDAb. Hierarchical Dirichlet processes

(Teh et al., 2006) and related techniques offer alternatives to the problem of

determining the number of topics or clusters in hierarchical Bayesian models.

These technically sophisticated methods are quite popular, and high-quality

implementations are available online.

Logistic regression is sometimes referred to as the workhorse of applied statis-

tics; Hosmer and Lemeshow (2004) is a useful resource. Nelder and Wedderburn

(1972)’s work led to the generalized linear modeling framework. McCullagh

(1980) developed proportional odds models for ordinal regression, which are

sometimes called ordered logit models because they use the generalized logit

function. Frank and Hall (2001) showed how to adapt arbitrary machine learning

techniques to ordered predictions. McCullagh and Nelder (1989)’s widely cited

monograph is another good source for additional details on the framework of gen-

eralized linear models.

Tibshirani (1996) developed the famous “Least Absolute Shrinkage and

Selection Operator,” also known as the LASSO; while Zou and Hastie (2005)

developed the “elastic net” regularization approach.

Kernel logistic regression transforms a linear classifier into a nonlinear one,

and probabilistic sparse kernel techniques are attractive alternatives to support

vector machines. Tipping (2001) proposed a “relevance vector machine” that

manipulates priors on parameters in a way that encourages kernel weights to

become zero during learning. Lawrence, Seeger, and Herbrich (2003) proposed an

“informative vector machine,” which tackles the problem with a fast, sparse

Gaussian process method in the sense of Williams and Rasmussen (2006). Zhu

and Hastie (2005) formulated sparse kernel logistic regression as an “import vec-

tor machine” that uses greedy search methods. However, none of these approach

the popularity of Cortes and Vapnik (1995)’s support vector machines, perhaps

because their objective functions are not convex, in contrast to that of an SVM

(and L2 regularized kernel logistic regression). Convex optimization problems

have a single minimum in the loss function (maximum in the likelihood). When

probabilities are needed from an SVM, Platt (1999) shows how to fit a logistic

regression to the classification scores.

Some techniques for smoothing n-grams arise from applying prior distribu-

tions to the parameters of the model’s conditional probabilities. Others come from

different perspectives—such as interpolation techniques, where weighted combi-

nations of lower order n-grams are used. Good-Turing discounting (Good, 1953)

(coinvented by Alan Turing, one of the fathers of computing), and Witten�Bell

4139.9 Further Reading and Bibliographic Notes

smoothing (Witten & Bell, 1991) are based on these ideas. Brants and Franz

(2006) discuss the massive Google n-gram collections mentioned in Section 9.8;

they are available as a 24 GB compressed text file from the Linguistic Data

Consortium.

Rabiner and Juang (1986) and Rabiner (1989) give a classic introduction and

tutorial respectively on Hidden Markov Models. They have been used extensively

for decades in speech recognition systems, and are widely applicable to many

other problems. The human genome sequencing project stretched from around

1990 to the early 2000s (International Human Genome Sequencing Consortium,

2001; Venter et al., 2001), and spawned a surge of activity in recognizing and

modeling genes in genomes using hidden Markov models (Burge & Karlin, 1997;

Kulp, Haussler, Rees, & Eeckman, 1996)—a particularly impressive and impor-

tant application of data mining. Murphy (2002) is an excellent source for details

on how dynamic Bayesian networks extend hidden Markov models.

Lafferty, McCallum, and Pereira (2001) is a seminal paper on conditional ran-

dom fields; Sutton and McCallum (2006) is an excellent source of further details.

Sha and Pereira (2003) present the global feature vector view of conditional ran-

dom fields. Our presentation synthesizes these perspectives. The original applica-

tion was to sequence labeling problems, but they have since become widely used

for many sequence processing tasks in data mining. Kristjansson, Culotta, Viola,

and McCallum (2004) examined the specific problem of extracting information

from email text. The Stanford Named Entity Recognizer is based on conditional

random fields; Finkel, Grenager, and Manning (2005) give details of the

implementation.

Markov logic networks (Richardson & Domingos, 2006) provide a way to cre-

ate dynamically instantiated Markov random fields from programs encoded using

weighted clauses in first-order logic. This approach has been used for collective

or structured classification, link or relationship prediction, entity and identity dis-

ambiguation, among many others, as described in Domingos and Lowd (2009)’s

textbook.

SOFTWARE PACKAGES AND IMPLEMENTATIONS

Implementations of principal component analysis, Gaussian mixture models, and

hidden Markov models are widely available in many software packages.

MatLab’s statistics toolbox, e.g., has implementations of principal component

analysis and its probabilistic variant based on the methods we have discussed, and

also contains implementations of Gaussian mixture models and all the canonical

hidden Markov model manipulations.

Kevin Murphy’s MatLab-based Probabilistic Modeling Toolkit is a large, open

source collection of MatLab functions and tools. The software contains imple-

mentations for many of the methods we have discussed here, including code for

Bayesian network manipulation and inference methods.

414 CHAPTER 9 Probabilistic methods

The Hugin software package from Hugin Expert A/S and the Netica software

from Norsys are well-known commercial software implementations for manipulat-

ing Bayesian networks. They contain excellent graphical user interfaces for inter-

acting with these networks.

The BUGS (Bayesian inference Using Gibbs Sampling) project has created a vari-

ety of software packages for the Bayesian analysis of complex statistical models using

Markov chain Monte Carlo methods. WinBUGS (Lunn et al., 2000) is a stable version

of the software, but the more recent OpenBUGS project is an open source version of

the core BUGS implementation (Lunn, Spiegelhalter, Thomas, & Best, 2009).

The VIBES software package (Bishop, Spiegelhalter, & Winn, 2002) allows

inference in graphical models using variational methods. Microsoft Research has

created a programming language known as infer.net that allows one to define

graphical models and perform inference in them using variational methods, Gibbs

sampling or another message passing method known as expectation propagation

(Minka, 2001). Expectation propagation generalizes belief propagation to distribu-

tions and models beyond the typical discrete and binary models used to create

Bayesian networks. John Winn and Tom Minka at Microsoft Research have been

leading the infer.net project.

The R programming language and software environment was created for sta-

tistical computing and visualization (Ihaka & Gentleman, 1996). It has its origins

at the University of Auckland, and provides an open source implementation of

the S programming language from Bell Labs. It is comparable to well known

commercial packages such as SAS, SPSS, and Stata, and contains implementa-

tions of many classical statistical methods such as generalized linear models and

other regression techniques. Since it is a general purpose programming language

there are many extensions and implementations of the models discussed in this

chapter available online. Historically Brian D. Ripley has overseen the develop-

ment of R. Ripley is now retired from Oxford University where he was a statistic

Professor. He is the coauthor of a number of books on S programming (Venables

& Ripley, 2000, 2002) and an older but very high-quality textbook on pattern rec-

ognition and neural networks (Ripley, 1996).

The MALLET Machine Learning for Language Toolkit (McCallum, 2002)

provides excellent Java implementations of latent Dirichlet allocation and condi-

tional random fields. It also provides many other statistical natural language-

processing methods ranging from document classification and clustering to topic

modeling, information extraction, and other machine learning techniques fre-

quently used for text processing.

The open source Alchemy software package is widely used for Markov logic

networks (Richardson & Domingos, 2006).

Scikit-learn (Pedregosa et al., 2011) is a rapidly growing Python-based set of

implementations of many machine learning methods. It contains implementations

of many probabilistic and statistical methods for classification, regression, cluster-

ing, dimensionality reduction (including factor analysis and PPCA), model selec-

tion and preprocessing.

4159.9 Further Reading and Bibliographic Notes

9.10 WEKA IMPLEMENTATIONS
• Bayesian networks

BayesNet (Bayesian networks without hidden variables for classification)

A1DE and A2DE (in the AnDE package)

• Conditional probability models

LatentSemanticAnalysis (in the latentSemanticAnalysis package)

ElasticNet (in the elasticNet package)

KernelLogisticRegression (in the kernelLogisticRegression package)

• Clustering

EM (clustering and density estimation using the EM algorithm)

416 CHAPTER 9 Probabilistic methods

10Deep learning

CHAPTER OUTLINE

10.1 Deep Feedforward Networks..420

The MNIST Evaluation ..421

Losses and Regularization ...422

Deep Layered Network Architecture..423

Activation Functions ...424

Backpropagation Revisited ..426

Computation Graphs and Complex Network Structures...............................429

Checking Backpropagation Implementations ...430

10.2 Training and Evaluating Deep Networks...431

Early Stopping ...431

Validation, Cross-Validation, and Hyperparameter Tuning432

Mini-Batch-Based Stochastic Gradient Descent...433

Pseudocode for Mini-Batch Based Stochastic Gradient Descent..................434

Learning Rates and Schedules...434

Regularization With Priors on Parameters ...435

Dropout ...436

Batch Normalization ...436

Parameter Initialization...436

Unsupervised Pretraining ..437

Data Augmentation and Synthetic Transformations437

10.3 Convolutional Neural Networks ...437

The ImageNet Evaluation and Very Deep Convolutional Networks................438

From Image Filtering to Learnable Convolutional Layers.............................439

Convolutional Layers and Gradients..443

Pooling and Subsampling Layers and Gradients ..444

Implementation..445

10.4 Autoencoders...445

Pretraining Deep Autoencoders With RBMs...448

Denoising Autoencoders and Layerwise Training ..448

Combining Reconstructive and Discriminative Learning449

10.5 Stochastic Deep Networks ..449

Boltzmann Machines ..449

Restricted Boltzmann Machines...451

Contrastive Divergence..452

Categorical and Continuous Variables ...452

Deep Boltzmann Machines ..453

Deep Belief Networks ...455

10.6 Recurrent Neural Networks ...456

Exploding and Vanishing Gradients ..457

Other Recurrent Network Architectures...459

10.7 Further Reading and Bibliographic Notes ...461

10.8 Deep Learning Software and Network Implementations464

Theano ..464

Tensor Flow..464

Torch...465

Computational Network Toolkit ..465

Caffe ...465

Deeplearning4j...465

Other Packages: Lasagne, Keras, and cuDNN..465

10.9 WEKA Implementations...466

In recent years, so-called “deep learning” approaches to machine learning have

had a major impact on speech recognition and computer vision. Other disciplines,

such as natural language processing, are also starting to see benefits. A critical

ingredient is the use of much larger quantities of data than has heretofore been

possible. Recent successes have arisen in settings involving high-capacity mod-

els—ones with many parameters. These flexible models exploit information

buried in massive data sets more effectively than traditional machine learning

techniques using hand-engineered features.

This chapter begins by discussing the notion of deep learning and why it is

effective. We then introduce key innovations, along with some specific results

and experiments. We present the main approaches associated with deep learning,

and also discuss common practical issues and aspects of training contemporary

deep network architectures.

There are three approaches to making predictions from data based on machine

learning:

• Classical machine learning techniques, which make predictions directly from

a set of features that have been prespecified by the user,

• Representation learning techniques, which transform features into some

intermediate representation prior to mapping them to final predictions, and

• Deep learning techniques, a form of representation learning that uses multiple

transformation steps to create very complex features.

We have seen many ways of transforming features into an intermediate repre-

sentation before applying machine learning. A classic example is principal

418 CHAPTER 10 Deep learning

component analysis followed by nearest-neighbor learning. Fisher’s linear dis-

criminant analysis is another example of representation learning: a discriminative

objective is used to adapt the learned representation using labeled data. The result

can be used to make classifications directly, or serve as input to a more flexible,

nonlinear classifier.

In contrast, a simple three-layer perceptron learns a representation by adapting

the hidden layer to the task of interest, jointly training it and the output layer so

that the hidden-layer parameters coadapt to the output-layer parameters. Making a

network “deep” by adding further hidden layers subject features to a sequence of

transformations. Each layer’s transformation is a form of inference, and one can

imagine how complex inferences might be more easily modeled as a sequence of

computational steps. Deep recurrent neural networks, which we will also discuss,

include feedback loops, and their depth is related to the complexity of the under-

lying algorithm being learned, as opposed to an iterative procedure of feature

aggregation and abstraction.

Deep multilayer perceptrons, deep convolutional neural networks (CNNs), and

recurrent neural networks are central to the current wave of interest in deep

learning. However, other methods can also be characterized as instances of deep

learning, as we will see below. Most deep learning methods use multilayer

perceptrons as building blocks.

This chapter highlights some notable empirical successes where deep learning

methods have out-performed state-of-the-art alternatives. The main reason for

using deep learning is its empirical effectiveness compared to alternative

approaches. But there are other, more theoretical, motivations. There are analo-

gies at a conceptual level between neural networks and circuit analysis that lead

to theoretical results in complexity theory. Some neural networks implement soft

variants of logical functions, and under certain parameter settings they can behave

exactly like logic gates, as we saw in Section 7.2. Functions that can be com-

pactly represented by multilevel networks may require far more elements when

expressed as shallower architectures.

Deep learning formulates the underlying problem as a network architecture

whose output layer defines a loss function needed for learning. The output units can

be formulated as probabilistic predictions, and if these predictions are parameterized,

one can simply define the loss to be the negative log-likelihood under the model.

Parameters are typically regularized using the techniques introduced in Section 9.7,

either by placing priors on parameters or (equivalently) by adding regularization

terms to the loss function. We also discuss some newer approaches to regularization.

Deep learning methods are frequently based upon networks for which the

backpropagation algorithm serves to compute the gradients required for learning.

A variation of stochastic gradient descent is used that computes gradients and

updates model parameters from small “mini-batches” of examples—subsets of the

training set.

Deep learning has sparked a renaissance of neural network research and appli-

cations. Many high-profile media (e.g., The New York Times) have documented

419CHAPTER 10 Deep learning

striking successes of deep learning techniques on key benchmark problems.

Starting around 2012, impressive results were achieved on long-standing problems

in speech recognition and computer vision, and in competitive challenges such as

the ImageNet Large Scale Visual Recognition Challenge and the Labeled Faces

in the Wild evaluation. In speech processing, computer vision, and even in the

neural networks community itself the impact was substantial. For more informa-

tion, see the Further Reading section at the end of the chapter.

The easy availability of high-speed computation in the form of graphics proces-

sing units has been critical to the success of deep learning techniques. When formu-

lated in matrix-vector form, computation can be accelerated using optimized

graphics libraries and hardware. As network models become more complex, some

quantities can only be represented using multidimensional arrays of numbers—

sometimes referred to as tensors, a generalization of matrices that permit an arbi-

trary number of indices. Software for deep learning supporting tensors is invaluable

for accelerating the creation of complex network structures and making it easier to

learn them. We introduce some software packages at the end of this chapter.

This chapter gives equations for implementing backpropagation in matrix-

vector form. For readers unfamiliar with manipulating functions that have matrix

arguments, and their derivatives, Appendix A.1 summarizes some useful

background.

10.1 DEEP FEEDFORWARD NETWORKS
While neural networks have been considered standard machine learning techni-

ques for decades, four key developments have played a crucial role in their

resurgence:

• proper evaluation of machine learning methods;

• vastly increased amounts of data;

• deeper and larger network architectures;

• accelerated training using GPU techniques.

With regard to the first point, evaluation, it has been standard practice in the

past for different groups to compare results using the same data sets. However,

even when the data was public, results were often difficult to compare because

researchers used different protocols for their experiments—such as different test-

ing and training splits. Moreover, significant time was spent reimplementing other

methods—which often leads to weak baselines. The rise of machine learning chal-

lenges with large common test sets ensures that results are more directly compara-

ble, and motivates teams to spend their time and energy on their own method. As

the volume of evaluation data increases, deeper, more complex, and flexible mod-

els become feasible. The use of high-capacity models, which require extra care to

prevent overfitting, makes it even more important to ensure that test sets are

420 CHAPTER 10 Deep learning

reserved for final tests only. For these and other reasons, some competitive chal-

lenges have been organized in which the labels for test data are hidden and results

must be submitted to a remote server for evaluation. In some cases the test data

itself is also hidden, in which case participants must submit executable code.

THE MNIST EVALUATION

To underscore the importance of large benchmark evaluations, consider the Mixed

National Institute of Standards and Technology (MNIST) database of handwritten

digits. It contains 60,000 training and 10,000 test instances of hand-written digits,

encoded as 283 28 pixel grayscale images. The data is a remix of an earlier NIST

data set in which adults generated the training data and high school students gener-

ated the test set. Table 10.1 gives some results on this data. Note that the LeNet

convolutional network (row 5), a deep architecture discussed in Section 10.3, out-

performed many standard machine learning techniques, even in 1998.

The lower half of the table shows the results of methods that augment the train-

ing set with synthetic distortions of the input images. The use of transformations to

further extend the size of an already large data set is an important technique in

deep learning. Large networks, with more parameters, have high representational

capacity. Plausible synthetic distortion of the data multiplies the amount of data

available, preventing overfitting and helping the network to generalize. Of course,

Table 10.1 Summary of Performance on the MNIST Evaluation

Classifier
Test Error
Rate (%) References

Linear classifier (1-layer neural net) 12.0 LeCun et al. (1998)
K-nearest-neighbors, Euclidean (L2) 5.0 LeCun et al. (1998)
2-Layer neural net, 300 hidden units, mean
square error

4.7 LeCun et al. (1998)

Support vector machine, Gaussian kernel 1.4 MNIST Website
Convolutional net, LeNet-5 (no distortions) 0.95 LeCun et al. (1998)

Methods using distortions

Virtual support vector machine, deg-9
polynomial, (2-pixel jittered and deskewing)

0.56 DeCoste and Scholkopf
(2002)

Convolutional neural net (elastic distortions) 0.4 Simard, Steinkraus, and Platt
(2003)

6-Layer feedforward neural net (on GPU)
(elastic distortions)

0.35 Ciresan, Meier, Gambardella,
and Schmidhuber (2010)

Large/deep convolutional neural net
(elastic distortions)

0.35 Ciresan, Meier, Masci, Maria
Gambardella, and
Schmidhuber (2011)

Committee of 35 convolutional networks
(elastic distortions)

0.23 Ciresan, Meier, and
Schmidhuber (2012)

42110.1 Deep Feedforward Networks

other methods such as support vector machines can also scale up model complexity

with additional data. Simply adding more support vectors can allow SVM-based

methods to outperform classical network architectures. However, as Table 10.1

shows, training deep feedforward networks or CNN with synthetic elastically trans-

formed imagery yields even better results. Because of the large test set, differences

in the error rate of more than 0.01 are statistically significant.

The last four entries illustrate the effectiveness of deep networks.

Interestingly, a standard multilayer perceptron with six layers using synthetic

transformations and trained on a graphics processing unit matches the perfor-

mance of a large and deep CNN. This shows that plain neural networks can be

effective when they are deep and data augmentation is used, because training

such a network with synthetically transformed data encourages robustness with

respect to plausible distortions. In contrast, CNNs embed translational invariances

within the network design itself (see Section 10.3). The best result in Table 10.1

is based on an ensemble of convolutional networks. Ensembles are used to obtain

the top performance in many settings.

LOSSES AND REGULARIZATION

Section 7.2 noted that different activation functions can be used for multilayer

perceptrons. We distinguish the final-layer parameterization, from which the loss

function is computed, from the intermediate-layer activation functions. In the

past, it was common practice to use sigmoids as output activation functions and

base final-layer loss functions on squared errors—sometimes even when classifi-

cation labels were constrained to be 0 or 1. Later designs, however, embrace the

natural probabilistic encoding for any given data type by defining output activa-

tion functions as the negative log of the distribution functions used to make prob-

abilistic predictions, whether these distributions are binary, categorical, or

continuous. Then predictions can correspond precisely to the underlying probabil-

ity models defined by Bernoulli, discrete or Gaussian distributions—as in linear

and logistic regression, but with greater flexibility.

Viewed in this way, logistic regression is a simple neural network with no hid-

den units. The underlying optimization criterion for predicting i5 1,. . ., N labels

yi from features xi with parameters θ consisting of a matrix of weights W and a

vector of biases b is

XN
i51

2 log pðyijxi;W;bÞ1λ
XM
j51

w2
j 5

XN
i51

Lðfiðxi; θÞ; yiÞ1λRðθÞ

where the first term, Lðfiðxi; θÞ; yiÞ, is the negative conditional log-likelihood or

loss, and the second, λRðθÞ, is a weighted regularizer used to prevent overfitting.

This formulation as a loss- and regularizer-based objective function gives us

the freedom to choose either probabilistic losses or other loss functions dictated

by the needs of the application. Using the average loss over the training data,

422 CHAPTER 10 Deep learning

called the empirical risk, leads to the following formulation of the fundamental

optimization problem posed by training a deep model: minimize the empirical

risk plus a regularization term, i.e.,

arg min
θ

1

N

XN
i51

Lðfiðxi; θÞ; yiÞ1λR θð Þ
" #

:

Note that the factor N must be accounted for if one relates the regularization

weight λ here to the corresponding parameter derived from a formal probabilistic

model for the distribution. In deep learning we are often interested in examining

learning curves that show the loss or some other performance metric on a graph as a

function of the number of passes that an algorithm has taken over the data. It is much

easier to compare the average loss over a training set with the average loss over a

validation set on the same graph, because dividing by N gives them the same scale.

To see how deep networks learn, consider composing the final output function

of a network in which fkðxÞ5 fkðakðxÞÞ. This function is applied to an input activa-

tion consisting of akðxÞ. The input frequently comprises a computation of the

form aðxÞ5WhðxÞ1b, where function a(x) takes a vector argument and returns

a vector as its result, so that akðxÞ is just one of the elements of a(x). Table 10.2

gives commonly used output loss functions, output activation functions, and

underlying distributions from which they derive.

DEEP LAYERED NETWORK ARCHITECTURE

Deep neural networks compose computations performed by many layers.

Denoting the output of hidden layers by h(l)(x), the computation for a network

with L hidden layers is:

fðxÞ5 f aðL11Þ hðLÞ aðLÞ . . . hð2Þ að2Þ hð1Þ að1ÞðxÞ� �� �� �� �� �� �� ��

:

Table 10.2 Loss Functions, Corresponding Distributions, and Activation
Functions

Loss Name, Lðfiðxi ; θÞ; yiÞ5 Distribution
Name,

Pðfiðxi; θÞ; yiÞ5

Output Activation
Function,
fkðakðxÞÞ5

Squared error,PK
k51 ðfkðxÞ2ykÞ2

Gaussian,
Nðy; fðx; θÞ; IÞ

1
ð11 expð2 akðxÞÞÞ

Cross entropy,
2
PK

k51 yk log fkðxÞ1 ð12 ykÞ logð12 fkðxÞÞ½ �
Bernoulli,
Bernðy; fðx; θÞÞ

1
ð11 expð2 akðxÞÞÞ

Softmax,
2
PK

k51 yk log fkðxÞ
Discrete or
Categorical,
Catðy; fðx; θÞÞ

expðakðxÞÞPK
j51 expðajðxÞÞ

42310.1 Deep Feedforward Networks

Each preactivation function a(l)(x) is typically a linear operation with matrix

W(l) and bias b(l), which can be combined into a parameter θ:

aðlÞðxÞ5WðlÞx1bðlÞ;
aðlÞðx̂Þ5 θðlÞx̂ ; l 5 1

aðlÞðĥðl-1ÞÞ5 θðlÞĥ
ðl-1Þ

; l. 1

The “hat” notation x̂ indicates that 1 has been appended to the vector x.
Hidden-layer activation functions h(l)(x) often have the same form at each level,

but this is not a requirement.

Fig. 10.1 shows an example network. In contrast to graphical models such as

Bayesian networks where hidden variables are random variables, the hidden units

here are intermediate deterministic computations, which is why they are not

represented as circles. However, the output variables yk are drawn as circles

because they can be formulated probabilistically.

ACTIVATION FUNCTIONS

Activation functions generally operate on the preactivation vectors in an element-

wise fashion.

Table 10.3 depicts common hidden-layer activation functions, along with their

functional forms and derivatives.

While sigmoid functions have been popular, the hyperbolic tangent function is

sometimes preferred, partly because it has a steady state at 0. However, more

recently the rectify() function or rectified linear units (ReLUs) have been found to

…

xD

x2

x1 y1

y2

yK

… …

h2
(1)

h1
(L)

h2
(L)

hML

(L)

…

1 1 1

hM1

(1)

h1
(1)

FIGURE 10.1

A feedforward neural network.

424 CHAPTER 10 Deep learning

yield superior results in many different settings. Since this function is 0 for nega-

tive argument values, some units in the model will yield activations that are 0,

giving a “sparseness” property that is useful in many contexts. Moreover, the gra-

dient is particularly simple—either 0 or 1. The fact that when activated, the acti-

vation function has a gradient of exactly 1 helps address the vanishing or

exploding gradient problem—we discuss this in more detail below, under recur-

rent networks. ReLUs are a popular choice for h(l)(x), while piecewise linear

functions (the last entry of Table 10.3) have also grown in popularity for deep

learning systems. Like ReLUs, these are not differentiable at 0, but gradient

descent can be applied by using a subgradient instead, which means that h0ð0Þ can
be set to a (e.g.).

Table 10.3 Activation Functions and Their Derivatives

Name and Graph Function Derivative

sigmoid(x)

−4 −2 0 2 4

0

0.5

1 hðxÞ5 1
11 expð2 xÞ h0ðxÞ5 hðxÞ 12 hðxÞ½ �

tanh(x)

−4 −2 0 2 4
−1

−0.5

1

0.5

1 hðxÞ5 expðxÞ2 expð2 xÞ
expðxÞ1 expð2 xÞ h0ðxÞ5 12 hðxÞ2

softplus(x)

−4 −2 0 2 4
0

1

2

3

4 hðxÞ5 logð11 expðxÞÞ h0ðxÞ5 1
11 expð2 xÞ

rectify(x)

−4 −2 0 2 4
0

1

2

3

4
hðxÞ5maxð0; xÞ h0ðxÞ5 1

0
if x$ 0
if x, 0

�

pw_linear(x)

−4 −2 0 2 4
−1

0

1

2

3

4
hðxÞ5 x

ax
if x$ 0
if x, 0

�
h0ðxÞ5 1

a
if x$ 0
if x, 0

�

42510.1 Deep Feedforward Networks

Many deep learning software packages make it easy to use a variety of activa-

tion functions, including piecewise-linear ones. Some determine the gradients

needed for the backpropagation algorithm automatically, using symbolic computa-

tions built into the software.

Fig. 10.2 is a computation graph that shows the general form of a canonical

deep network architecture with several hidden layers. It illustrates how predictions

are computed, how the loss L is obtained, and how the forward pass of the back-

propagation algorithm is computed. Hidden-layer activation functions are given

by act (a(l)), and the final layer activation function is given by out (a(L11)).

BACKPROPAGATION REVISITED

Backpropagation is based on the chain rule of calculus. Consider the loss Lðfðx; θÞ; yÞ
for a single-layer network with a softmax output that corresponds exactly to the model

for multinomial logistic regression. We use multinomial vectors y, with a single

dimension yk5 1 for the corresponding class label and whose other dimensions are 0.

Define f5 f1ðaÞ; . . . ; fKðaÞ
�

, and aðx; θÞ5 a1ðx; θ1Þ; . . . ; aKðx; θKÞ
�

with

akðx; θkÞ5 θTk x, where θk is a column vector containing the kth row of the parameter

matrix θ. A softmax loss for fðaðxÞÞ is given by

L52
XK
k51

yk log fkðxÞ; fkðxÞ5
expðakðxÞÞPK
c51 expðacðxÞÞ

:

To replicate a model of the form akðx;wk;bÞ5wT
k x1 b, define x to include a

1 at the end, so that the bias parameter b is the last element of each parameter

vector θk. The chain rule in vector form gives the partial derivative with respect

to any given parameter vector θk as

@L

@θk
5

@a

@θk
@f

@a

@L

@f
5

@a

@θk
@L

@a
:

(Note that the order of terms is reversed compared to earlier applications of

the chain rule in this book.)

FIGURE 10.2

Computation graph showing forward propagation in a deep network.

426 CHAPTER 10 Deep learning

For each component of the partial derivative of the loss with respect to a,

@L

@aj
5

@

@aj
2
XK
k51

yk ak 2 log
XK
c51

expðacÞ
" #" #" #

52 yk5j 2
expðak5jÞPK
c51 expðacÞ

2
4

3
5

5 2 yj 2 pðyjjxÞ
�

52 yj 2 fjðxÞ
�

;

which implies that the vector form can be written

@L

@a
52 y2 fðxÞ½ �;

where Δ5 ½y2 fðxÞ� is often referred to as the error.

Next, since

@aj
@θk

5

@

@θk
θTk x5 x ; j5 k

0 ; j 6¼ k

8<
:

this implies that

@a

@θk
5Hk 5

0 x1 0

^ ^ ^
0 xn 0

2
4

3
5

where the vector x is stored in the kth column of the matrix. Notice that we avoid

working with the partial derivative of the vector a with respect to the matrix θ,
because it cannot be represented as a matrix—it is a multidimensional array of

numbers (a tensor).

Using the quantities derived above, we can compute

@L

@θk
5

@a

@θk
@L

@a
52

0 x1 0

^ ^ ^

0 xn 0

2
64

3
75 y2 fðxÞ½ �

52 xðyk 2 fkðxÞÞ:

This gives the gradient (as a column vector) for the vector in the kth row of the

parameter matrix. However, with a little rearrangement the gradient for the entire

matrix of parameters θ can be written compactly:

@L

@θ
52 ½y2 fðxÞ�xT

52ΔxT:

This formulates the computation of the gradient matrix as the error Δ5 ½y2 fðxÞ�
times xT.

42710.1 Deep Feedforward Networks

Consider now a network using the same activation function for all L hidden

layers, and a softmax output layer. The gradient of the kth parameter vector of the

(L1 1)th matrix of parameters is

@L

@θðL11Þ
k

5
@aðL11Þ

@θðL11Þ
k

@L

@aðL11Þ ;
@L

@aðL11Þ 52ΔðL11Þ

52
@aðL11Þ

@θðL11Þ
k

ΔðL11Þ

52HL
kΔ

ðL11Þ;

where HL
k is a matrix containing the activations of the corresponding hidden layer,

in column k, and ΔðL11Þ 5 [y2 f(x)], the error term of the output layer. The entire

matrix parameter update can be restructured as

@L

@θðL11Þ 52ΔðL11Þ ~h
T

ðLÞ:

This error term is backpropagated. Consider the gradient of the kth row of the Lth

matrix of parameters. Since the bias terms are constant, it is unnecessary to back-

propagate through them, so

@L

@θðLÞk

5
@aðLÞ

@θðLÞk

@hðLÞ

@aðLÞ
@aðL11Þ

@hðLÞ
@L

@aðL11Þ

52
@aðLÞ

@θðLÞk

@hðLÞ

@aðLÞ
@aðL11Þ

@hðLÞ
ΔðL11Þ; ΔðLÞ � @hðLÞ

@aðLÞ
@aðL11Þ

@hðLÞ
ΔðL11Þ

52
@aðLÞ

@θðLÞk

ΔðLÞ;

where ΔðLÞ is defined in terms of ΔðL11Þ. Similarly, for l# L the other ΔðlÞs can

be defined recursively in terms of Δðl11Þ as follows:

ΔðlÞ 5
@hðlÞ

@aðlÞ
@aðl11Þ

@hðlÞ
Δðl11Þ

ΔðlÞ 5DðlÞWTðl11ÞΔðl11Þ

The last simplification uses the fact that the partial derivatives involved corre-

spond to matrices that can be written

@ hðlÞ

@ aðlÞ
5DðlÞ;

@ aðl11Þ

@ hðlÞ
5WTðl11Þ;

where DðlÞ contains the partial derivatives of the hidden-layer activation function

with respect to the preactivation input. This matrix is generally diagonal, because

activation functions usually operate on an elementwise basis. The WTðl11Þ term
results from the fact that aðl11ÞðhðlÞÞ5Wðl11ÞhðlÞ 1 bðl11Þ. The gradients for the kth

428 CHAPTER 10 Deep learning

vector of parameters of the lth network layer can therefore be computed using

products of matrices of the following form

@L

@θðlÞk
52H

ðl21Þ
k DðlÞWTðl11Þ?DðLÞWTðL11ÞΔðL11Þ: (10.1)

Given these equations, the definition of fðxÞ, a loss function, and any regulari-

zation terms, deep networks formulated in this general way can be optimized

using gradient descent. The recursive definitions for ΔðlÞ reflect how the algo-

rithm propagates information back from the loss.

The above equations are amenable to numerical optimizations. For example,

matrix�matrix multiplications can be avoided in favor of matrix�vector multipli-

cations by computing ΔðlÞ 5DðlÞðWTðl11ÞΔðl11ÞÞ. Observing that most hidden-layer

activation functions give a diagonal form for DðlÞ, the matrix�vector multiply can

be transformed into an elementwise product, ΔðlÞ 5dðlÞ}ðWTðl11ÞΔðl11ÞÞ, where
} is elementwise and vector d(l) is created by extracting the elements from

the diagonal of DðlÞ. Using our observations above we can see here that the entire

parameter matrix update at each level has the following simple form:

@L

@θðlÞ
52ΔðlÞĥ

T

ðl21Þ:

When l5 1, ĥð0Þ 5 x̂, the input data with a 1 appended.

Fig. 10.3 shows the backward computation or error “propagation” step, while

Fig. 10.4 shows the final computations required for gradient-based learning.

COMPUTATION GRAPHS AND COMPLEX NETWORK STRUCTURES

For a simple feedforward network learning takes place in two phases: a forward

pass and a backward pass. Furthermore, using vector notation, we saw above that

the gradient computations decompose into a simple chain of matrix products.

T T

FIGURE 10.3

Backpropagation in a deep network (the forward computation is shown with gray arrows).

42910.1 Deep Feedforward Networks

But what if the graph does not have a simple layered structure? It turns out

that more complex computations consisting of applying functions to intermediate

results can also be represented by computation graphs. The Computation Graphs

and Backpropagation subsection of Appendix A.1 gives an example of a more

advanced computation for which finding the gradients needed for backpropagation

can be understood and visualized using a computation graph.

Implementing general mechanisms for backpropagation efficiently can become

quite complex. Using the concept of a computation graph, gradient information

“simply” needs to be propagated along the path found by reversing the arrows in the

graph used to define the steps of the forward-propagation of information. Many soft-

ware packages use interleaved forward propagation and backward propagation phases

within computation graphs. Some allow users to define complex network structures in

such a way that the system can obtain the required derivatives automatically, and per-

form computations efficiently using libraries that call graphics processing units.

In principle, learning in a deep network could be by gradient descent or more

sophisticated methods that exploit higher-order derivatives. However, in practice a var-

iation of stochastic gradient descent based on “mini-batches” is by far the most popular

method, such that software packages and implementations are often optimized assum-

ing that this will be used. We discuss this method, and other key practical aspects of

training deep networks, in Section 10.2.

CHECKING BACKPROPAGATION IMPLEMENTATIONS

An implementation of the backpropagation algorithm can be checked for correct-

ness by comparing the analytic values of gradients with those computed

x

b(1)

L

W
= hT

a(1)

W(1)

L

W(1) = (1)x T

h(l-1)

(l-1)

...

... ...

......

L

W
!!

b
L

W
LL

W(1)

L

b(1)

L

b(1) = (1) L

b
=

b(l)

a (l)

(l)

(l) (l)
(l) (l)

(l) b(l) (L+1) (L+1)

h(L)

b(L+1)

a f

y

L(L+1)

W(L+1)

(L+1)

D(1)

(1)

W
(l)

(l)

D

...

FIGURE 10.4

Parameter updates that follow the forward and backward propagation steps (shown with

gray arrows).

430 CHAPTER 10 Deep learning

numerically. For example, one could add and subtract a small perturbation ε to

each parameter θ and then compute the symmetric finite difference approximation

to the derivative of the loss:

@L

@θ
� Lðθ1 εÞ2 Lðθ2 εÞ

2ε
;

where the error in the approximation is Oðε2Þ.

10.2 TRAINING AND EVALUATING DEEP NETWORKS
When working with deep learning, it is vital to have separate training, test, and

validation sets. The validation set is used to tune a model’s hyperparameters, for

model selection, and also to prevent overfitting by performing early stopping.

EARLY STOPPING

Chapter 7, Extending instance-based and linear models, mentioned that “early

stopping” is a simple way of alleviating overfitting during training. Deep learning

utilizes high-capacity architectures, which are susceptible to overfitting even

when data is plentiful, and early stopping is standard practice even when other

methods to reduce overfitting are employed, such as regularization and dropout

(discussed below). This is done by monitoring learning curves that plot the aver-

age loss for the training and validation sets as a function of epoch. The key is to

find the point at which the validation set average loss begins to deteriorate.

Fig. 10.5 plots a pair of training set and validation set curves, although with

mini-batch-based stochastic gradient descent they are usually noisier. To combat

this, model parameters can be retained over a window of recent updates in order

to select the final version to be applied to the test set.

A
ve

ra
ge

 lo
ss

Validation
set curve

Training
set curve

Epoch

Early stopping point

FIGURE 10.5

Typical learning curves for the training and validation sets.

43110.2 Training and Evaluating Deep Networks

People often use one of the standard loss function formulations for neural net-

work outputs simply because it is already integrated into software tools. However,

the underlying goal of learning may be different: to minimize the classification

error, or perhaps to optimize some combination of precision and recall. In these

cases it is important to monitor the true evaluation metric as well as the average

loss, to gain a clearer idea as to whether the model is overfitting the training set.

Furthermore, it can be instructive to determine whether the model can classify the

data perfectly by adding more capacity and stopping at the appropriate point.

VALIDATION, CROSS-VALIDATION, AND HYPERPARAMETER TUNING

Hyperparameters are tuned by identifying what settings lead to best performance

on the validation set, with early stopping. Common hyperparameters include the

strength of parameter regularization, model complexity in terms of the number of

hidden units and layers and their connectivity, the form of activation functions,

and parameters of the learning algorithm itself. Because of the many choices

involved, performance monitoring on validation sets assumes an even more cen-

tral role than it does with traditional machine learning methods.

As usual, the test set should be set aside for a truly final evaluation, because

repeated rounds of experiments using test set data would give misleading esti-

mates of performance on fresh data. For this reason, the research community has

come to favor public challenges with hidden test-set labels, a development that

has undoubtedly helped gauge progress in the field. However, controversy arises

when participants submit multiple entries, and some favor a model where partici-

pants submit code to a competition server, so that the test data itself is hidden.

The use of a validation set is different from using k-fold cross-validation to

evaluate a learning technique or to select hyperparameters. As Section 5.3

explained, cross-validation involves creating multiple training and testing parti-

tions. But data sets for deep learning tend to be so massive that a single large

test set adequately represents a model’s performance, reducing the need for

cross-validation—and since training often takes days or weeks, even using

graphics processing units, cross-validation is impractical anyway.

To obtain the best possible results, one needs to tune hyperparameters, usually

with a single validation set extracted from the training set. However, there is a

dilemma: omitting the validation set from final training can reduce performance

in the test. It is advantageous to train on the combined training and validation

data, but this risks overfitting. One solution is to stop training after the same num-

ber of epochs that led to the best validation set performance; another is to monitor

the average loss over the combined training set and stop when it reaches the level

it was at when early stopping was performed using the validation set.

Hyperparameters in deep learning are often tuned heuristically by hand, or

using grid search. An alternative is random search, where instead of placing a reg-

ular grid over hyperparameter space, probability distributions are specified from

which samples are taken. Another approach is to use machine learning and

432 CHAPTER 10 Deep learning

Bayesian techniques to infer the next hyperparameter configuration to try in a

sequence of experimental runs.

We have been talking about tuning model hyperparameters, such as the weight

used for the regularization term. However, many of the parameters and choices

that arise below can be viewed as learning algorithm hyperparameters that could

also be tuned. In practice, they are often chosen during informal manual trials,

but they could be determined by automated searching using validation sets as a

guide.

MINI-BATCH-BASED STOCHASTIC GRADIENT DESCENT

Section 7.2 introduced the method of stochastic gradient descent. For convex

functions such as the one used in logistic regression with L2 regularization, and a

learning rate that decays over time t, it can be shown that the approximate gradi-

ents converge at a rate that is of the order 1/t. Earlier in this chapter we remarked

on the fact that deep learning architectures are often optimized using mini-batch-

based stochastic gradient descent. We now explain this technique.

Stochastic gradient descent updates the model parameters according to the gra-

dient computed from one example. The mini-batch variant uses a small subset of

the data and bases updates to parameters on the average gradient over the exam-

ples in the batch. This operates just like the regular procedure: initialize the para-

meters, enter a parameter update loop, and terminate by monitoring a validation

set. However, in contrast to standard stochastic gradient descent the main loop

iterates over mini-batches that have been obtained from the training set, and

updates the parameters after processing each batch. Normally these batches are

randomly selected disjoint subsets of the training set, perhaps shuffled after each

epoch, depending on the time required to do so.

Each pass through a set of mini-batches that represent the complete training

set is an epoch. Using the empirical risk plus a regularization term as the objec-

tive function, after processing a mini-batch the parameters are updated by

θnew’θ2 ηt
1

Bk

X
iAI

@

@θ
Lðf ðxi; θÞ; yiÞ

� �
1

Bk

N
λ

@

@θ
RðθÞ

" #
;

where ηt is the learning rate (which may depend on the epoch t); the kth batch

has Bk examples and is represented by a set I5 Iðt; kÞ of indices into the original

data; N is the size of the training set; Lðf ðxi; θÞ; yiÞ is the loss for example xi, label
yi and parameters θ; and RðθÞ is the regularizer, with weight λ. At one extreme,

where a single mini-batch contains the whole training set, is the standard update

for batch gradient descent; while at the other, with a batch size of 1, is the stan-

dard single-example stochastic gradient descent update.

Mini-batches typically contain two to several hundred examples, although for

large models the choice may be constrained by computational resources. The

batch size often influences the stability and speed of learning; some sizes work

43310.2 Training and Evaluating Deep Networks

particularly well for a given model and data set. Sometimes a search is performed

over a set of potential batch sizes to find one that works well, before launching a

lengthy optimization.

The mix of class labels in the batches can influence the result. For unbalanced

data there may be an advantage in pretraining the model using mini-batches in

which the labels are balanced, and then fine-tuning the upper layer or layers using

the unbalanced label statistics. This can involve implementing a sampling scheme

that ensures that as one cycles through examples they are presented to the learn-

ing procedure in an unbiased way.

As with regular gradient descent, invoking momentum can help the optimiza-

tion escape plateaus in the loss function. If the current gradient of the loss is

rθLðθÞ, momentum is implemented by computing a moving average, and updat-

ing the parameters by Δθ52 ηrθLðθÞ1αΔθold, where αA½0; 1�. Since the mini-

batch approach operates on a small subset of the data, this averaging can allow

information from other recently seen mini-batches to contribute to the current

parameter update. A momentum value of 0.9 is often used as a starting point, but

it is common to hand-tune it, the learning rate, and the schedule used to modify

the learning rate during the training process.

PSEUDOCODE FOR MINI-BATCH BASED STOCHASTIC
GRADIENT DESCENT

Given data xi; yi, i5 1,. . ., N, loss function Lðf ðxi; θÞ; yiÞ with parameters θ, and a

parameter regularization term RðθÞ weighted by λ, we wish to optimize the empir-

ical risk plus regularization term, i.e.,

1=N
XN
i51

Lðf ðxi; θÞ; yiÞ1λRðθÞ:

The pseudocode in Fig. 10.6 accomplishes this. It uses K mini-batches indexed

by the sets Ik, each of which contain Bk examples. The learning rate ηt may

depend on time t. The gradient vector is g, and the update Δθ incorporates a

momentum term. Mini-batches are often created before entering the while loop;

however, in some cases shuffling within the loop yields an improvement.

LEARNING RATES AND SCHEDULES

The learning rate η is a critical choice when using mini-batch based stochastic

gradient descent. Small values such as 0.001 often work well, but it is common to

perform a logarithmically spaced search, say in the interval [1028, 1], followed

by a finer grid or binary search.

The learning rate may be adapted over epochs t to give a learning rate sched-

ule ηt. A fixed learning rate is often used in the first few epochs, followed by a

decreasing schedule such as

434 CHAPTER 10 Deep learning

ηt 5
η0

11 εt
; or ηt 5

η0
tε
; ð0:5, ε# 1Þ:

There are however many heuristics for adapting learning rates by hand during

training. For example, the AlexNet model that won the ImageNet 2012 challenge

divides the rate by 10 when the validation error rate ceases to improve. The intui-

tion is that a model may make good progress with a given learning rate but even-

tually become stuck, jumping around a local minimum in the loss function

because the parameter steps are too large. Monitoring performance on the valida-

tion set is a good guide as to when the learning rate should be changed.

Second-order analysis based on a Taylor expansion of the loss to higher-order

terms can also help explain why smaller rates may be desirable in the final stages

of learning. If stochastic gradient descent is used it can be shown that the learning

rate must be reduced for the approach to yield results consistent with batch gradi-

ent descent.

REGULARIZATION WITH PRIORS ON PARAMETERS

Many standard techniques for parameter regularization are applicable to deep net-

works. We mentioned earlier that L2 regularization corresponding to a Gaussian

prior on parameters has been used for neural networks under the name “weight

decay.” As with logistic regression, such regularization is usually applied just to

the weights in a network, not to the biases. Alternatively, a weighted combination

of L2 and L1 regularization, λ2RL2 ðθÞ1λ1RL1 ðθÞ, can be applied to the weights in

a network, as in the elastic net model discussed in Chapter 9, Probabilistic meth-

ods. Although the loss functions used in deep learning may not generally be con-

vex, such regularizers can nevertheless be implemented.

= o // initialize parameters

= 0
t = 0

while converged == FALSE

 {I1, , IK } = shuffle(X) // create K mini - batches

 for k = 1 K

g =
1

Bk

L(f (x i;),y i)
i Ik

+ Bk

N
R()

tg +
+

 end

 t = t +1

end

FIGURE 10.6

Pseudocode for mini-batch based stochastic gradient descent.

43510.2 Training and Evaluating Deep Networks

DROPOUT

Dropout is a form of regularization that randomly deletes units and their connec-

tions during training, with the intention of reducing the degree to which hidden

units coadapt and thus combat overfitting. It has been argued that this corresponds

to sampling from an exponential number of networks with shared parameters

from which some connections are missing. One then averages over them at test

time by using the original network without any dropped-out connections but with

scaled-down weights. If a unit is retained with probability p during training, its

outgoing weights are rescaled or multiplied by a factor of p at test time. In effect,

by performing dropout a neural network with n units can be made to behave like

an ensemble of 2n smaller networks.

One way to implement dropout is with a binary mask vector m(l) for each hid-

den layer l in the network: the dropped out version of h(l) masks out units from

the original version using elementwise multiplication, h
ðlÞ
d 5 hðlÞ}mðlÞ. If the acti-

vation functions lead to diagonal gradient matrices, the backpropagation update is

ΔðlÞ 5 dðlÞ}mðlÞ}ðWðl11ÞΔðl11ÞÞ.

BATCH NORMALIZATION

Batch normalization is a way of accelerating training and many studies have found

it to be important to use to obtain state-of-the-art results on benchmark problems.

With batch normalization each element of a layer in a neural network is normalized

to zero mean and unit variance, based on its statistics within a mini-batch. This can

change the network’s representational power, so each activation is given a learned

scaling and shifting parameter. Mini-batch-based stochastic gradient descent is

modified by calculating the mean μj and variance σ2
j over the batch for each hidden

unit hj in each layer and then normalizing the units, scaling them using the learned

scaling parameter γj and shifting them by the learned shifting parameter βj:

ĥj’γj
hj 2μjffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
j 1 ε

q 1βj:

Of course, to update the scaling and shifting parameters one needs to backpro-

pagate the gradient of the loss through these additional parameters.

PARAMETER INITIALIZATION

The strategy used to initialize parameters before training commences can be

deceptively important. Bias terms are often initialized to 0, but initializing the

weight matrices can be tricky. For example, if they are initialized to all 0s, it can

be shown that the tanh activation function will yield zero gradients. If the weights

are all the same, the hidden units will produce the same gradients and behave the

same as each other, wasting the model’s capacity.

436 CHAPTER 10 Deep learning

One solution is to initialize all elements of the weight matrix from a uniform

distribution over the interval [2b, b]. Different methods have been proposed for

selecting the value of b, often motivated by the idea that units with more inputs

should have smaller weights. For example, for a given layer l one might scale b

by the inverse of the square root of the dimensionality of hðl21ÞðxÞ, known as the

“fan-in size.” Or one might incorporate the fan-out size as well.

The weight matrices of ReLUs have been successfully initialized using a zero-

mean isotropic Gaussian distribution with standard deviation of 0.01. This strat-

egy has also been used for training Gaussian restricted Boltzmann machines

(RBMs), which are discussed later in this chapter.

UNSUPERVISED PRETRAINING

Unsupervised pretraining can be an effective way to both initialize and regularize

a feedforward network, especially when the volume of labeled data is small rela-

tive to the model’s capacity. The general idea is to model the distribution of unla-

beled data using a method that allows the parameters of the learned model to be

somehow transferred to the network, or used to initialize or regularize it. We will

return to the subject of unsupervised learning in Section 10.4 and Section 10.5.

However, the use of activation functions such as ReLUs that improve gradient

flow in deep networks, along with good parameter initialization techniques, miti-

gates the need for sophisticated pretraining methods.

DATA AUGMENTATION AND SYNTHETIC TRANSFORMATIONS

Data augmentation can be critical for best results. As Table 10.1 illustrates, aug-

menting even a large data set with transformed training data can increase perfor-

mance significantly—and not just for deep architectures. A simple transformation

for visual problems is simply to jiggle the image. If the object to be classified can

be cropped out of a larger image, random bounding boxes can be placed around

it, adding small translations in the vertical and horizontal directions. By reducing

the cropped image, larger displacements can be applied. Other translations such

as rotation, scale change, and shearing are appropriate too. In fact, there is a hier-

archy of rigid transformations that increase in complexity as parameters are

added. One augmentation strategy is to apply them to the original image, then

crop a patch of given size out of the distorted result.

10.3 CONVOLUTIONAL NEURAL NETWORKS
CNNs are a special kind of feedforward network that has proven extremely suc-

cessful for image analysis. When classifying images, filtering them—e.g., by

applying a filter for edge detection—can provide a useful set of spatially

43710.3 Convolutional Neural Networks

organized features. Imagine now if one could learn many such filters jointly,

along with the other parameters of the neural network. Each filter can be imple-

mented by multiplying a relatively small spatial zone of the image by a set of

weights and feeding the result to an activation function like those discussed above

for vanilla feedforward networks. Because this filtering operation is simply

repeated around the image using the same weights, it can be implemented using

so-called convolution operations. The result is a CNN, for which it is possible to

learn both the filters and the classifier using gradient descent and the backpropa-

gation algorithm.

In a CNN, once an image has been filtered by several learnable filters, each

filter bank’s output is often aggregated across a small spatial region, using the

average or maximum value. Aggregation can be performed within nonoverlapping

regions, or using subsampling, yielding a lower-resolution layer of spatially orga-

nized features—a process that is sometimes referred to as “decimation.” This

gives the model a degree of invariance to small differences as to exactly where a

feature has been detected. For example, if aggregation uses the max operation, a

feature is activated if it is detected anywhere in the pooling zone.

We have seen how synthetic transformations allowed deep feedforward net-

works to yield state-of-the-art performance in the MNIST evaluation, and that

cropping small regions of an image can be a useful, easy-to-implement transfor-

mation. Although this can be applied to any classification technique, it is particu-

larly effective for training CNNs. Random cropping positions can be used, or

deterministic strategies such as cropping from the corners and center of the

image. The same strategy can be used at test time, where the model’s predictions

are averaged over crops from the test image. These networks are designed to have

a certain degree of translational invariance, but augmenting data through such

global transformations can increase performance significantly.

Fig. 10.7 shows a typical network structure. A smaller part of the original

image is subjected to repeated phases of convolutional filtering, pooling, and dec-

imation before being passed to a fully connected, nonconvolutional multilayer

perceptron, which may have a number of hidden layers prior to making a final

prediction.

CNNs are usually optimized using mini-batch-based stochastic gradient

descent, and the practical discussion above about learning deep networks applies

here too. Resource issues related to the amount of CPU versus GPU memory

available are often important to consider, particularly when processing videos.

THE IMAGENET EVALUATION AND VERY DEEP
CONVOLUTIONAL NETWORKS

The ImageNet challenge has been crucial in demonstrating the effectiveness of

deep CNNs. The problem is to recognize object categories in typical imagery that

one might find on the Internet. The 2012 ImageNet Large Scale Visual

438 CHAPTER 10 Deep learning

Recognition Challenge (ILSVRC) classification task is to classify imagery

obtained from Flickr and other search engines into the correct one of 1000 possi-

ble object category classes. This task serves as a standard benchmark for deep

learning. The imagery was hand-labeled based on the presence or absence of an

object belonging to these categories. There are 1.2 million images in the training

set with 732�1300 training images available per class. A random subset of

50,000 images was used as the validation set and 100,000 images were used for

the test set, with 50 and 100 images per class, respectively.

Visual recognition methods not based on deep CNNs hit a plateau in perfor-

mance on this benchmark. The “top-5 error” is the percentage of times that the tar-

get label does not appear among the 5 highest-probability predictions, and many

methods cannot get below 25%. Table 10.4 summarizes the performance of differ-

ent CNN architectures as a function of network depth for the ImageNet challenge.

Note that CNNs dramatically outperform the 25% plateau, and that increasing net-

work depth can further improve performance. Smaller filters have been found to

lead to superior results in deep networks: the ones with 19 and 152 layers use filters

of size 33 3. The performance for human agreement has been measured at 5.1%

top-5 error for ImageNet, so deep CNNs are able to outperform people on this task.

FROM IMAGE FILTERING TO LEARNABLE CONVOLUTIONAL LAYERS

When an image is filtered, the output is another image that contains the filter’s

response at each spatial location, e.g., one with its edges emphasized. We could

FIGURE 10.7

Typical convolutional neural network architecture.

Table 10.4 Convolutional Neural Network Performance on the ImageNet
Challenge

Name Layers Top-5 Error (%) References

AlexNet 8 15.3 Krizhevsky et al. (2012)
VGG Net 19 7.3 Simonyan and Zisserman (2014)
ResNet 152 3.6 He et al. (2016)

43910.3 Convolutional Neural Networks

also think of such an image as a feature map that indicates where certain features

were detected in the image—e.g., edges. However, in a deep network the initial

filtered images or feature maps are subjected to many further levels of filtering.

Over many successive filter applications this produces spatially organized neurons

that respond to much more complex inputs, and the term “feature map” becomes

more descriptive.

When viewed as layers in a neural network that takes an image as input,

these filtering operations can be viewed as constraining spatially organized

neurons to respond only to features that are within a limited region of the input

known as the neuron’s receptive field. When groups of such neurons respond

in the same way to the same types of input we say they have shared

parameters—but each neuron forming the feature map responds only when

certain inputs are detected at corresponding spatially restricted receptive fields

in the image.

Consider a simple example with a 1D vector x. A filtering operation can be

implemented by multiplying it by a matrix W that has a special structure, such as

y5Wx

5

w1 w2 w3

w1 w2 w3

&

w1 w2 w3

2
6664

3
7775;

where the blank elements are zero. This matrix corresponds to a simple filter hav-

ing only three nonzero coefficients and a “stride” of one. To account for samples

at the beginning and end of the input, or pixels at the edge of the image in the 2D

case, zeros can be placed before the start and end, or around the image

boundary—e.g., a zero could be added to the start and end of x above, in which

case the output would have the same size as the input. If we dispensed with zero-

padding, the valid part of the convolution would be restricted to filter responses

computed from input data.

If the rows of a 2D image were packed into one long column vector, a version

of this same 33 3 filter could be achieved by a much larger matrix W, having

two other sets of three coefficients further along each row. The result would

implement the multiplication and additions performed by the matrix encoding of

a 2D filter. This could be thought of in another way, as an operation known in

signal processing as the cross-correlation or sliding dot product, which is closely

related to a computation known as convolution.

Suppose the filter above is centered by giving the first vector element an index

of 21, or, in general, an index of 2K, where K is the “radius” of the filter. The

1D filtering is then

y½n�5
XK
k52K

w½k�x½n1 k�:

440 CHAPTER 10 Deep learning

Directly generalizing this filtering to a 2D image X and filter W gives the

cross-correlation, Y5W�X, for which the result for row r and column c is

Y½r; c�5
XJ
j52J

XK
k52K

W½j; k�X½r1 j; c1 k�:

The convolution of an image with a filter, Y5W�X, is obtained by flipping

the sense of the filter,

Y½r; c�5
XJ
j52J

XK
k52K

W½2 j; 2 k�X½r1 j; c1 k�:

As an example, consider the task of detecting edges in an image. A well-

known technique is to filter it with so-called “Sobel” filters, which involve cross-

correlating or convolving it with:

Gx 5
21 0 1

22 0 2

21 0 1

2
4

3
5; Gy 5

21 22 21

0 0 0

1 2 1

2
4

3
5:

These particular filters behave much like derivatives of the image. Fig. 10.8

shows the result: a photograph; a version filtered with the Sobel operator Gx,

which emphasizes vertical edges; a version filtered with the Sobel operator Gy,

which emphasizes horizontal edges; and the result of computing G5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x 1 G2
y

q
.

The center two images have been scaled so that midgray corresponds to zero,

while the intensity is flipped in the last one to make large values darker and white

zero.

Rather than using predetermined filters, convolutional networks jointly learn

sets of convolutional filters and a classifier that takes them as input, everything

being learned together by backpropagation. By convolving the image with filters

successively within the layers of a neural network spatially organized hidden

layers can be created, which, as discussed above, could be thought of as feature

activity maps indicating where a given feature type has been detected within the

FIGURE 10.8

Original image; filtered with the two Sobel operators; magnitude of the result.

44110.3 Convolutional Neural Networks

image. While filters and activation functions are not specifically constructed as

shown in Fig. 10.8, edge-like filters and texture-like filters are frequently

observed in the early layers of CNNs that have been trained using natural

images. Since each layer in a CNN involves filtering the feature map produced

by the layer below, as one moves upwards the receptive field of any given

neuron or feature detector becomes larger. As a result, after learning, higher-

level layers detect larger features, which often correspond to small pieces of

objects in midlevel layers, and quite large pieces of objects toward the top

of the network. Fig. 10.9 shows examples of the strongest activation of some

random neurons in each layer, projecting the activation back into image space

using deconvolution.

Spatial pooling operations applied to the result of a convolutional network

are frequently used to impart a degree of local spatial invariance to the precise

locations where features have been detected. If pooling is done by averaging, it

can be implemented using convolutions. CNNs often apply multiple layers of

convolution, followed by pooling and decimation layers. It is common to have

about three phases of pooling and decimation. After the last pooling and

decimation layer the resulting feature maps are typically fed into a multilayer

perceptron. Since decimation reduces the size of feature maps, each such

operation reduces the size of subsequent activity maps. Extremely deep con-

volutional network architectures (having more than 8 layers) typically repeat

convolutional layers many times before applying the pooling and decimation

operations.

Fig. 10.10 shows a numerical example of the key operations of convolution,

pooling, and decimation. First, an image is convolved with the (flipped) filter

FIGURE 10.9

Examples of what random neurons detect in different layers of a convolutional neural

network using the visualization approach of Zeiler and Fergus (2013). Underlying imagery

kindly provided by Matthew Zeiler.

442 CHAPTER 10 Deep learning

shown on the left. The curved rectangular regions in the image matrix depict a

random set of image locations. The next matrix shows the result of the convolu-

tion operation, and here the maximum values within small 23 2 regions are indi-

cated in bold. Next the result is pooled, using max-pooling in this case; and then

the pooled matrix is decimated by a factor of two to yield the final result.

CONVOLUTIONAL LAYERS AND GRADIENTS

Let us consider how to compute the gradients needed to optimize a convolutional

network. At a given layer we have i5 1,. . ., N(l) feature filters and corresponding

feature maps. The convolutional kernel matrices Ki contain flipped weights with

respect to kernel weight matrices Wi. With activation function act(), and for each

feature type i a scaling factor gi and bias matrix Bi, the feature maps are matrices

Hi(Ai(X)) and can be visualized as a set of feature map images given by

Hi 5 gi act½Ki
�X1Bi�5 gi act½AiðXÞ�:

The loss L5 LðHðlÞ
1 ;?;HðlÞ

NðlÞ Þ is a function of the N(l) feature maps for a given

layer. Define h5 vec(H), x5 vec(X), a5 vec(A), where the vec() function

returns a vector with stacked columns of the given matrix argument. Choose an

act() function that operates elementwise on an input matrix of preactivations and

has scale parameters of 1 and biases of 0. The partial derivatives of the hidden

layer output with respect to X of the convolutional units are

@L

@X
5
X
i

X
j

X
k

@aijk
@X

@Hi

@aijk

@L

@Hi

5
X
i

@ai
@x

@hi
@ai

@L

@hi
5
X
i

½Wi
�Di�;

where Di 5 dL=@Ai is a matrix containing the partial derivative of the element-

wise act() function’s input with respect to its preactivation value for the ith fea-

ture type, organized according to spatial positions given by row j and column k.

Intuitively, the result is a sum of the convolution of each of the (zero padded)

FIGURE 10.10

Example of the convolution, pooling, and decimation operations used in convolutional

neural networks.

44310.3 Convolutional Neural Networks

filters Wi with an image-like matrix of derivatives Di. The partial derivatives of

the hidden layer output are

@L

@Wi

5
X
j

X
k

@aijk
@Wi

@Hi

@aijk

@L

@Hi

5 Xy�Di

�

;

where Xy is the row- and column-flipped version of the input X (if the convolu-

tion is written as a linear matrix operation, this will involve just a matrix

transpose).

POOLING AND SUBSAMPLING LAYERS AND GRADIENTS

Consider applying a pooling operation to a spatially organized feature map. The

input consists of matrices Hi for each feature map, with elements hijk. The max

pooled and average pooled feature maps are matrices Pi with elements pijk given by

pi;j;k 5 max
rARj;k;
cACj;k

hi;r;c; pi;j;k 5
1

m

X
rARj;k;
cACj;k

hi;r;c;

respectively, where Rj,k and Cj,k are sets of indices that encode the pooling regions

for each location j, k, and m is the number of elements in the pooling region.

Although these pooling operations do not include a subsampling step, they typi-

cally account for boundary effects either by creating a matrix Pi that is slightly

smaller than the input matrix Hi, or by padding with zeros. The subsampling step

either samples every nth output, or avoids needless computation by only evaluat-

ing every nth pooling computation.

What are the consequences of backpropagating gradients through layers con-

sisting of max or average pooling? In the former case, the units that are responsi-

ble for the maximum within each zone j, k —the “winning units”—are given by

fr� ; c� gj;k 5 arg max
rARj;k ; cACj;k

hi;r;c:

For nonoverlapping zones, the gradient is propagated back from the pooled

layer Pi to the original spatial feature layer Hi, flowing from each pijk to just the

winning unit in each zone. This can be written

@L

@hi;rj;ck
5

0 rj 6¼ r
�
j ; ck 6¼ c

�
k

@L

@pi;j;k
rj 5 r

�
j ; ck 5 c

�
k
:

8><
>:

In the latter case, average pooling, the averaging operation is simply a special

type of convolution with a fixed kernel that computes the (possibly weighted)

average of pixels in a zone, so the required gradients are computed using the

result above. These various pieces are the building blocks that allow for the

implementation of a CNN according to a given architecture.

444 CHAPTER 10 Deep learning

IMPLEMENTATION

Convolutions are particularly well suited to implementation on graphics hardware.

Since graphics hardware can accelerate convolutions by an order of magnitude or

more over CPU implementations, it plays an important role in training CNNs. An

experimental turn-around time of days rather than weeks makes a huge difference

to model development times.

It can also be challenging to construct software for learning a CNN in such a

way that alternative architectures can be explored. Although early GPU imple-

mentations were hard to extend, newer tools allow for both fast computation and

flexible high-level programming primitives. Some of these tools are discussed at

the end of this chapter; many of them allow gradient computations and the back-

propagation algorithm for large networks to be almost completely automated.

10.4 AUTOENCODERS
Neural networks can also be used for unsupervised learning. An “autoencoder” is

a network that learns an efficient coding of its input. The objective is simply to

reconstruct the input, but through the intermediary of a compressed or reduced-

dimensional representation. If the output is formulated using probability, the

objective function is to optimize pðx5 x̂j~xÞ, i.e., the probability that the model

gives a random variable x the value x̂ given the observation ~x, where x̂5 ~x. In
other words, the model is trained to predict its own input—but it must map it

through a representation created by the hidden units of a network.

Fig. 10.11 shows a simple autoencoder, where pðx̂j~xÞ5 pðx5 x̂j~x; fð~xÞÞ. The
parameters of the final probabilistic prediction are given by the last layer’s

…

…˜ x 1 ˜ x 2 ˜ x M

a(1) =W˜ x + b(1)

e= h(1) = act(a(1))

a(2) =WTh+ b(2)

d= h(2) = out(a(2))

p(ˆ x | ˜ x) = p(x= ˆ x | ˜ x ;f (˜ x))

f(˜ x) = f d e(˜ x)()()

ˆ x 1 ˆ x 2 ˆ x M

h1 h2 hL

where

FIGURE 10.11

A simple autoencoder.

44510.4 Autoencoders

activation function fð~xÞ5 f d eð~xÞð Þð Þ, which is created using a neural network con-

sisting of an encoding step eð~xÞ5 actðW~x1 bð1ÞÞ followed by a decoding step

d5 outðWTe1 bð2ÞÞ, using the same matrix W in both steps. Each function has

its own bias vector b(i). Since the idea of an autoencoder is to compress the data

into a lower-dimensional representation, the number L of hidden units used for

encoding is less than the number M in the input and output layers. Optimizing the

autoencoder using the negative log probability over a data set as the objective

function leads to the usual forms. Like other neural networks it is typical to opti-

mize autoencoders using backpropagation with mini-batch based stochastic gradi-

ent descent.

Both the encoder activation function act() and the output activation function

out() in Fig. 10.11 could be defined as the sigmoid function. It can be shown that

with no activation function, h(i)5 a(i), the resulting “linear autoencoder” will find

the same subspace as principal component analysis, assuming a squared-error loss

function and normalizing the data using mean centering. This autoencoder can be

shown to be optimal in the sense that any model with a nonlinear activation func-

tion would require a weight matrix with more parameters to achieve the same

reconstruction error. It is known that even with a nonlinear activation function

such as the sigmoid function, optimization will tend toward solutions where the

network operates in the linear regime of the sigmoid, replicating the behavior of

principal component analysis.

This might seem discouraging: linear autoencoders are no better than princi-

pal component analysis. However, using a neural network with even one hidden

layer to create an encoding can construct much more flexible transformations,

and there is growing evidence that deeper models can learn more useful repre-

sentations. When building autoencoders from more flexible models, it is com-

mon to use a bottleneck in the network to produce an under-complete

representation, providing a mechanism to obtain an encoding of lower dimen-

sion than the input.

Deep autoencoders are able to learn low-dimensional representations with

smaller reconstruction error than principal component analysis using the same

number of dimensions. They are constructed by using L layers to create a hidden

layer representation hðLÞc of the data, and following this with a further L layers

h
ðL11Þ
d . . . hð2LÞd to decode the representation back into its original form, as shown

in Fig. 10.12. The j5 1,. . ., 2L weight matrices for each of the i5 1,. . ., L encod-

ing and decoding layers are constrained by WL1i 5WT
L112i.

A deep encoder for pðx5 x̂j~xÞ5 pðx̂; fdð~xÞÞ has the form
fðxÞ5 fdðað2LÞd ð. . . hðL11Þ

d ðaðL11Þ
d ðhðLÞc ðaðLÞe ð. . .hð1Þe ðað1Þe ðxÞÞÞÞÞÞÞÞ:

Fig. 10.13 compares data projected into a 2D space learned in this way with

2D principal component analysis for a particular data set. Since the underlying

autoencoder is nonlinear, the network can arrange the learned space in such a

way that it better separates natural groupings of the data.

446 CHAPTER 10 Deep learning

T T

c

de

FIGURE 10.12

A deep autoencoder with multiple layers of transformation.

FIGURE 10.13

Low-dimensional principal component space (left) compared with one learned by a deep

autoencoder (right).

Adapted from Hinton and Salakhutdinov, (2006).

44710.4 Autoencoders

PRETRAINING DEEP AUTOENCODERS WITH RBMs

Deep autoencoders are an effective framework for nonlinear dimensionality

reduction. Once such a network has been built, the top-most layer of the encoder,

the code layer hc, can be input to a supervised classification procedure. If a neural

network classifier is used, the entire deep autoencoder network can be discrimina-

tively fine-tuned using gradient descent. In effect, the autoencoder approach is

used to pretrain a neural network classifier.

However, it is difficult to optimize autoencoders with multiple hidden

layers in both encoder and decoder. It is well known that initializing any deep

neural network with weights that are too large leads to poor local minima;

while initialization with weights that are too small can lead to small gradients

that make learning slow. One approach is to be very careful about the choices

of activation function and initialization. However, this has been found difficult

in practice.

Another approach is based on pretraining by stacking two-layered RBMs.

RBMs are a generalized form of probabilistic PCA with binary hidden variables

and binary or continuous observed variables that can perform unsupervised learn-

ing; they are discussed further in Section 10.5; To use them for pretraining, start

by learning a 2-layer RBM from the data, project the data into its hidden-layer

representation, use that to train another RBM, and repeat the process until the

encoding layer is reached. The details of how this is done is described in

Section 10.5. The parameters of each two-layer network are then used to initialize

the parameters of an autoencoder with a similar structure that has nonstochastic

sigmoid hidden units.

DENOISING AUTOENCODERS AND LAYERWISE TRAINING

One can also use greedy layerwise training strategies involving plain autoenco-

ders to train deep autoencoders, but attempts to do this for networks of even

moderate depth have encountered difficulties. Procedures based on stacking

denoising autoencoders have been found to work better. Denoising autoencoders

are trained to remove different types of noise that has been added synthetically

to their inputs. Autoencoder inputs can be corrupted with noise such as:

Gaussian noise; masking noise, where some elements are set to 0; and salt-and-

pepper noise, where some elements are set to minimum and maximum input

values (such as 0 and 1).

Using autoencoders with stochastic hidden units involves fairly minor modifi-

cations to backpropagation based learning. In essence, these procedures resemble

dropout. In contrast, more general stochastic models like RBMs rely on approxi-

mate probabilistic inference techniques, and the procedures for learning deep sto-

chastic models tend to be quite elaborate (see Section 10.5).

448 CHAPTER 10 Deep learning

COMBINING RECONSTRUCTIVE AND DISCRIMINATIVE LEARNING

When an autoencoder is used to learn a feature representation intended for classi-

fication or regression, a model can be defined that both reconstructs inputs and

classifies inputs. This hybrid model has a composite loss that consists of a recon-

structive (unsupervised) and a discriminative (supervised) criterion,

LðθÞ5 ð12λÞLsupðθÞ1λLunsupðθÞ, where the hyperparameter λA½0; 1� controls the
balance between the two objectives. In the extreme cases, λ5 0 yields a purely

supervised training procedure, while λ5 1 yields a purely unsupervised training

procedure. If some data is only available without labels, one can optimize just a

reconstructive loss. For the hybrid model, one could imagine augmenting the

deep autoencoder of Fig. 10.12 to make predictions using hc as input, either with
a single set of weights leading to an activation function and final prediction, or

with multiple layers prior to making a prediction. Training with a combined

objective function appears to provide a form of regularization that can lead to

increased performance on the discriminative task. When combined with more

numerically well-behaved activation functions like ReLUs this procedure has

been found to allow deeper models to be learned with fewer problems. Of course,

one must be careful to tune λ on a validation set. Some similar approaches can be

taken with the stochastic methods below, which can be defined in both generative

and discriminative forms.

10.5 STOCHASTIC DEEP NETWORKS
The networks considered so far are constructed from deterministic components. We

now look at stochastic networks, beginning with a model for unsupervised learning

known as a Boltzmann machine. This stochastic neural network model is a type of

Markov random field (see Section 9.6). Unlike the units of a feedforward neural

network, the units in Boltzmann machines correspond to random variables, such as

are used in Bayesian networks. Older variants of Boltzmann machines were defined

using exclusively binary variables, but models with continuous and discrete vari-

ables are also possible. They became popular prior to the impressive results of

CNNs on the ImageNet challenge, but have since waned in popularity because they

are more difficult to work with. However, stochastic methods have certain advan-

tages, such as the ability to capture multimodal distributions.

BOLTZMANN MACHINES

To create a Boltzmann machine we begin by partitioning variables into ones that

are visible, defined by a D-dimensional binary vector vAf0; 1gD, and ones that are

hidden, defined by a K-dimensional binary vector hAf0; 1gK . Then a Boltzmann

machine is a joint probability model of the form

44910.5 Stochastic Deep Networks

pðv;h; θÞ5 1

ZðθÞ expð2Eðv;h; θÞÞ;

ZðθÞ5
X
v

X
h

expð2Eðv;h; θÞÞ;

Eðv;h; θÞ52
1

2
vTAv2

1

2
hTBh2 vTWh2 aTv2 bTh;

where Eðv;h; θÞ is the energy function, ZðθÞ normalizes E so that it defines a valid

joint probability, the matrices A, B, and W encode the visible-to-visible, hidden-to-

hidden, and visible-to-hidden variable interactions, respectively, and vectors a and b
encode the biases associated with each variable. Matrices A and B are symmetric,

and their diagonal elements are 0. This structure is effectively a binary Markov ran-

dom field with pairwise connections between all variables, illustrated in Fig. 10.14A.

A key feature of Boltzmann machines (and binary Markov random fields in

general) is that the conditional distribution of one variable given the others is a

sigmoid function whose argument is a weighted linear combination of the states

of the other variables:

pðhj 5 1jv;h:j; θÞ5 sigmoid
XD
i51

Wijvi 1
XK
k51

Bjkhk 1 bj

 !
;

pðvi 5 1jh; v:i; θÞ5 sigmoid
XK
j51

Wijhj 1
XD
d51

Aidvd 1 ci

 !
;

where the notation :i indicates all elements with subscript other than i. The diag-

onal elements of A and B are zero, so there is no need for the sum to skip terms

involving hk5j and vd5i, since they are zero anyway. The fact that these equations

are separate sigmoid functions for each variable makes it easy to construct a

Gibbs’ sampler (Section 9.5), which can be used to compute approximations to

the conditional probability pðhj~vÞ and the joint probability pðh; vÞ.
Define the loss as the negative log-likelihood of the marginal probability

for a single example ~v under the Boltzmann machine model:

L52log pð~v; θÞ52 log
X

h
pð~v;h; θÞ. Then, based on some calculus, the partial

derivatives can be shown to be

h2 h1

v1 v2

(A) (B)

h2 h1

v1 v2

h2 h1

v1 v2

(C)

hk

vd

…

…

FIGURE 10.14

Boltzmann machines: (A) fully connected; (B) restricted; (C) more general form of (B).

450 CHAPTER 10 Deep learning

@L

@W
52 E½~vhT �

Pðhj~vÞ2E½vhT �Pðh;vÞ
h i

;

@L

@A
52 ~v~vT 2E½vvT �Pðh;vÞ

h i
;

@L

@B
52 E½hhT �

Pðhj~vÞ2E½hhT �Pðh;vÞ
h i

;

@L

@a
52 ~v2E½v�Pðh;vÞ

h i
;

@L

@b
52 E½h�

Pðhj~vÞ2E½h�Pðh;vÞ
h i

:

The distributions pðhj~vÞ and pðh; vÞ needed to compute the expectations in

these derivatives are not available in analytic form, but samples approximat-

ing them can be used instead. To compute the gradient of the negative log-

likelihood over an entire training set with N examples, the sum of the terms

is N times a single expectation using the empirical distribution of the data

Pdatað~vÞ, or the distribution obtained by placing a delta function on each

example and dividing by N. A sum over a training set involving expectations

of the form pðhj~vÞ is sometimes written as a single expectation and referred

to as the data-dependent expectation, whereas the expectations involving

pðh; vÞ do not depend on the data and are referred to as the model’s

expectation.

Using these equations and approximations for the distributions, one can imple-

ment optimization via gradient descent. Gradients in probabilistic models often

come down to computing differences of expectations, as in models such as logis-

tic regression, conditional random fields, and even probabilistic principal compo-

nent analysis, as we saw in Chapter 9, Probabilistic methods.

RESTRICTED BOLTZMANN MACHINES

Eliminating connections between hidden variables, and connections between

visible variables, yields a restricted Boltzmann machine (RBM), with the same

distribution pðv;h; θÞ5 Z21ðθÞ expð2Eðv;h; θÞÞ but this energy function:

Eðv;h; θÞ52 vTWh2 aTv2 bTh:

Fig. 10.14B shows the result of this transformation on Fig. 10.14A; while

Fig. 10.14C shows a more general form.

Eliminating the coupling matrices A and B means that that the exact infer-

ence step for h, the entire vector of hidden variables, can be performed in one

shot. pðhjvÞ becomes the product of a different sigmoid for each dimension,

each sigmoid depending only on the observed input vector v. pðvjhÞ has a simi-

lar form.

45110.5 Stochastic Deep Networks

pðhjvÞ5 L
K

k51

pðhkjvÞ5 L
K

k51

Bernðhk; sigmoidðbk 1WT
UkvÞÞ;

pðvjhÞ5L
D

i51

pðvijhÞ5L
D

i51

Bernðvi; sigmoidðai 1WiUhÞÞ;

where WT
Uk is a vector consisting of the transpose of the kth column of the weight

matrix W, while WiU is the ith row of W. These are conditional distributions that

are derived from the underlying joint model, and the equations can be used to

compute the gradient of the loss with respect to W, a, and b. The expectations

needed for learning are easier to compute than for an unrestricted model: an exact

expression can be obtained for pðhj~vÞ, but pðh; vÞ remains intractable and must be

approximated.

CONTRASTIVE DIVERGENCE

Running a Gibbs sampler for a Boltzmann machine often requires many itera-

tions, and a technique called “contrastive divergence” is a popular alternative that

initializes the sampler to the observed data instead of randomly and performs a

limited number of Gibbs updates. In an RBM, a sample ĥ
ð0Þ

can be generated

from the distribution pðhjv̂ð0Þ 5 ~vÞ followed by a sample for v̂ð1Þ from pðvjĥð1ÞÞ.
This single step often works well in practice, although the process of alternating

the sampling of hidden and visible units can be continued for multiple steps.

CATEGORICAL AND CONTINUOUS VARIABLES

The RBMs discussed so far have been composed of binary variables. However,

they can be extended to categorical or continuous attributes by encoding r5 1,. . ., R
visible categorical variables using one-hot vectors vðrÞ and defining hidden binary

variables h with the following energy function

Eðv; h; θÞ52
XR
r51

vTðrÞWðrÞh1 aTðrÞvðrÞ
h i

2bTh:

The joint distribution defined by this model is complex, but as for binary

RBMs the conditional distributions under the model for one layer given the other

have simple forms:

pðhjvðr51;...;RÞÞ5 L
K

k51

Bern hk; sigmoid bk 1
XR
r51

WT
ðrÞUkvðrÞ

 ! !
;

pðvðr51;...;RÞjhÞ5 L
R

r51

Cat vðrÞ; softmaxðaðrÞ 1WðrÞUhÞ
� �

;

452 CHAPTER 10 Deep learning

A model with a layer of continuous observed variables v and a layer of hidden

binary variables h can be constructed using this energy function:

Eðv;h; θÞ52 vTWh2
1

2
ðv2aÞ2 2 bTh:

The conditional distributions are

pðhjvÞ5 L
K

k51

Bern hk; sigmoidðbk 1WT
UkvÞ

� �
;

pðvjhÞ5L
D

i51

Nðvi; ai 1WiU h; 1Þ5Nðv; a1Wh; IÞ;

where the conditional distribution of the observed variables given the hidden is a

Gaussian whose mean depends on a bias term plus a linear transformation of the

binary hidden variable. This Gaussian has an identity covariance matrix and can

therefore be written as a product of independent Gaussians for each dimension.

DEEP BOLTZMANN MACHINES

Deep Boltzmann machines involve coupling layers of random variables using

RBM connectivity, as illustrated in Fig. 10.15A. Assuming Bernoulli random

variables, the energy function is

Eðv; hð1Þ; . . .; hðLÞ; θÞ52 vTWð1Þhð1Þ 2 aTv2 bð1ÞThð1Þ

2
XL
l52

hðl - 1ÞTWðlÞhðlÞ 1bðlÞThðlÞ
�
" #

;

(A) (B)

…

…

…

…

… ……

…

…

…

…

… ……

v

h(1)

h(2)

h(L)

FIGURE 10.15

(A) Deep Boltzmann machine and (B) deep belief network.

45310.5 Stochastic Deep Networks

where the layers are coupled with matrices WðlÞ, and a and bðlÞ are the biases for

the visible layer and each hidden layer. The gradients for the intermediate layer

matrices are

@L

@WðlÞ 52 E½hðl21Þ hðlÞT �
Pðhðl21Þ; hðlÞT j~vÞ2E½hðl21Þ hðlÞT �Pðhðl21Þ; hðlÞT ;vÞ

h i
;

@L

@bðlÞ
52 E½hðlÞ�

PðhðlÞj~vÞ2E½hðlÞ�PðhðlÞ ;vÞ
h i

;

where the probability distributions needed for the expectations can be computed

using approximate inference techniques such as Gibbs sampling or variational

methods.

Examining the Markov blanket of a layer in this network shows that, given

the layers above and below, variables in a given layer are independent of other

layers. The conditional distribution is

pðhðlÞjhðl21Þ; hðl11ÞÞ5 L
Kl

kl51

pðhlkjhðl21Þ; hðl11ÞÞ

5 L
Kl

k51

Bern hlk; sigmoidðblk 1W
ðlÞT
Uk hðl21Þ 1W

ðl11Þ
kU hðl11ÞÞ

� �
:

This enables all variables in a layer to be updated in parallel using a method

known as “block Gibbs sampling.” This is quicker than standard Gibbs sampling,

but yields samples of sufficient quality for fast learning.

The overall learning procedure in deep Boltzmann machines using sampling

or variational methods can be slow, and consequently greedy, incremental

approaches are often used to initialize weights prior to learning. Deep Boltzmann

machines can be trained incrementally by stacking two-layer Boltzmann

machines, and learning the two-layer models using gradient descent and the con-

trastive divergence-based sampling procedure.

When training a deep RBM incrementally by stacking, to deal with the lack

of top-down connections in the model, one can double the input variables of

the lower-level model and constrain the associated matrix to be the same as

the original; double the output variables of the higher-level model and constrain

its matrix in the same way. Once the first Boltzmann machine has been learned,

the next can be learned using either a sample from independent Bernoulli distri-

butions for the dimensions of pðhð1ÞjvÞ based on the sigmoid models of the

rewritten Boltzmann machine, or using the value of the sigmoid activations. In

both cases a fast approximate inference upward pass can be performed using a

doubled weight matrix to compensate for the fact that the top-down influence of

the model is not captured. When generating a sampler or sigmoid activity for

the final layer, it is not necessary to double the weights. Subsequent levels can

be learned similarly.

454 CHAPTER 10 Deep learning

DEEP BELIEF NETWORKS

While any deep Bayesian network is technically a deep belief network, the term

“deep belief network” has become strongly associated with a particular type of

deep architecture that can be constructed by training RBMs incrementally. The pro-

cedure is based on converting the lower part of a growing model into a Bayesian

belief network, adding an RBM for the upper part of the model, then continuing

the training, conversion, and stacking process. As we have seen above, an RBM is

a two-layer joint model for which we can use some algebra to write conditional

models of observed given hidden, or hidden given observed layers that are consis-

tent with the underlying joint distribution. It therefore follows that a deep belief

network can be obtained through a procedure of learning a joint RBM model for

two layers, converting the model into its conditional formulation for the layer

below given the layer above, then adding a new layer on top to the model, parame-

terizing the top two layers as a new joint RBM model, then learning the new para-

meters. Fig. 10.15B illustrates the general form, which can be written

Pðv; hð1Þ; . . .; hðLÞ; θÞ5Pðvjhð1ÞÞ L
L22

l51

PðhðlÞjhðl11ÞÞ
� �

PðhðL21Þ; hðLÞÞ;

where as before the model is defined in terms of a visible layer v and l5 l,. . .,L
hidden layers hðlÞ. The conditional distributions are all products of Bernoulli dis-

tributions with sigmoidal parameterizations.

The top two layers are parameterized as an RBM. If they have directed rather

than undirected connections, they can be decomposed into the form

PðhðL21Þ; hðLÞÞ5PðhðL21ÞjhðLÞÞPðhðLÞÞ, where the conditional distribution is another

sigmoidally parameterized Bernoulli product and PðhðLÞÞ is the product over a sep-
arate distribution for each PðhðLÞÞ. The result is known as a deep sigmoidal belief

network.

The network shown in Fig. 10.15B can be constructed and trained in a layer-

by-layer manner. To see this, consider a RBM with visible variables v and two

layers of hidden variables hð1Þ followed by hð2Þ on top. A joint model for

Pðv; hð1Þ; hð2ÞÞ can be defined as either a 3-layer Boltzmann machine, or, by

restructuring the parameterization of the lower two layers, as a belief network

with an RBM at the top using

Pðv; hð1Þ; hð2ÞÞ5Pðvjhð1ÞÞPðhð1Þ;hð2ÞÞ
5L

D

i51

Bern vi; sigmoidðai 1W
ð1Þ
i hÞ

� �
U

1

ZðθÞ expð2Eðhð1Þ; hð2Þ; θÞÞ; (10.2)

where Pðhð1Þ;hð2ÞÞ has the usual form

ZðθÞ5
X
hð1Þ

X
hð2Þ

expð2Eðhð1Þ; hð2Þ; θÞÞ;

2Eðhð1Þ;hð2Þ; θÞ5hð1ÞTWð2Þhð2Þ 1 bð1ÞThð1Þ 1 bð2ÞThð2Þ;

45510.5 Stochastic Deep Networks

and the parameters Wð1Þ and a of Pðvjhð1ÞÞ are independent of the parameters

Wð1Þ, bð1Þ, and bð2Þ of Pðhð1Þ;hð2ÞÞ.
Such networks can be trained as follows: first train a 2-layer Boltzmann

machine using the observed data. Then add a layer on top, and initialize its

weights to the transpose of the weights learned in the layer below. To train the

next layer, compute the conditional distribution for the layer above given the

layer below, and either generate a sample or use the activation of the sigmoid

function to transform each example of the training data into the first hidden layer

representation. The properties of a RBM can be further exploited to obtain the

conditional distribution of the lower layer given the upper layer, and the para-

meters of the conditional model in this direction can be fixed. Once the second

Boltzmann machine has been trained, the model has the form (Eq. 10.2), and the

process of transforming the data, transforming the top-level Boltzmann machine

into a conditional model, adding a layer, and training a top layer Boltzmann

machine can be repeated as desired.

If the layer above has a different number of units, the transpose of the matrix below

cannot be used for initialization and certain theoretical guarantees no longer apply.

However, in practice the procedure is known to work well with random initialization.

10.6 RECURRENT NEURAL NETWORKS
Recurrent neural networks are networks with connections that form directed

cycles. As a result, they have an internal state, which makes them prime candi-

dates for tackling learning problems involving sequences of data—such as hand-

writing recognition, speech recognition, and machine translation. Fig. 10.16A

shows how a feedforward network can be transformed into a recurrent network by

(A)

(B)

L

(C)

FIGURE 10.16

(A) Feedforward network transformed into a recurrent network; (B) hidden Markov model;

and (C) recurrent network obtained by unwrapping (A).

456 CHAPTER 10 Deep learning

adding connections from all hidden units hi to hj. Each hidden unit has connec-

tions to both itself and other hidden units.

Imagine unfolding a recurrent network over time by following the sequence of

steps that perform the underlying computation. Like a hidden Markov model, a

recurrent network can be unwrapped and implemented using the same weights

and biases at each step to link units over time. Fig. 10.16B shows a hidden

Markov model unfolded in time and written as a dynamic Bayesian network,

while Fig. 10.16C shows a recurrent network obtained by unwrapping

Fig. 10.16A. Recurrent neural networks operate in a deterministic continuous

space, in contrast to hidden Markov models, which generally utilize discrete ran-

dom variables. Whereas it is common to think of deep feedforward networks as

computing more abstract features as one progresses up the network, information

processing in recurrent networks proceeds more like steps in the execution of a

more general algorithm.

Recurrent neural networks, and the particular discussed below—known as

“long short-term memory” (LSTM) recurrent neural networks—have been partic-

ularly successful for many tasks, from unconstrained handwriting recognition to

speech recognition and machine translation.

These networks apply linear matrix operations to the current observation and

the hidden units from the previous time step, and the resulting linear terms serve

as arguments of activation functions act():

ht 5 actðWhxt 1Uhht21 1 bhÞ
ot 5 actðWoht 1boÞ (10.3)

The same matrix Uh is used at each time step. Through it, the hidden units in

the previous step ht21 influence the computation of ht, while the current observa-

tion contributes a term Whx term that is summed with Uhht21and a bias term bh.

Both Wh and bh are typically replicated over time. The output layer is modeled

by a classical neural network activation function applied to a linear transformation

of the hidden units, and the operation is replicated at each time step.

The loss for a particular sequence in the training data can be computed either

at each time step or just once, at the end of the sequence. In either case, predic-

tions will be made after many processing steps. This brings us to an important

problem. Eq. (10.1) for feedforward networks decomposes the gradient of para-

meters at layer l into a product of matrix multiplications of the form DðlÞWTðl11Þ.
A recurrent network uses the same matrix at each time step, and over many steps

the gradient can very easily either diminish to zero or explode to infinity—just as

the magnitude of any number (other than one) taken to a large power either

approaches zero or increases indefinitely.

EXPLODING AND VANISHING GRADIENTS

The use of L1 or L2 regularization can mitigate the problem of exploding gradi-

ents by encouraging weights to be small. Another strategy is to simply detect if

45710.6 Recurrent Neural Networks

the norm of the gradient exceeds some threshold and, if so, scale it down. This is

sometimes called gradient (norm) clipping. That is, for a gradient vector

g5 @L=@θ and threshold T,

if:g:$T then

g’
T

:g:
g

T is a hyperparameter, which can be set to the average norm over several pre-

vious updates where clipping was not used.

The so-called “LSTM” recurrent neural network architecture was specifically

created to address the vanishing gradient problem. It uses a special combination

of hidden units, elementwise products and sums between units to implement gates

that control “memory cells.” These cells are designed to retain information with-

out modification for long periods of time. They have their own input and output

gates, which are controlled by learnable weights that are a function of the current

observation and the hidden units at the previous time step. As a result, backpropa-

gated error terms from gradient computations can be stored and propagated back-

wards without degradation. The original LSTM formulation consisted of input

gates and output gates, but forget gates and “peephole weights” were added later.

The architecture is complex, but has produced state-of-the-art results on a wide

variety of problems. Below we present the most popular variant of LSTM RNNs,

which does not include peephole weights but does use forget gates.

LSTM RNNs work as follows: at each time step there are three types of gate,

input it, forget ft, and output ot, each being a function of the underlying input xt
at time t and the hidden units at time t�1, ht21. Gates multiply xt by their own

gate-specific W matrix ht21, by their own U matrix, and add their own bias vector

b, followed by the application of a sigmoidal elementwise nonlinearity.

At each time step t, input gates it 5 sigmoidðWixt 1Uiht21 1 biÞ are used to

determine whether a potential input given by st 5 tanhðWcxt 1Ucht211 bcÞ is

sufficiently important to be placed into the memory unit ct. The computation of st
itself is a linear combination of the current input value xt and the previous hidden

unit vector ht21, using weight matrices Wc and Uc along with a bias vector bc.

Forget gates f t allow the content of memory units to be erased using

f t 5 sigmoidðWf xt 1Ufht21 1 bf Þ, involving a similar linear input based on Wf

and Uf matrices, plus a bias bf . Output gates ot determine whether yt, the content

of the memory units transformed by activation functions, should be placed in the

hidden units ht. They are typically controlled by a sigmoidal activation function

ot 5 sigmoidðWoxt 1Uoht21 1 boÞ applied to a linear combination of the current

input value xt and the previous hidden unit vector ht21, using weight matrices Wo

and Uo along with a bias vector bo.

This final gating is implemented as an elementwise product between the out-

put gate and the transformed memory contents, ht 5 ot3yt, where memory units

are typically transformed by the tanh function prior to the gated output:

458 CHAPTER 10 Deep learning

yt 5 tanhðctÞ. Memory units are updated by ct 5 f t3ct211 it3st, an elementwise

product between the forget gates ft and the previous contents of the memory units

ct21, plus the elementwise product of the input gates it, and the new potential

inputs st. Table 10.5 defines these components, and Fig. 10.17 shows a computa-

tion graph for the intermediate quantities.

OTHER RECURRENT NETWORK ARCHITECTURES

A wide variety of other recurrent network architectures have been proposed. For

example, the network given by Eq. (10.3) can be used with rectified linear activa-

tion functions, using scaled versions of the identity matrix to initialize the recurrent

weight matrix, and initializing biases to zero. The identity initialization means that

error derivatives flow through the network unmodified. Initializing with smaller,

scaled versions of the identity matrix has the effect of causing the model to forget

longer range dependencies. This approach is known as an IRNN. Another

Table 10.5 Components of a “Long Short-Term Memory” Recurrent Neural
Network

LSTM unit output ht 5ot3yt
Output gate units ot 5 sigmoidðWoxt 1Uoht21 1boÞ
Transformed memory cell contents yt 5 tanhðctÞ
Gated update to memory cell units ct 5 ft3ct21 1 it3st
Forget gate units ft 5 sigmoidðWfxt 1Ufht21 1bf Þ
Input gate units it 5 sigmoidðWixt 1Uiht21 1biÞ
Potential input to memory cell st 5 tanhðWcxt 1Ucht21 1bcÞ

FIGURE 10.17

Structure of a “long short-term memory” unit.

45910.6 Recurrent Neural Networks

possibility is to simplify LSTM networks by dispensing with separate memory cells

and using gated recurrent units or GRUs. For some problems GRUs can provide

performance comparable with LSTMs, but with a lower memory requirement.

Recurrent networks can be made bidirectional, propagating information in

both directions: Fig. 10.18A shows the general structure. Bidirectional networks

have been used for a wide variety of applications, including protein secondary

structure prediction and handwriting recognition. Modern software tools deter-

mine the gradients required for learning via backpropagation automatically, by

manipulating computation graphs.

Fig. 10.18B shows an “encoder-decoder” network. Such networks allow the

creation of fixed-length vector representations for variable-length inputs, and can

use the fixed-length encoding to generate another variable-length sequence as the

output. This is particularly useful for machine translation, where the input is a

string in one language and the output is the corresponding string in another lan-

guage. Given enough data, a deep encoder-decoder architecture such as that of

Fig. 10.19 can yield results that compete with those of systems that have been

hand-engineered over decades of research. The connectivity structure means that

partial computations in the model can flow through the graph in a wave, illus-

trated by the darker nodes in the figure.

…

…

…

(A) (B)

FIGURE 10.18

Recurrent neural networks: (A) bidirectional, (B) encoder-decoder.

…

…

FIGURE 10.19

A deep encoder-decoder recurrent network.

460 CHAPTER 10 Deep learning

10.7 FURTHER READING AND BIBLIOGRAPHIC NOTES
The backpropagation algorithm has been known in close to its current form since

Werbos’ (1974) PhD thesis; in his extensive literature review of deep learning,

Schmidhuber (2015) traces key elements of the algorithm back even further. He

also traces the idea of “deep networks” back to the work of Ivakhnenko and Lapa

(1965). Modern CNNs are widely acknowledged as having their roots with the

“neocognitron” proposed by Fukushima (1980). However, the work of LeCun,

Bottou, Bengio, and Haffner (1998) on the LeNet convolutional network architec-

ture has been extremely influential.

The popularity of neural network techniques has gone through several cycles.

While some factors are social, there are important technical reasons behind the

trends. A single-layer neural network cannot solve the XOR problem, a failing

that was derided by Minsky and Papert (1969) which, as mentioned in

Section 4.10, stymied neural network development until the mid-1980s. However,

it is well known that networks with one additional layer can approximate any

function (Cybenko, 1989; Hornik, 1991), and Rumelhart, Hinton, and Williams’

(1986) influential work repopularized neural network methods for a while.

However, by the early 2000s they had fallen out of favor again. Indeed, the orga-

nizers of NIPS, the Neural Information Processing Systems conference, which

was (and still is) widely considered to be the premier forum for neural network

research, found that the presence of the term “neural networks” in the title was

highly correlated with the paper’s rejection!—a fact that is underscored by cita-

tion analysis of key neural network papers during this period. The recent resur-

gence of interest in deep learning really does feel like a “revolution.”

It is known that most complex Boolean functions require an exponential num-

ber of two-step logic gates for their representation (Wegener, 1987). The solution

appears to be greater depth: according to Bengio (2009), the evidence strongly

suggests that “functions that can be compactly represented with a depth-k archi-

tecture could require a very large number of elements in order to be represented

by a shallower architecture.”

Many neural network books (Haykin, 1994; Bishop, 1995; Ripley, 1996) do

not formulate backpropagation in vector-matrix terms. However, recent online

courses (e.g., by Hugo Larochelle), and Rojas’ (1996) text, do adopt this formula-

tion, as we have done in this chapter.

Stochastic gradient descent methods go back at least as far as Robbins and

Monro (1951). Bottou (2012) is an excellent source of tips and tricks for learning

with stochastic gradient descent, while Bengio (2012) gives further practical

recommendations for training deep networks. Bergstra and Bengio (2012) give

empirical and theoretical justification for the use of random search for hyperpara-

meter settings. Snoek, Larochelle, and Adams (2012) propose the use of Bayesian

learning methods to infer the next hyperparameter setting to explore, and their

Spearmint software package performs Bayesian optimizations of both deep net-

work hyperparameters and general machine learning algorithm hyperparameters.

46110.7 Further Reading and Bibliographic Notes

Good parameter initialization can be critical for the success of neural net-

works, as discussed in LeCun et al.’s (1998) classic work and the more recent

work of Glorot and Bengio (2010). Krizhevsky et al.’s (2012) convolutional net-

work of ReLUs initialized weights using 0-mean isotropic Gaussian distributions

with a standard deviation of 0.01, and initialized the biases to 1 for most hidden

convolutional layers as well as the model’s hidden fully connected layers. They

observed that this initialization accelerated the early phase of learning by provid-

ing ReLUs with positive inputs.

The origins of dropout and more details about it can be found in Srivastava,

Hinton, Krizhevsky, Sutskever, and Salakhutdinov (2014). Ioffe and Szegedy

(2015) proposed batch normalization and give more details on its implementation.

Glorot and Bengio (2010) cover various weight matrix initialization heuristics, and

how the concepts of fan-in and fan-out can be used to justify them for networks

with different kinds of activation functions.

The MNIST data set containing 283 28 pixel images of handwritten digits

has been popular for exploring ideas in the deep learning research community.

However, it was the ImageNet challenge, with a variety of much higher resolu-

tions, that catapulted deep learning into the spotlight in 2012 (Russakovsky et al.,

2015). The winning entry from the University of Toronto processed the images at

a resolution of 2563 256 pixels. Up till then, CNNs were simply incapable of

processing such large volumes of imagery at such high resolutions in a reasonable

amount of time. Krizhevsky et al.’s (2012) dramatic win used a GPU-accelerated

CNNs. This spurred a great deal of development, reflected in rapid subsequent

advances in visual recognition performance on the ImageNet benchmark.

In the 2014 challenge, the Oxford Visual Geometry Group and a team from

Google pushed performance even further using much deeper architectures: 16�19

weight layers for the Oxford group, using tiny 33 3 convolutional filters

(Simonyan and Zisserman, 2014); 22 layers, with filters up to 53 5 for the

Google team (Szegedy et al., 2015). The 2015 ImageNet challenge was won by a

team from Microsoft Research Asia using an architecture with 152 layers (He

et al., 2015), using tiny 33 3 filters combined with shortcut connections that skip

over layers, they also perform pooling and decimation after multiple layers of

convolution have been applied.

Hinton and Salakhutdinov (2006) noted that it has been known since the 1980s

that deep autoencoders, optimized through backpropagation, could be effective for

nonlinear dimensionality reduction. The key limiting factors were the small size of

the data sets used to train them, coupled with low computation speeds: plus the old

problem of local minima. By 2006, data sets such as the MNIST digits and the 20

Newsgroups collection were large enough, and computers were fast enough, for

Hinton and Salakhutdinov to present compelling results illustrating the advantages of

deep autoencoders over principal component analysis. Their experimental work used

generative pretraining to initialize weights to avoid problems with local minima.

Bourlard and Kamp (1988) provide a deep analysis of the relationships

between autoencoders and principal component analysis. Vincent, Larochelle,

462 CHAPTER 10 Deep learning

Lajoie, Bengio, and Manzagol (2010) proposed stacked denoising autoencoders

and found that they outperform both stacked standard autoencoders and models

based on stacking RBMs. Cho and Chen (2014) produced state-of-the-art results

on motion capture sequences by training deep autoencoders with rectified linear

units using hybrid unsupervised and supervised learning.

The history of Markov random fields has roots in statistical physics in the

1920s with so-called “Ising models” of ferromagnetism. Our presentation of

Boltzmann machines follows Hinton and Sejnowski (1983), but we use matrix-

vector notation and our exposition more closely resembles formulations such as

that of Salakhutdinov and Hinton (2009). Harmonium networks proposed in

Smolensky (1986) are essentially equivalent to what are now commonly referred

to as RBMs.

Contrastive divergence was proposed by Hinton (2002). The idea of using

unsupervised pretraining to initialize deep networks using stacks of RBMs was

popularized by Hinton and Salakhutdinov (2006); Salakhutdinov and Hinton

(2009) give further details on the use of deep Boltzmann machines and training

procedures for deep belief networks, including the variable doubling procedure

and other nuances discussed above for greedy training of deep restricted

Boltzmann machines. Neal (1992) introduced sigmoidal belief networks. Welling,

Rosen-Zvi, and Hinton (2004) showed how to extend Boltzmann machines to cat-

egorical and continuous variables using exponential-family models. The greedy

layerwise training procedure for deep Boltzmann machines in Section 10.4 is

based on a procedure proposed by Hinton and Salakhutdinov (2006) and refined

by Murphy (2012).

Hybrid supervised and unsupervised learning procedures for restricted

Boltzmann machines were proposed by McCallum, Pal, Druck, and Wang (2006)

and further explored by Larochelle and Bengio (2008). Vincent et al. (2010) pro-

posed the autoencoder approach to unsupervised pretraining; they also explored

various layerwise stacking and training strategies and compared stacked RBMs

with stacked autoencoders.

Graves et al. (2009) demonstrate how recurrent neural networks are particu-

larly effective at handwriting recognition, while Graves, Mohamed, and Hinton

(2013) apply recurrent neural networks to speech. The form of gradient clipping

presented in Section 10.6 was proposed by Pascanu, Mikolov, and Bengio (2013).

The vanishing gradient problem was formally identified as a key issue for

learning in deep networks by Sepp Hochreiter in his diploma thesis (Hochreiter,

1991). The impact in terms of the difficulty of learning long-term dependencies is

discussed by Bengio, Simard, and Frasconi (1994). Further analysis of the issue is

given by Hochreiter, Bengio, Frasconi, and Schmidhuber (2001).

Hochreiter and Schmidhuber (1997) is the seminal paper on the “long short-

term memory” architecture for recurrent neural networks; our explanation follows

Graves and Schmidhuber (2005)’s formulation. Greff, Srivastava, Koutnı́k,

Steunebrink, and Schmidhuber’s (2015) paper “LSTM: A search space odyssey”

explored a wide variety of variants and finds that: (1) none of them significantly

46310.7 Further Reading and Bibliographic Notes

outperformed the standard LSTM architecture; and (2) forget gates and the output

activation function were the most critical components. Forget gates were added

by Gers, Schmidhuber, and Cummins (2000).

IRNNs were proposed by Le, Jaitly, and Hinton (2015), while Chung,

Gulcehre, Cho, and Bengio (2014) proposed gated recurrent units and Schuster

and Paliwal (1997) proposed bidirectional recurrent neural networks. Chen and

Chaudhari (2004) used bidirectional networks for protein structure prediction,

while Graves et al. (2009) used them for handwriting recognition. Cho et al.

(2014) used encoder-decoder networks for machine translation, while Sutskever,

Vinyals, and Le (2014) proposed deep encoder-decoder networks and used them

with massive quantities of data.

For further accounts of advances in deep learning and a more extensive history

of the field, consult the reviews of LeCun, Bengio, and Hinton (2015), Bengio

(2009), and Schmidhuber (2015).

10.8 DEEP LEARNING SOFTWARE AND NETWORK
IMPLEMENTATIONS

THEANO

Theano is a library in the Python programming language that has been developed

with the specific goal of facilitating research in deep learning (Bergstra et al.,

2010; Theano Development Team, 2016). It is also a powerful general purpose

tool for mathematical programming. Theano extends NumPy (the fundamental

Python package for scientific computing) by adding symbolic differentiation and

GPU support, among various other functions. It provides a high-level language

for creating the mathematical expressions that underlie deep learning models, and

a compiler that takes advantage of deep learning techniques, and calls to GPU

libraries, to produce code that executes quickly. Theano supports execution on

multiple GPUs. It allows the user to declare symbolic variables for inputs and tar-

gets, and supply numerical values only when they are used. Shared variables such

as weights and biases are associated with numerical values stored in NumPy

arrays. Theano creates symbolic graphs as a result of defining mathematical

expressions involving the application of operations to variables. These graphs

consist of variable, constant, apply, and operation nodes. Constants, and constant

nodes, are a subclass of variables, and variable nodes, which hold data that will

remain constant—and can therefore be subjected to various optimizations by the

compiler. Theano is an open-source project using a BSD license.

TENSOR FLOW

Tensor Flow is a C11 and Python-based software library for the types of numeri-

cal computation typically associated with deep learning (Abadi et al., 2016). It is

464 CHAPTER 10 Deep learning

heavily inspired by Theano and, like it, uses dataflow graphs to represent the

ways in which multidimensional data arrays communicate between one another.

These multidimensional arrays are referred to as “tensors.” Tensor Flow also sup-

ports symbolic differentiation and execution on multiple GPUs. It was released in

2015 and is available under the Apache 2.0 license.

TORCH

Torch is an open-source machine learning library built using C and a high-level

scripting language known as Lua (Collobert, Kavukcuoglu, & Farabet, 2011). It

uses multidimensional array data structures, and supports various basic numerical

linear algebra manipulations. It has a neural network package with modules that

permit the typical forward and backward methods needed for training neural net-

works. It also supports automatic differentiation.

COMPUTATIONAL NETWORK TOOLKIT

The Computational Network Toolkit (CNTK) is a C11 library for manipulating

computational networks (Yu et al., 2014). It was produced by Microsoft

Research, but has been released under a permissive license. It has been popular

for speech and language processing, but also supports convolutional networks of

the type used for images. It supports execution on multiple machines and using

multiple GPUs.

CAFFE

Caffe is a C11 and Python-based BSD-licensed CNN library (Jia et al., 2014). It

has a clean and extensible design that makes it a popular alternative to the origi-

nal open-source implementation of Krizhevsky et al.’s (2012) famous AlexNet

that won the 2012 ImageNet challenge.

DEEPLEARNING4J

Deeplearning4j is a Java-based open-source deep learning library available under

the Apache 2.0 license. It uses an multidimensional array class and provides lin-

ear algebra and matrix manipulation support similar to that provided by Numpy.

OTHER PACKAGES: LASAGNE, KERAS, AND CUDNN

Lasagne is a lightweight Python library built on top of Theano that simplifies the

creation of neural network layers. Similarly, Keras is a Python library that runs

on top of either Theano or TensorFlow (Chollet, 2015). It allows one to quickly

define a network architecture in terms of layers and also includes functionality for

image and text preprocessing. cuDNN is a highly optimized GPU library for

46510.8 Deep Learning Software and Network Implementations

NVIDIA units that allows deep networks to be trained more quickly. It can dra-

matically accelerate the performance of a deep network and is often called by the

other packages above.

10.9 WEKA IMPLEMENTATIONS
Deep learning can be implemented in WEKA using three methods:

• With the wrapper classifier for the third-party DeepLearningForJ package that

is available in the deepLearningForJ package.

• Using the MLRClassifier from the RPlugin package to exploit deep learning

implementations in R.

• By accessing Python-based deep learning libraries using the PyScript package.

466 CHAPTER 10 Deep learning

11Beyond supervised and
unsupervised learning

CHAPTER OUTLINE

11.1 Semisupervised Learning..468

Clustering for Classification...468

Cotraining..470

EM and Cotraining..471

Neural Network Approaches ..471

11.2 Multi-instance Learning..472

Converting to Single-Instance Learning...472

Upgrading Learning Algorithms..475

Dedicated Multi-instance Methods ...475

11.3 Further Reading and Bibliographic Notes ...477

11.4 WEKA Implementations...478

Modern machine learning embraces scenarios that transcend the classic dichot-

omy of supervised versus unsupervised learning. For example, in many practical

applications labeled data is very scarce but unlabeled data is plentiful.

“Semisupervised” learning attempts to improve the accuracy of supervised learn-

ing by exploiting information in unlabeled data. This sounds like magic, but it

can work! This chapter reviews several well-established approaches to semisuper-

vised learning: applying EM-style clustering to classification, combining genera-

tive and discriminative methods, and cotraining. We will also see how cotraining

and EM-based semisupervised learning can be merged into a single algorithm.

Another nonstandard scenario with many practical applications is multi-

instance learning. Here, each example is a bag of instances, each of which

describes an aspect of the object to be classified—but there is still only one label

for the entire example. Learning from such data poses serious algorithmic chal-

lenges, and some heuristic ingenuity may be necessary to make it practical. We

will look at three different approaches: converting multi-instance data to single-

instance data by aggregating the information in each bag of instances into a single

instance, upgrading single-instance algorithms to be able to deal with bags of

data, and dedicated approaches to multi-instance learning that do not have a

single-instance equivalent.

11.1 SEMISUPERVISED LEARNING
When introducing the machine learning process in Chapter 2, Input: concepts,

instances, attributes, we drew a sharp distinction between supervised and unsuper-

vised learning. Recently researchers have begun to explore territory between the

two, sometimes called semisupervised learning, in which the goal is classification

but the input contains both unlabeled and labeled data. You cannot do classifica-

tion without labeled data, of course, because only the labels tell what the classes

are. But it is sometimes attractive to augment a small amount of labeled data with

a large pool of unlabeled data. It turns out that the unlabeled data can help you

learn the classes. How can this be?

First, why would you want it? Many situations present huge volumes of raw data,

but assigning classes is expensive because it requires human insight. Text mining

provides some classic examples. Suppose you want to classify Web pages into prede-

fined groups. In an academic setting you might be interested in faculty pages, gradu-

ate student pages, course information pages, research group pages, and department

pages. You can easily download thousands, or millions, of relevant pages from uni-

versity Web sites. But labeling the training data is a laborious manual process. Or

suppose your job is to use machine learning to spot names in text, differentiating

between personal names, company names, and place names. You can easily down-

load megabytes, or gigabytes, of text, but making this into training data by picking

out the names and categorizing them can only be done manually. Cataloging news

articles, sorting electronic mail, learning users’ reading interests—applications are

legion. Leaving text aside, suppose you want to learn to recognize certain famous

people in television broadcast news. You can easily record hundreds or thousands of

hours of newscasts, but again labeling is manual. In any of these scenarios it would

be enormously attractive to be able to leverage a large pool of unlabeled data to

obtain excellent performance from just a few labeled examples—particularly if you

were the graduate student who had to do the labeling!

CLUSTERING FOR CLASSIFICATION

How can unlabeled data be used to improve classification? Here is a simple idea.

Use Naı̈ve Bayes to learn classes from a small labeled data set and then extend it

to a large unlabeled data set using the EM (expectation�maximization) iterative

clustering algorithm of Section 9.3. The procedure is this. First, train a classifier

using the labeled data. Second, apply it to the unlabeled data to label it with class

probabilities (the “expectation” step). Third, train a new classifier using the labels

for all the data (the “maximization” step). Fourth, iterate until convergence. You

could think of this as iterative clustering, where starting points and cluster labels

are gleaned from the labeled data. The EM procedure guarantees to find model

parameters that have equal or greater likelihood at each iteration. The key ques-

tion, which can only be answered empirically, is whether these higher likelihood

parameter estimates will improve classification accuracy.

468 CHAPTER 11 Beyond supervised and unsupervised learning

Intuitively, this might work well, particularly if the data has many attributes and

there are strong relationships between them. Consider document classification.

Certain phrases are indicative of the classes. Some occur in labeled documents,

whereas others only occur in unlabeled ones. But there are probably some documents

that contain both, and the EM procedure uses these to generalize the learned model

to utilize phrases that do not appear in the labeled data set. For example, both super-

visor and PhD topic might indicate a graduate student’s home page. Suppose that

only the former phrase occurs in the labeled documents. EM iteratively generalizes

the model to correctly classify documents that contain just the latter.

This might work with any classifier and any iterative clustering algorithm. But it

is basically a bootstrapping procedure, and you must take care to ensure that the feed-

back loop is a positive one. Using probabilities rather than hard decisions seems bene-

ficial because it allows the procedure to converge slowly instead of jumping to

conclusions that may be wrong. Naı̈ve Bayes together with the basic probabilistic

EM-based clustering procedure described in Section 9.3 are a particularly apt choice

because they share the same fundamental assumption: independence between attri-

butes or, more precisely, conditional independence between attributes given the class.

Of course, the independence assumption is universally violated. Even our little

example used the two-word phrase PhD topic, whereas actual implementations

would likely use individual words as attributes—and the example would have

been far less compelling if we had substituted either of the single terms PhD or

topic. The phrase PhD students is probably more indicative of faculty rather than

graduate student home pages; the phrase research topic is probably less discrimi-

nating. It is the very fact that PhD and topic are not conditionally independent

given the class that makes the example work: it is their combination that charac-

terizes graduate student pages.

Nevertheless, coupling Naı̈ve Bayes and EM in this manner works well in the

domain of document classification. In a particular classification task it attained

the performance of a traditional learner using fewer than one-third of the labeled

training instances, as well as five times as many unlabeled ones. This is a good

tradeoff when labeled instances are expensive but unlabeled ones are virtually

free. With a small number of labeled documents, classification accuracy can be

improved dramatically by incorporating many unlabeled ones.

Two refinements to the procedure have been shown to improve performance.

The first is motivated by experimental evidence that when there are many labeled

documents the incorporation of unlabeled data may reduce rather than increase

accuracy. Hand-labeled data is (or should be) inherently less noisy than automati-

cally labeled data. The solution is to introduce a weighting parameter that reduces

the contribution of the unlabeled data. This can be incorporated into the maximi-

zation step of EM by maximizing the weighted likelihood of the labeled and unla-

beled instances. When the parameter is close to zero, unlabeled documents have

little influence on the shape of EM’s hill-climbing surface; when it is close to

one, the algorithm reverts to the original version in which the surface is equally

affected by both kinds of document.

46911.1 Semisupervised Learning

The second refinement is to allow each class to have several clusters. As

explained in Section 9.3, the EM clustering algorithm assumes that the data is

generated randomly from a mixture of different probability distributions, one per

cluster. Until now, a one-to-one correspondence between mixture components and

classes has been assumed. In many circumstances this is unrealistic—including

document classification, because most documents address multiple topics. With

several clusters per class, each labeled document is initially assigned randomly to

each of its components in a probabilistic fashion. The maximization step of the

EM algorithm remains as before, but the expectation step is modified to not only

probabilistically label each example with the classes, but to probabilistically

assign it to the components within the class. The number of clusters per class is a

parameter that depends on the domain and can be set by cross-validation.

COTRAINING

Another situation in which unlabeled data can improve classification perfor-

mance is when there are two different and independent perspectives on the clas-

sification task. The classic example again involves documents, this time Web

documents, where the two perspectives are the content of a Web page and the

links to it from other pages. These two perspectives are well known to be both

useful and different: successful Web search engines capitalize on them both,

using secret recipes. The text that labels a link to another Web page gives a

revealing clue as to what that page is about—perhaps even more revealing than

the page’s own content, particularly if the link is an independent one.

Intuitively, a link labeled my advisor is strong evidence that the target page is a

faculty member’s home page.

The idea, called cotraining, is this. Given a few labeled examples, first learn a

different model for each perspective—in this case a content-based and

a hyperlink-based model. Then use each one separately to label the unlabeled

examples. For each model, select the example that it most confidently labels as

positive and the one it most confidently labels as negative, and add these to the

pool of labeled examples. Better yet, maintain the ratio of positive and negative

examples in the labeled pool by choosing more of one kind than the other. In

either case, repeat the whole procedure, training both models on the augmented

pool of labeled examples, until the unlabeled pool is exhausted.

There is some experimental evidence, using Naı̈ve Bayes throughout as the

learner, that this bootstrapping procedure outperforms one that employs all the

features from both perspectives to learn a single model from the labeled data. It

relies on having two different views of an instance that are redundant but not

completely correlated. Various domains have been proposed, from spotting celeb-

rities in televised newscasts using video and audio separately to mobile robots

with vision, sonar, and range sensors. The independence of the views reduces the

likelihood of both hypotheses agreeing on an erroneous label.

470 CHAPTER 11 Beyond supervised and unsupervised learning

EM AND COTRAINING

On data sets with two feature sets that are truly independent, experiments have

shown that cotraining gives better results than using EM as described previously.

Even better performance, however, can be achieved by combining the two into a

modified version of cotraining called co-EM. Cotraining trains two classifiers

representing different perspectives A and B, and uses both to add new examples

to the training pool by choosing whichever unlabeled examples they classify most

positively or negatively. The new examples are few in number and deterministi-

cally labeled. Co-EM, on the other hand, trains classifier A on the labeled data

and uses it to probabilistically label all the unlabeled data. Next it trains classifier

B on both the labeled data and the unlabeled data with classifier A’s tentative

labels, and then it probabilistically relabels all the data for use by classifier A.

The process iterates until the classifiers converge. This procedure seems to per-

form consistently better than cotraining because it does not commit to the class

labels that are generated by classifiers A and B but rather reestimates their proba-

bilities at each iteration.

The range of applicability of co-EM, like cotraining, is still limited by the

requirement for multiple independent perspectives. But there is some experimen-

tal evidence to suggest that even when there is no natural split of features into

independent perspectives, benefits can be achieved by manufacturing such a split

and using cotraining—or, better yet, co-EM—on the split data. This seems to

work even when the split is made randomly; performance could surely be

improved by engineering the split so that the feature sets are maximally indepen-

dent. Why does this work? Researchers have hypothesized that these algorithms

succeed in part because the split makes them more robust to the assumptions that

their underlying classifiers make.

There is no particular reason to restrict the base classifier to Naı̈ve Bayes.

Support vector machines (SVMs) are particularly useful for text categorization.

However, for the EM iteration to work it is necessary that the classifier labels the

data probabilistically; it must also be able to use probabilistically weighted exam-

ples for training. SVMs can easily be adapted to do both. We explained how to

adapt learning algorithms to deal with weighted instances in Section 7.3 under

Locally weighted linear regression. One way of obtaining probability estimates

from SVMs is to fit a one-dimensional logistic model to the output, effectively

performing logistic regression as described in Section 4.6 on the output. Excellent

results have been reported for text classification using co-EM with the SVM clas-

sifier. It outperforms other variants of SVM and seems quite robust to varying

proportions of labeled and unlabeled data.

NEURAL NETWORK APPROACHES

Chapter 10, Deep learning, introduced the idea of using unsupervised pretraining

to initialize deep networks. For very large labeled data sets, the use of rectified

47111.1 Semisupervised Learning

linear activation functions in purely supervised models has reduced the need for

unsupervised pretraining. However, when the amount of labeled data is small rel-

ative to a larger source of unlabeled data, unsupervised pretraining methods can

be effective.

Chapter 10, Deep learning, also showed how a network can be trained to pre-

dict its own input—an autoencoder. When labeled data is available, autoencoders

can be augmented with another branch that makes predictions using the labeled

data. There is evidence that this can make it easier to learn the reconstructive

autoencoding part of the network, and also boost discriminative performance.

Evidence suggests that unlabeled data can serve as a form of regularization,

allowing higher capacity networks to be used. It may be important to weight the

relative importance of the composite loss function, and one must take care to use

validation sets to find the best model complexity (number of layers and units,

etc.) to ensure that the model generalizes well to new data.

Designing networks that use the same representation to make multiple kinds

of prediction is another way to leverage data from one task to help with another.

If one of the tasks is to predict some other feature or set of features that are nor-

mally used as input, we can create network configurations that use both super-

vised and unsupervised learning.

11.2 MULTI-INSTANCE LEARNING
We have already encountered another nonstandard learning scenario in

Section 4.9: multi-instance learning. This can be viewed as a form of supervised

learning where examples are bags of feature vectors rather than individual vec-

tors. It can also be viewed as a form of weakly supervised learning where the

“teacher” provides labels for bags of instances, rather than for each individual

one. This section describes approaches to multi-instance learning that are more

advanced than the simple techniques discussed earlier. First, we consider how to

convert multi-instance learning to single-instance learning by transforming the

data. Then we discuss how to upgrade single-instance learning algorithms to the

multi-instance case. Finally we look at some methods that have no direct equiva-

lent in single-instance learning.

CONVERTING TO SINGLE-INSTANCE LEARNING

Section 4.9 presented some ways of applying standard single-instance learning

algorithms to multi-instance data by aggregating the input or the output. Despite

their simplicity, these techniques often work surprisingly well in practice.

Nevertheless, there are clearly situations in which they will fail. Consider the

method of aggregating the input by computing the minimum and maximum

values of numeric attributes present in a bag and treating the result as a single

472 CHAPTER 11 Beyond supervised and unsupervised learning

instance. This will yield a huge loss of information because attributes are con-

densed to summary statistics individually and independently. Can a bag be con-

verted to a single instance without discarding quite so much information?

The answer is yes, although the number of attributes that are present in the so-

called “condensed” representation may increase substantially. The basic idea is to

partition the instance space into regions and create one attribute per region in the

single-instance representation. In the simplest case, attributes can be Boolean: if a

bag has at least one instance in the region corresponding to a particular attribute

the value of the attribute is set to true, otherwise, it is set to false. However, to

preserve more information the condensed representation could instead contain

numeric attributes whose values are counts that indicate how many instances of

the bag lie in the corresponding region.

Regardless of the exact types of attributes that are generated, the main problem

is to come up with a partitioning of the input space. A simple approach is to parti-

tion it into hypercubes of equal size. Unfortunately, this only works when the space

has very few dimensions (i.e., attributes): the number of cubes required to achieve

a given granularity grows exponentially with the dimension of the space. One way

to make this approach more practical is to use unsupervised learning. Simply take

all the instances from all the bags in the training data, discard their class labels, and

form a big single-instance data set; then process it with a clustering technique such

as k-means. This will create regions corresponding to the different clusters (k

regions, in the case of k-means). Then, for each bag, create one attribute per region

in the condensed representation and use it as described previously.

Clustering is a rather heavy-handed way to infer a set of regions from the

training data because it ignores information about class membership. An alterna-

tive approach that often yields better results is to partition the instance space

using decision tree learning. Each leaf of a tree corresponds to one region of

instance space. But how can a decision tree be learned when the class labels apply

to entire bags of instances, rather than to individual instances? The approach

described under Aggregating the Output in Section 4.9 can be used: take the

bag’s class label and attach it to each of its instances. This yields a single-

instance data set, ready for decision tree learning. Many of the class labels will be

incorrect—the whole point of multi-instance learning is that it is not clear how

bag-level labels relate to instance-level ones. However, these class labels are only

being used to obtain a partition of instance space. The next step is to transform

the multi-instance data set into a single-instance one that represents how instances

from each bag are distributed throughout the space. Then another single-instance

learning method is applied—perhaps, again, decision tree learning—that deter-

mines the importance of individual attributes in the condensed representation,

which correspond to regions in the original space.

Using decision trees and clustering yields “hard” partition boundaries, where an

instance either does or does not belong to a region. Such partitions can also be

obtained using a distance function, combined with some reference points, by assign-

ing instances to their closest reference point. This implicitly divides the space into

47311.2 Multi-instance Learning

regions, each corresponding to one reference point. (In fact, this is exactly what

happens in k-means clustering: the cluster centers are the reference points.) But there

is no fundamental reason to restrict attention to hard boundaries: we can make the

region membership function “soft” by using distance—transformed into a similarity

score—to compute attribute values in the condensed representation of a bag. All that

is needed is some way of aggregating the similarity scores between each bag and

reference point into a single value—e.g., by taking the maximum similarity between

each instance in that bag and the reference point.

In the simplest case, each instance in the training data can be used as a refer-

ence point. That creates a large number of attributes in the condensed representa-

tion, but it preserves much of the information from a bag of instances in its

corresponding single-instance representation. This method has been successfully

applied to multi-instance problems.

Regardless of how the approach is implemented, the basic idea is to convert a

bag of instances into a single one by describing the distribution of instances from

this bag in instance space. Alternatively, ordinary learning methods can be

applied to multi-instance data by aggregating the output rather than the input.

Section 4.9 described a simple way: join instances of bags in the training data

into a single data set by attaching bag-level class labels to them, perhaps weight-

ing instances to give each bag the same total weight. A single-instance classifica-

tion model can then be built. At classification time, predictions for individual

instances are combined—e.g., by averaging predicted class probabilities.

Although this approach often works well in practice, attaching bag-level class

labels to instances is simplistic. Generally, the assumption in multi-instance learn-

ing is that only some of the instances—perhaps just one—are responsible for the

class label of the associated bag. How can the class labels be corrected to yield a

more accurate representation of the true underlying situation? This is obviously

a difficult problem; if it were solved, it would make little sense to investigate

other approaches to multi-instance learning. One method that has been applied is

iterative: start by assigning each instance its bag’s class label and learn a single-

instance classification model; then replace the instances’ class labels by the

predicted labels of this single-instance classification model for these instances.

Repeat the whole procedure until the class labels remain unchanged from one

iteration to the next.

Some care is needed to obtain sensible results. For example, suppose every

instance in a bag were to receive a class label that differs from the bag’s label.

Such a situation should be prevented by forcing the bag’s label on at least one

instance—e.g., the one with the largest predicted probability for this class.

This iterative approach has been investigated for the original multi-instance

scenario with two-class values, where a bag is positive if and only if one of its

instances is positive. In that case it makes sense to assume that all instances from

negative bags are truly negative and modify only the class labels of instances

from positive bags. At prediction time, bags are classified as positive if one of

their instances is classified as positive.

474 CHAPTER 11 Beyond supervised and unsupervised learning

UPGRADING LEARNING ALGORITHMS

Tackling multi-instance learning by modifying the input or output so that single-

instance schemes can be applied is appealing because there is a large battery of

such techniques that can then be used directly, without any modification.

However, it may not be the most efficient approach. An alternative is to adapt the

internals of a single-instance algorithm to the multi-instance setting. This can be

done in a particularly elegant fashion if the algorithm in question only considers

the data through application of a distance (or similarity) function, as with nearest-

neighbor classifiers or SVMs. These can be adapted by providing a distance (or

similarity) function for multi-instance data that computes a score between two

bags of instances.

In the case of kernel-based methods such as SVMs, the similarity must be a

proper kernel function that satisfies certain mathematical properties. One that has

been used for multi-instance data is the so-called set kernel. Given a kernel func-

tion for pairs of instances that SVMs can apply to single-instance data—e.g., one

of the functions considered in Section 7.2—the set kernel sums it over all pairs of

instances from the two bags being compared. This idea is generic and can be

applied with any single-instance kernel function.

Nearest-neighbor learning has been adapted to multi-instance data by applying

variants of the Hausdorff distance, which is defined for sets of points. Given two

bags and a distance function between pairs of instances—e.g., the Euclidean dis-

tance—the Hausdorff distance between the bags is the largest distance from any

instance in one bag to its closest instance in the other bag. It can be made more

robust to outliers by using the nth-largest distance rather than the maximum.

For learning algorithms that are not based on similarity scores, more work is

required to upgrade them to multi-instance data. There are multi-instance algo-

rithms for rule learning and for decision tree learning, but we will not describe

them here. Adapting algorithms to the multi-instance case is more straightforward

if the algorithm concerned is essentially a numerical optimization strategy that is

applied to the parameters of some function by minimizing a loss function on the

training data. Logistic regression and multilayer perceptrons fall into this category;

both have been adapted to multi-instance learning by augmenting them with a func-

tion that aggregates instance-level predictions. The so-called “soft maximum” is a

differentiable function that is suitable for this purpose: it aggregates instance-level

predictions by taking their (soft) maximum as the bag-level prediction.

DEDICATED MULTI-INSTANCE METHODS

Some multi-instance learning schemes are not based directly on single-instance

algorithms. Here is an early technique that was specifically developed for the

drug activity prediction problem mentioned in Section 2.2, in which instances

are conformations—shapes—of a molecule and a molecule (i.e., a bag) is consid-

ered positive if and only if it has at least one active conformation. The basic idea

47511.2 Multi-instance Learning

is to learn a single hyperrectangle that contains at least one instance from each

positive bag in the training data and no instances from any negative bags. Such a

rectangle encloses an area of instance space where all positive bags overlap but

contains no negative instances—an area that is common to all active molecules

but not represented in any inactive ones. The particular drug activity data origi-

nally considered was high-dimensional, with 166 attributes describing each

instance, in which case it is computationally difficult to find a

suitable hyperrectangle. Consequently a heuristic approach was developed that is

tuned to this particular problem.

Other geometric shapes can be used instead of hyperrectangles. Indeed, the

same basic idea has been applied using hyperspheres (balls). Training

instances are treated as potential ball centers. For each one, a radius is found

that yields the smallest number of errors for the bags in the training data.

The original multi-instance assumption is used to make predictions: a bag is

classified as positive if and only if it has at least one instance inside the ball.

A single ball is generally not powerful enough to yield good classification

performance. However, this method is not intended as a standalone algorithm.

Rather, it is advocated as a “weak” learner to be used in conjunction

with boosting algorithms (see Section 12.4) to obtain a powerful ensemble

classifier—an ensemble of balls.

The dedicated multi-instance methods discussed so far have hard decision

boundaries: an instance either falls inside or outside a ball or hyperrectangle.

Other multi-instance algorithms use soft concept descriptions couched in terms of

probability theory. The so-called diverse density method is a classic example,

again designed with the original multi-instance assumption in mind. Its basic and

most commonly used form learns a single reference point in instance space. The

probability that an instance is positive is computed from its distance to this point:

it is 1 if the instance coincides with the reference point and decreases with

increasing distance from this point, usually based on a bell-shaped function.

The probability that a bag is positive is obtained by combining the individual

probabilities of the instances it contains, generally using the “noisy-OR” function.

This is a probabilistic version of the logical OR. If all instance-level probabilities

are 0, the noisy-OR value—and thus the bag-level probability—is 0; if at least

one instance-level probability is 1, the value is 1; otherwise the value falls some-

where in between.

The diverse density is defined as the probability of the class labels of the bags

in the training data, computed based on this probabilistic model. It is maximized

when the reference point is located in an area where positive bags overlap and no

negative bags are present, just as for the two geometric methods discussed previ-

ously. A numerical optimization routine such as gradient ascent can be used to find

the reference point that maximizes the diverse density measure. In addition to the

location of the reference point, implementations of diverse density also optimize

the scale of the distance function in each dimension, because generally not all attri-

butes are equally important. This can improve predictive performance significantly.

476 CHAPTER 11 Beyond supervised and unsupervised learning

11.3 FURTHER READING AND BIBLIOGRAPHIC NOTES
Nigam, McCallum, Thrun, and Mitchell (2000) thoroughly explored the idea of

clustering for classification, showing how the EM clustering algorithm can use

unlabeled data to improve an initial classifier built by Naı̈ve Bayes. The idea of

cotraining is older: Blum and Mitchell (1998) pioneered it and developed a theoret-

ical model for the use of labeled and unlabeled data from different independent per-

spectives. Nigam and Ghani (2000) analyzed the effectiveness and applicability of

cotraining, relating it to the traditional use of standard EM to fill in missing values;

they also introduced the co-EM algorithm. Up to this point, cotraining and co-EM

were applied mainly to small two-class problems. Ghani (2002) used error-

correcting output codes to address multiclass situations with many classes. Brefeld

and Scheffer (2004) extended co-EM to use a SVM rather than Naı̈ve Bayes.

Condensing the input data by aggregating information into simple summary

statistics is a well-known technique in multirelational learning, used in the

RELAGGS system by Krogel and Wrobel (2002), and multi-instance learning can

be viewed as a special case of this more general setting (de Raedt, 2008). The

idea of replacing simple summary statistics by region-based attributes, derived

from partitioning the instance space, was explored by Weidmann, Frank, and

Pfahringer (2003), Zhou and Zhang (2007), and Frank and Pfahringer (2013).

Using reference points to condense bags was investigated by Chen, Bi, and Wang

(2006) and evaluated in a broader context by Foulds and Frank (2008). Andrews

et al. (2002) proposed manipulating the class labels of individual instances using

an iterative learning process for learning SVM classifiers based on the original

multi-instance assumption.

Nearest-neighbor learning based on variants of the Hausdorff distance was

investigated by Wang and Zucker (2000). Gärtner et al. (2002) experimented with

the set kernel to learn SVM classifiers for multi-instance data. Multi-instance

algorithms for rule and decision tree learning, which are not covered here, have

been described by Chevaleyre and Zucker (2001), Blockeel, Page, and Srinivasan

(2005), and Bjerring and Frank (2011). Logistic regression has been adapted for

multi-instance learning by Xu and Frank (2004) and Ray and Craven (2005); mul-

tilayer perceptrons have been adapted by Ramon and de Raedt (2000).

Hyperrectangles and spheres were considered as concept descriptions for

multi-instance learning by Dietterich et al. (1997) and Auer and Ortner (2004),

respectively. The diverse density method is the subject of Maron’s (1998) PhD

thesis, and is also described in (Maron and Lozano-Peréz, 1997). A quicker, heu-

ristic variant is evaluated by Foulds and Frank (2010b).

The multi-instance literature makes many different assumptions regarding the

type of concept to be learned, defining, e.g., how the bag-level and instance-level

class labels are connected, starting with the original assumption that a bag is

labeled positive if and only if one of its instances is positive. A review of assump-

tions in multi-instance learning can be found in Foulds and Frank (2010a).

47711.3 Further Reading and Bibliographic Notes

11.4 WEKA IMPLEMENTATIONS
• Multi-instance learning methods (in the multiInstanceLearning package, unless

otherwise mentioned)

TLC (creates single-instance representations using partitioning methods)

MILES (single-instance representation using soft memberships, in the

multiInstanceFilters package)

MISVM (iterative method for learning an SVM by relabeling instances)

MISMO (SVM with multi-instance kernel)

CitationKNN (nearest-neighbor method with Hausdorff distance)

MITI (learns a decision tree from multi-instance data)

MIRI (learns rule sets for multi-instance data)

MILR (logistic regression for multi-instance data)

MIOptimalBall (learning balls for multi-instance classification)

MIDD (the diverse density method using the noisy-or function)

QuickDDIterative (a heuristic, faster version of MIDD)

478 CHAPTER 11 Beyond supervised and unsupervised learning

12Ensemble learning

CHAPTER OUTLINE

12.1 Combining Multiple Models ..480

12.2 Bagging...481

Bias�Variance Decomposition ...482

Bagging With Costs...483

12.3 Randomization ...484

Randomization Versus Bagging ..485

Rotation Forests ...486

12.4 Boosting ..486

AdaBoost ...487

The Power of Boosting ..489

12.5 Additive Regression ...490

Numeric Prediction ..491

Additive Logistic Regression..492

12.6 Interpretable Ensembles ...493

Option Trees...494

Logistic Model Trees ...496

12.7 Stacking..497

12.8 Further Reading and Bibliographic Notes ...499

12.9 WEKA Implementations...501

To maximize accuracy, it is often necessary to combine the predictions of several

models learned from the same data, and we now turn to techniques for accomplish-

ing this. There are some surprises in store. For example, it is often advantageous to

take the training data and derive several different training sets from it, learn a

model from each, and combine them to produce an ensemble of learned models.

Indeed, techniques for doing this can be very powerful. It is, e.g., possible to trans-

form a relatively weak learning scheme into an extremely strong one (in a precise

sense that we will explain). Loss of interpretability is a drawback when applying

ensemble learning, but there are ways to derive intelligible structured descriptions

based on what these methods learn. Finally, if several learning schemes are avail-

able, it may be advantageous not to choose the best-performing one for your dataset

(using cross-validation) but to use them all and combine the results.

Many of these results are quite counterintuitive, at least at first blush. How

can it be a good idea to use many different models together? How can you possi-

bly do better than choose the model that performs best? Surely all this runs

counter to Occam’s razor, which advocates simplicity? How can you possibly

obtain first-class performance by combining indifferent models, as one of these

techniques appears to do? But consider committees of humans, which often come

up with wiser decisions than individual experts. Recall Epicurus’s view that,

faced with alternative explanations, one should retain them all. Imagine a group

of specialists each of whom excels in a limited domain even though none is com-

petent across the board. In struggling to understand how these methods work,

researchers have exposed all sorts of connections and links that have led to even

greater improvements.

12.1 COMBINING MULTIPLE MODELS
When wise people make critical decisions, they usually take into account the opi-

nions of several experts rather than relying on their own judgment or that of a sol-

itary trusted advisor. For example, before choosing an important new policy

direction, a benign dictator consults widely: he or she would be ill advised to fol-

low just one expert’s opinion blindly. In a democratic setting, discussion of differ-

ent viewpoints may produce a consensus; if not, a vote may be called for. In

either case, different expert opinions are being combined.

In data mining, a model generated by machine learning can be regarded as an

expert. Expert is probably too strong a word!—depending on the amount and

quality of the training data, and whether the learning algorithm is appropriate to

the problem at hand, the expert may in truth be regrettably ignorant—but we use

the term nevertheless. An obvious approach to making decisions more reliable is

to combine the output of several different models. Several machine learning tech-

niques do this by learning an ensemble of models and using them in combination:

prominent among these are schemes called bagging, boosting, and stacking. They

can all, more often than not, increase predictive performance over a single model.

And they are general techniques that can be applied to classification tasks and

numeric prediction problems.

Bagging, boosting, and stacking have been developed over the last couple of

decades, and their performance is often astonishingly good. Machine learning

researchers have struggled to understand why. And during that struggle, new

methods have emerged that are sometimes even better. For example, whereas

human committees rarely benefit from noisy distractions, shaking up bagging by

adding random variants of classifiers can improve performance. Closer analysis

revealed that boosting—perhaps the most powerful of the three methods—is

closely related to the established statistical technique of additive models, and this

realization has led to improved procedures.

480 CHAPTER 12 Ensemble learning

These combined models share the disadvantage of being rather hard to ana-

lyze: they can comprise dozens or even hundreds of individual models, and

although they perform well it is not easy to understand in intuitive terms what

factors are contributing to the improved decisions. However, methods have been

developed that combine the performance benefits of committees with comprehen-

sible models. Some produce decision tree models; others introduce new variants

of trees that provide optional paths.

12.2 BAGGING
Combining the decisions of different models means amalgamating the various

outputs into a single prediction. The simplest way to do this in the case of classi-

fication is to take a vote (perhaps a weighted vote); in the case of numeric predic-

tion it is to calculate the average (perhaps a weighted average). Bagging and

boosting both adopt this approach, but they derive the individual models in differ-

ent ways. In bagging, the models receive equal weight, whereas in boosting,

weighting is used to give more influence to the more successful ones—just as an

executive might place different values on the advice of different experts depend-

ing on how successful their predictions were in the past.

To introduce bagging, suppose that several training datasets of the same size

are chosen at random from the problem domain. Imagine using a particular

machine learning technique to build a decision tree for each dataset. You might

expect these trees to be practically identical and to make the same prediction for

each new test instance. But, surprisingly, this assumption is usually quite wrong,

particularly if the training datasets are fairly small. This is a rather disturbing fact

and seems to cast a shadow over the whole enterprise! The reason for it is that

decision tree induction (at least, the standard top-down method described in chap-

ter: Algorithms: the basic methods) is an unstable process: slight changes to the

training data may easily result in a different attribute being chosen at a particular

node, with significant ramifications for the structure of the subtree beneath that

node. This automatically implies that there are test instances for which some of

the decision trees produce correct predictions and others do not.

Returning to the preceding experts analogy, consider the experts to be the

individual decision trees. We can combine the trees by having them vote on each

test instance. If one class receives more votes than any other, it is taken as the

correct one. Generally, the more the merrier: predictions made by voting become

more reliable as more votes are taken into account. Decisions rarely deteriorate if

new training sets are discovered, trees are built for them, and their predictions

participate in the vote as well. In particular, the combined classifier will seldom

be less accurate than a decision tree constructed from just one of the datasets.

(Improvement is not guaranteed, however. It can be shown theoretically that path-

ological situations exist in which the combined decisions are worse.)

48112.2 Bagging

BIAS�VARIANCE DECOMPOSITION

The effect of combining multiple hypotheses can be viewed through a theoretical

device known as the bias�variance decomposition. Suppose we could have an

infinite number of independent training sets of the same size and use them to

make an infinite number of classifiers. A test instance is processed by all classi-

fiers, and a single answer is determined by majority vote. In this idealized situa-

tion, errors will still occur because no learning scheme is perfect: the error rate

will depend on how well the machine learning method matches the problem at

hand, and there is also the effect of noise in the data, which cannot possibly be

learned. Suppose the expected error rate were evaluated by averaging the error of

the combined classifier over an infinite number of independently chosen test

examples. The error rate for a particular learning algorithm is called its bias for

the learning problem and measures how well the learning method matches the

problem. (We include the “noise” component in the bias term because it is gener-

ally unknown in practice anyway.) This technical definition is a way of quantify-

ing the vaguer notion of bias that was introduced in Section 1.5: it measures the

“persistent” error of a learning algorithm that can’t be eliminated even by taking

an infinite number of training sets into account. Of course, it cannot be calculated

exactly in practical situations; it can only be approximated.

A second source of error in a learned model, in a practical situation, stems

from the particular training set used, which is inevitably finite and therefore not

fully representative of the actual population of instances. The expected value of

this component of the error, over all possible training sets of the given size and

all possible test sets, is called the variance of the learning method for that prob-

lem. The total expected error of a classifier is made up of the sum of bias and

variance: this is the bias�variance decomposition.

Note that we are glossing over the details here. The bias�variance decomposi-

tion was introduced in the context of numeric prediction based on squared error,

where there is a widely accepted way of performing it. However, the situation is

not so clear for classification, and several competing decompositions have been

proposed. Regardless of the specific decomposition used to analyze the error,

combining multiple classifiers generally decreases the expected error by reducing

the variance component. The more classifiers that are included, the greater the

reduction in variance. Of course, a difficulty arises when putting this voting

scheme into practice: usually there is only one training set, and obtaining more

data is either impossible or expensive.

Bagging attempts to neutralize the instability of learning methods by simulat-

ing the process described previously using a given training set. Instead of sam-

pling a fresh, independent training dataset each time, the original training data is

altered by deleting some instances and replicating others. Instances are randomly

sampled, with replacement, from the original dataset to create a new one of the

same size. This sampling procedure inevitably replicates some of the instances

and deletes others. If this idea strikes a chord, it is because we encountered it in

482 CHAPTER 12 Ensemble learning

Chapter 5, Credibility: evaluating what’s been learned, when explaining the boot-

strap method for estimating the generalization error of a learning method

(Section 5.4): indeed, the term bagging stands for bootstrap aggregating. Bagging

applies the learning scheme—e.g., a decision tree inducer—to each one of these

artificially derived datasets, and the classifiers generated from them vote for the

class to be predicted. The algorithm is summarized in Fig. 12.1.

The difference between bagging and the idealized procedure described above

is the way in which the training datasets are derived. Instead of obtaining inde-

pendent datasets from the domain, bagging just resamples the original training

data. The datasets generated by resampling are different from one another but are

certainly not independent because they are all based on one dataset. However, it

turns out that bagging produces a combined model that often performs signifi-

cantly better than the single model built from the original training data, and is

never substantially worse.

Bagging can also be applied to learning schemes for numeric prediction—e.g.,

model trees. The only difference is that, instead of voting on the outcome, the indi-

vidual predictions, being real numbers, are averaged. The bias�variance decompo-

sition is applied to numeric prediction by decomposing the expected value of the

mean-squared error of the predictions on fresh data. Bias is defined as the mean-

squared error expected when averaging over models built from all possible training

datasets of the same size, and variance is the component of the expected error of a

single model that is due to the particular training data it was built from. It can be

shown theoretically that averaging over infinitely many models built from indepen-

dent training sets always reduces the expected value of the mean-squared error.

(As we mentioned earlier, the analogous result is not true for classification.)

BAGGING WITH COSTS

Bagging helps most if the underlying learning scheme is unstable in that small

changes in the input data can lead to quite different classifiers. Indeed results can

be improved by increasing the diversity in the ensemble of classifiers by making

FIGURE 12.1

Algorithm for bagging.

48312.2 Bagging

the learning scheme as unstable as possible, while maintaining some level of

accuracy. For example, when bagging decision trees, which are already unstable,

better performance is often achieved by switching pruning off, which makes them

even more unstable. Another improvement can be obtained by changing the way

that predictions are combined for classification. As originally formulated, bagging

uses voting. But when the models can output probability estimates and not just

plain classifications, it makes intuitive sense to average these probabilities

instead. Not only does this often improve classification slightly, but the bagged

classifier also generates probability estimates—ones that are often more accurate

than those produced by the individual models. Implementations of bagging com-

monly use this method of combining predictions.

In Section 5.8 we showed how to make a classifier cost sensitive by minimiz-

ing the expected cost of predictions. Accurate probability estimates are necessary

because they are used to obtain the expected cost of each prediction. Bagging is a

prime candidate for cost-sensitive classification because it produces very accurate

probability estimates from decision trees and other powerful, yet unstable, classi-

fiers. However, a disadvantage is that bagged classifiers are hard to analyze.

A method called MetaCost combines the predictive benefits of bagging with a

comprehensible model for cost-sensitive prediction. It builds an ensemble classi-

fier using bagging and deploys it to relabel the training data by giving every train-

ing instance the prediction that minimizes the expected cost, based on the

probability estimates obtained from bagging. MetaCost then discards the original

class labels and learns a single new classifier—e.g., a single pruned decision

tree—from the relabeled data. This new model automatically takes costs into

account because they have been built into the class labels! The result is a single

cost-sensitive classifier that can be analyzed to see how predictions are made.

In addition to the cost-sensitive classification technique just mentioned,

Section 5.8 also described a cost-sensitive learning method that learns a cost-

sensitive classifier by changing the proportion of each class in the training data to

reflect the cost matrix. MetaCost seems to produce more accurate results than this

method, but it requires more computation. If there is no need for a comprehensi-

ble model, MetaCost’s postprocessing step is superfluous: it is better to use the

bagged classifier directly in conjunction with the minimum expected cost method.

12.3 RANDOMIZATION
Bagging generates a diverse ensemble of classifiers by introducing randomness

into the learning algorithm’s input, often with excellent results. But there are

other ways of creating diversity by introducing randomization. Some learning

algorithms already have a built-in random component. For example, when learn-

ing multilayer perceptrons using the backpropagation algorithm the network

weights are set to small randomly chosen values. The learned classifier depends

484 CHAPTER 12 Ensemble learning

on the random numbers because the algorithm may find a different local mini-

mum of the error function. One way to make the outcome of classification more

stable is to run the learner several times with different random number seeds and

combine the classifiers’ predictions by voting or averaging.

Almost every learning method is amenable to some kind of randomization.

Consider an algorithm that greedily picks the best option at every step—such as a

decision tree learner that picks the best attribute to split on at each node. It could be

randomized by picking one of the N best options at random instead of a single win-

ner, or by choosing a random subset of options and picking the best from that. Of

course, there is a tradeoff: more randomness generates more variety in the learner

but makes less use of the data, probably decreasing the accuracy of each individual

model. The best dose of randomness can only be prescribed by experiment.

Although bagging and randomization yield similar results, it sometimes pays

to combine them because they introduce randomness in different, perhaps comple-

mentary, ways. A popular algorithm for learning random forests builds a random-

ized decision tree in each iteration of the bagging algorithm, and often produces

excellent predictors.

RANDOMIZATION VERSUS BAGGING

Randomization demands more work than bagging because the learning algorithm

must be modified, but it can profitably be applied to a greater variety of learners.

We noted earlier that bagging fails with stable learning algorithms whose output is

insensitive to small changes in the input. For example, it is pointless to bag nearest-

neighbor classifiers because their output changes very little if the training data is

perturbed by sampling. But randomization can be applied even to stable learners:

the trick is to randomize in a way that makes the classifiers diverse without

sacrificing too much performance. A nearest-neighbor classifier’s predictions

depend on the distances between instances, which in turn depend heavily on which

attributes are used to compute them, so nearest-neighbor classifiers can be random-

ized by using different, randomly chosen subsets of attributes. In fact, this approach

is called the random subspaces method for constructing an ensemble of classifiers

and was proposed as a method for learning a random forest. As with bagging, it

does not require any modification to the learning algorithm. Of course, random

subspaces can be used in conjunction with bagging in order to introduce random-

ness to the learning process in terms of both instances and attributes.

Returning to plain bagging, the idea is to exploit instability in the learning

algorithm in order to create diversity amongst the ensemble members—but the

degree of diversity achieved is less than that of other ensemble learning methods

such as random forests, because of randomization built in to the learning algo-

rithm, or boosting (discussed in Section 12.4). This is because bootstrap sampling

creates training datasets whose distribution resembles that of the original data.

Consequently, the classifiers learned by bagging are individually quite accurate,

but their low diversity can detract from the overall accuracy of the ensemble.

48512.3 Randomization

Introducing randomness in the learning algorithm increases diversity but sacrifices

accuracy of the individual classifiers. If it were possible for ensemble members to

be both diverse and individually accurate, smaller ensembles could be used. Of

course, this would have computational benefits.

ROTATION FORESTS

An ensemble learning method called rotation forests has the specific goal of cre-

ating diverse yet accurate classifiers. It combines the random subspace and bag-

ging approaches with principal component feature generation to construct an

ensemble of decision trees. In each iteration, the input attributes are randomly

divided into k disjoint subsets. Principal component analysis is applied to each

subset in turn in order to create linear combinations of the attributes in the subset

that are rotations of the original axes. The k sets of principal components are used

to compute values for the derived attributes; these comprise the input to the tree

learner at each iteration. Because all the components obtained on each subset are

retained, there are as many derived attributes as there are original ones. To dis-

courage the generation of identical coefficients if the same feature subset is cho-

sen in different iterations, principal component analysis is applied to training

instances from a randomly chosen subset of the class values (however, the values

of the derived attributes that are input to the tree learner are computed from all

the instances in the training data). To further increase diversity, a bootstrap sam-

ple of the data can be created in each iteration before the principal component

transformations are applied.

Experiments indicate that rotation forests can give similar performance to ran-

dom forests, with far fewer trees. An analysis of diversity (measured by the

Kappa statistic, introduced in Section 5.8 to measure agreement between classi-

fiers) versus error for pairs of ensemble members shows a minimal increase in

diversity and reduction in error for rotation forests when compared to bagging.

However, this appears to translate into significantly better performance for the

ensemble as a whole.

12.4 BOOSTING
We have explained that bagging exploits the instability inherent in learning algo-

rithms. Intuitively, combining multiple models only helps when these models are

significantly different from one another and each one treats a reasonable percent-

age of the data correctly. Ideally the models complement one another, each being

a specialist in a part of the domain where the other models don’t perform very

well—just as human executives seek advisors whose skills and experience com-

plement, rather than duplicate, one another.

486 CHAPTER 12 Ensemble learning

The boosting method for combining multiple models exploits this insight by

explicitly seeking models that complement one another. First, the similarities: like

bagging, boosting uses voting (for classification) or averaging (for prediction) to

combine the output of individual models. Again, like bagging, it combines models

of the same type—e.g., decision trees. However, boosting is iterative. Whereas in

bagging individual models are built separately, in boosting each new model is

influenced by the performance of those built previously. Boosting encourages

new models to become experts for instances handled incorrectly by earlier ones.

A final difference is that boosting weights a model’s contribution by its perfor-

mance, rather than giving equal weight to all models.

ADABOOST

There are many variants on the idea of boosting. We describe a widely used

method called AdaBoost.M1 that is designed specifically for classification. Like

bagging, it can be applied to any classification learning algorithm. To simplify

matters we assume that the learning algorithm can handle weighted instances,

where the weight of an instance is a positive number. (We revisit this assumption

later.) The presence of instance weights changes the way in which a classifier’s

error is calculated: it is the sum of the weights of the misclassified instances

divided by the total weight of all instances, instead of the fraction of instances

that are misclassified. By weighting instances, the learning algorithm can be

forced to concentrate on a particular set of instances, namely, those with high

weight. Such instances become particularly important because there is a greater

incentive to classify them correctly. The C4.5 algorithm, described in Section 6.1,

is an example of a learning method that can accommodate weighted instances

without modification because it already uses the notion of fractional instances to

handle missing values.

The boosting algorithm, summarized in Fig. 12.2, begins by assigning equal

weight to all instances in the training data. It then calls the learning algorithm to

form a classifier for this data and reweights each instance according to the classi-

fier’s output. The weight of correctly classified instances is decreased, and that of

misclassified ones is increased. This produces a set of “easy” instances with low

weight and a set of “hard” ones with high weight. In the next iteration—and all

subsequent ones—a classifier is built for the reweighted data, which consequently

focuses on classifying the hard instances correctly. Then the instances’ weights

are increased or decreased according to the output of this new classifier. As a

result, some hard instances might become even harder and easier ones even eas-

ier; on the other hand, other hard instances might become easier, and easier ones

harder—all possibilities can occur in practice. After each iteration, the weights

reflect how often the instances have been misclassified by the classifiers produced

so far. By maintaining a measure of “hardness” with each instance, this procedure

provides an elegant way of generating a series of experts that complement one

another.

48712.4 Boosting

How much should the weights be altered after each iteration? The answer

depends on the current classifier’s overall error. More specifically, if e denotes

the classifier’s error on the weighted data (a fraction between 0 and 1), then

weights are updated by

Weight’Weight3 e=ð12 eÞ
for correctly classified instances, and the weights remain unchanged for misclassi-

fied ones. Of course, this does not increase the weight of misclassified instances

as claimed earlier. However, after all weights have been updated they are renor-

malized so that their sum remains the same as it was before. Each instance’s

weight is divided by the sum of the new weights and multiplied by the sum of the

old ones. This automatically increases the weight of each misclassified instance

and reduces that of each correctly classified one.

Whenever the error on the weighted training data exceeds or equals 0.5, the

boosting procedure deletes the current classifier and does not perform any more

iterations. The same thing happens when the error is 0, because then all instance

weights become 0.

We have explained how the boosting method generates a series of classifiers.

To form a prediction, their output is combined using a weighted vote. To deter-

mine the weights, note that a classifier that performs well on the weighted train-

ing data from which it was built (e close to 0) should receive a high weight, and

a classifier that performs badly (e close to 0.5) should receive a low one. The

AdaBoost.M1 algorithm uses

Weight52 log
e

12 e
;

which is a positive number between 0 and infinity. Incidentally, this formula

explains why classifiers that perform perfectly on the training data must be

FIGURE 12.2

Algorithm for boosting.

488 CHAPTER 12 Ensemble learning

deleted, because when e is 0 the weight is undefined. To make a prediction, the

weights of all classifiers that vote for a particular class are summed, and the class

with the greatest total is chosen.

We began by assuming that the learning algorithm can cope with weighted

instances. Any algorithm can be adapted to deal with weighted instances; we

explained how at the end of Section 7.3 under Locally weighted linear regression.

Instead of changing the learning algorithm, it is possible to generate an

unweighted dataset from the weighted data by resampling—the same technique

that bagging uses. Whereas for bagging each instance is chosen with equal proba-

bility, for boosting instances are chosen with probability proportional to their

weight. As a result, instances with high weight are replicated frequently, and ones

with low weight may never be selected. Once the new dataset becomes as large

as the original one, it is fed into the learning scheme instead of the weighted data.

It’s as simple as that.

A disadvantage of this procedure is that some instances with low weight do

not make it into the resampled dataset, so information is lost before the learning

scheme is applied. However, this can be turned into an advantage. If the learning

scheme produces a classifier whose error exceeds 0.5, boosting must terminate if

the weighted data is used directly, whereas with resampling it might be possible

to produce a classifier with error below 0.5 by discarding the resampled dataset

and generating a new one from a different random seed. Sometimes more boost-

ing iterations can be performed by resampling than when using the original

weighted version of the algorithm.

THE POWER OF BOOSTING

The idea of boosting originated in a branch of machine learning research known

as computational learning theory. Theoreticians are interested in boosting because

it is possible to derive performance guarantees. For example, it can be shown that

the error of the combined classifier on the training data approaches zero very

quickly as more iterations are performed (exponentially quickly in the number of

iterations). Unfortunately, as explained in Section 5.1, guarantees for the training

error are not very interesting because they do not necessarily indicate good per-

formance on fresh data. However, it can be shown theoretically that boosting only

fails on fresh data if the individual classifiers are too “complex” for the amount

of training data present or their training errors become too large too quickly. As

usual, the problem lies in finding the right balance between the individual mod-

els’ complexity and their fit to the data.

If boosting does succeed in reducing the error on fresh test data, it often does

so in a spectacular way. One very surprising finding is that performing more

boosting iterations can reduce the error on new data long after the classification

error of the combined classifier on the training data has dropped to zero.

Researchers were puzzled by this result because it seems to contradict Occam’s

razor, which declares that, of two hypotheses that explain the empirical evidence

48912.4 Boosting

equally well the simpler one is to be preferred. Performing more boosting itera-

tions without reducing training error does not explain the training data any better,

and it certainly adds complexity to the combined classifier. The contradiction can

be resolved by considering the classifier’s confidence in its predictions. More spe-

cifically, we measure confidence by the difference between the estimated confi-

dence for the true class and that of the most likely predicted class other than the

true class—a quantity known as the margin. The larger the margin, the more con-

fident the classifier is in predicting the true class. It turns out that boosting can

increase the margin long after the training error has dropped to zero. The effect

can be visualized by plotting the cumulative distribution of the margin values of

all the training instances for different numbers of boosting iterations, giving a

graph known as the margin curve. Hence, if the explanation of empirical evidence

takes the margin into account, Occam’s razor remains as sharp as ever.

The beautiful thing about boosting is that a powerful combined classifier can

be built from very simple ones as long as they achieve less than 50% error on the

reweighted data. Usually, this is easy—certainly for learning problems with two

classes! Simple learning schemes are called weak learners, and boosting converts

weak learners into strong ones. For example, good results for two-class problems

can be obtained by boosting extremely simple decision trees that have only one

level—called decision stumps. Another possibility is to apply boosting to an algo-

rithm that learns a single conjunctive rule—such as a single path in a decision

tree—and classifies instances based on whether or not the rule covers them. Of

course, multiclass datasets make it more difficult to achieve error rates below 0.5.

Decision trees can still be boosted, but they usually need to be more complex

than decision stumps. More sophisticated algorithms have been developed that

allow very simple models to be boosted successfully in multiclass situations.

Boosting often produces classifiers that are significantly more accurate on

fresh data than ones generated by bagging. However, unlike bagging, boosting

sometimes fails in practical situations: it can generate a classifier that is signifi-

cantly less accurate than a single classifier built from the same data. This indi-

cates that the combined classifier overfits the data.

12.5 ADDITIVE REGRESSION
When boosting was first investigated it sparked intense interest among researchers

because it could coax first-class performance from indifferent learners.

Statisticians soon discovered that it could be recast as a greedy algorithm for fit-

ting an additive model. Additive models have a long history in statistics. Broadly,

the term refers to any way of generating predictions by summing up contributions

obtained from other models. Most learning algorithms for additive models do not

build the base models independently but ensure that they complement one another

and try to form an ensemble of base models that optimizes predictive performance

according to some specified criterion.

490 CHAPTER 12 Ensemble learning

Boosting implements forward stagewise additive modeling. This class of algo-

rithms starts with an empty ensemble and incorporates new members sequentially.

At each stage the model that maximizes the predictive performance of the ensem-

ble as a whole is added, without altering those already in the ensemble.

Optimizing the ensemble’s performance implies that the next model should focus

on those training instances on which the ensemble performs poorly. This is

exactly what boosting does by giving those instances larger weights.

NUMERIC PREDICTION

Here is a well-known forward stagewise additive modeling method for numeric

prediction. First, build a standard regression model, e.g., a regression tree. The

errors it exhibits on the training data—the differences between predicted and

observed values—are called residuals. Then correct for these errors by learning a

second model—perhaps another regression tree—that tries to predict the observed

residuals. To do this, simply replace the original class values by their residuals

before learning the second model. Adding the predictions made by the second

model to those of the first one automatically yields lower error on the training

data. Usually some residuals still remain, because the second model is not a per-

fect one, so we continue with a third model that learns to predict the residuals of

the residuals, and so on. The procedure is reminiscent of the use of rules with

exceptions for classification that we met in Section 3.4.

If the individual models minimize the squared error of the predictions, as lin-

ear regression models do, this algorithm minimizes the squared error of the

ensemble as a whole. In practice it also works well when the base learner uses a

heuristic approximation instead, such as the regression and model tree learners

described in Section 7.3. In fact, there is no point in using standard linear regres-

sion as the base learner for additive regression, because the sum of linear regres-

sion models is again a linear regression model and the regression algorithm itself

minimizes the squared error. However, it is a different story if the base learner is

a regression model based on a single attribute, the one that minimizes the squared

error. Statisticians call this simple linear regression, in contrast to the standard

multiattribute method, properly called multiple linear regression. In fact, using

additive regression in conjunction with simple linear regression and iterating until

the squared error of the ensemble decreases no further yields an additive model

identical to the least-squares multiple linear regression function.

Forward stagewise additive regression is prone to overfitting because each

model added fits the training data closer and closer. To decide when to stop, use

cross-validation. For example, perform a cross-validation for every number of

iterations up to a user-specified maximum and choose the one that minimizes the

cross-validated estimate of squared error. This is a good stopping criterion

because cross-validation yields a fairly reliable estimate of the error on future

data. Incidentally, using this method in conjunction with simple linear regression

as the base learner effectively combines multiple linear regression with built-in

49112.5 Additive Regression

attribute selection, because the next most important attribute’s contribution is

only included if it decreases the cross-validated error.

For implementation convenience, forward stagewise additive regression usu-

ally begins with a level-0 model that simply predicts the mean of the class on the

training data so that every subsequent model fits residuals. This suggests another

possibility for preventing overfitting: instead of subtracting a model’s entire pre-

diction to generate target values for the next model, shrink the predictions by

multiplying them by a user-specified constant factor between 0 and 1 before sub-

tracting. This reduces the model’s fit to the residuals, and consequently reduces

the chance of overfitting. Of course, it may increase the number of iterations

needed to arrive at a good additive model. Reducing the multiplier effectively

damps down the learning process, increasing the chance of stopping at just the

right moment—but also increasing run time.

ADDITIVE LOGISTIC REGRESSION

Additive regression can also be applied to classification just as linear regression

can. But we know from Section 4.6 that logistic regression is more suitable than

linear regression for classification. It turns out that a similar adaptation can be

made to additive models by modifying the forward stagewise modeling method to

perform additive logistic regression. Use the logit transform to translate the proba-

bility estimation problem into a regression problem, as we did in Section 4.6, and

solve the regression task using an ensemble of models—e.g., regression trees—

just as for additive regression. At each stage, add the model that maximizes the

probability of the data given the ensemble classifier.

Suppose fj is the jth regression model in the ensemble and fj(a) is its prediction
for instance a. Assuming a two-class problem, use the additive model

P
fjðaÞ to

obtain a probability estimate for the first class:

pð1jaÞ5 1

11 e2
P

fjðaÞ
:

This closely resembles the expression used in Section 4.6, except that here it

is abbreviated by using vector notation for the instance a and the original

weighted sum of attributes values is replaced by a sum of arbitrarily complex

regression models f.

Fig. 12.3 shows the two-class version of the so-called LogitBoost algorithm,

which performs additive logistic regression and generates the individual models

fj. Here, yi is 1 for an instance in the first class and 0 for an instance in the sec-

ond. In each iteration this algorithm fits a regression model fj to a weighted ver-

sion of the original dataset based on dummy class values zi and weights wi. We

assume that pð1 aÞ
		 is computed using the fj that were built in previous iterations.

The derivation of this algorithm is beyond the scope of this book, but it can

be shown that the algorithm maximizes the probability of the data with respect to

492 CHAPTER 12 Ensemble learning

the ensemble if each model fj is determined by minimizing the squared error on

the corresponding regression problem. In fact, if multiple linear regression is used

to form the fj, the algorithm converges to the maximum likelihood linear-logistic

regression model: it is an incarnation of the iteratively reweighted least-squares

method mentioned in Section 4.6.

Superficially, LogitBoost looks quite different to AdaBoost, but the predictors

they produce differ mainly in that the former optimizes the likelihood directly

whereas the latter optimizes an exponential loss function that can be regarded as

an approximation to it. From a practical perspective, the difference is that

LogitBoost uses a regression scheme as the base learner whereas AdaBoost works

with classification algorithms.

We have only shown the two-class version of LogitBoost, but the algorithm

can be generalized to multiclass problems. As with additive regression, the danger

of overfitting can be reduced by shrinking the predictions of the individual fj by a

predetermined multiplier and using cross-validation to determine an appropriate

number of iterations.

12.6 INTERPRETABLE ENSEMBLES
Bagging, boosting, and randomization all produce ensembles of classifiers. This

makes it very difficult to analyze what kind of information has been extracted

from the data. It would be nice to have a single model with the same predictive

performance. One possibility is to generate an artificial dataset, by randomly sam-

pling points from the instance space and assigning them the class labels predicted

by the ensemble classifier, and then learn a decision tree or rule set from this new

dataset. To obtain similar predictive performance from the tree as from the

ensemble a huge dataset may be required, but in the limit this strategy should be

able to replicate the performance of the ensemble classifier—and it certainly will

if the ensemble itself consists of decision trees.

FIGURE 12.3

Algorithm for additive logistic regression.

49312.6 Interpretable Ensembles

OPTION TREES

Another approach is to derive a single structure that can represent an ensemble of

classifiers compactly. This can be done if the ensemble consists of decision trees;

the result is called an option tree. Option trees differ from decision trees in that

they contain two types of node: decision nodes and option nodes. Fig. 12.4 shows

a simple example for the weather data, with only one option node. To classify an

instance, filter it down through the tree. At a decision node take just one of the

branches, as usual, but at an option node take all the branches. This means that

the instance ends up in more than one leaf, and the classifications obtained from

those leaves must somehow be combined into an overall classification. This can

be done simply by voting, taking the majority vote at an option node to be the

prediction of the node. In that case it makes little sense to have option nodes with

only two options (as in Fig. 12.4) because there will only be a majority if both

branches agree. Another possibility is to average the probability estimates

obtained from the different paths, using either an unweighted average or a more

sophisticated Bayesian approach.

Option trees can be generated by modifying an existing decision tree learner

to create an option node if there are several splits that look similarly useful

according to their information gain. All choices within a certain user-specified

FIGURE 12.4

Simple option tree for the weather data.

494 CHAPTER 12 Ensemble learning

tolerance of the best one can be made into options. During pruning, the error of

an option node is the average error of its options.

Another possibility is to grow an option tree by incrementally adding nodes to

it. This is commonly done using a boosting algorithm, and the resulting trees are

usually called alternating decision trees instead of option trees. In this context the

decision nodes are called splitter nodes and the option nodes are called prediction

nodes. Prediction nodes are leaves if no splitter nodes have been added to them

yet. The standard alternating decision tree applies to two-class problems, and with

each prediction node is associated a positive or negative numeric value. To obtain

a prediction for an instance, filter down all applicable branches and sum up the

values from any prediction nodes that are encountered; predict one class or the

other depending on whether the sum is positive or negative.

A simple example tree for the weather data is shown in Fig. 12.5, where a

positive value corresponds to class play5 no and a negative one to play5 yes. To

classify an instance with outlook5 sunny, temperature5 hot, humidity5 normal,

FIGURE 12.5

Alternating decision tree for the weather data.

49512.6 Interpretable Ensembles

and windy5 false, filter it down to the corresponding leaves, obtaining values

20.255, 0.213, 20.430, and 20.331. The sum of these values is negative; hence

predict play5 yes. Alternating decision trees always have a prediction node at the

root, as in this example.

The alternating tree is grown using a boosting algorithm—e.g., a boosting

algorithm that employs a base learner for numeric prediction, such as the

LogitBoost method described previously. Assume that the base learner produces a

single conjunctive rule in each boosting iteration. Then an alternating decision

tree can be generated by simply adding each rule into the tree. The numeric

scores associated with the prediction nodes are obtained from the consequents of

the rules. However, the resulting tree will grow large very quickly because the

rules from different boosting iterations are likely to be different. Hence, learning

algorithms for alternating decision trees consider only those rules that extend one

of the existing paths in the tree by adding a splitter node and two corresponding

prediction nodes (assuming binary splits). In the standard version of the algo-

rithm, every possible location in the tree is considered for addition, and a node is

added according to a performance measure that depends on the particular boosting

algorithm employed. However, heuristics can be used instead of an exhaustive

search to speed up the learning process.

LOGISTIC MODEL TREES

Option trees and alternating trees yield very good classification performance

based on a single structure, but they may still be difficult to interpret when there

are many options nodes because it becomes difficult to see how a particular pre-

diction is derived. However, it turns out that boosting can also be used to build

very effective decision trees that do not include any options at all. For example,

the LogitBoost algorithm has been used to induce trees with linear-logistic regres-

sion models at the leaves. These are called logistic model trees and are interpreted

in the same way as the model trees for regression described in Section 7.3.

LogitBoost performs additive logistic regression. Suppose that each iteration

of the boosting algorithm fits a simple regression function by going through all

the attributes, finding the simple regression function with the smallest error, and

adding it into the additive model. If the LogitBoost algorithm is run until conver-

gence, the result is a maximum likelihood multiple-logistic regression model.

However, for optimum performance on future data it is usually unnecessary to

wait for convergence—and to do so is often detrimental. An appropriate number

of boosting iterations can be determined by estimating the expected performance

for a given number of iterations using cross-validation and stopping the process

when performance ceases to increase.

A simple extension of this algorithm leads to logistic model trees. The boost-

ing process terminates when there is no further structure in the data that can be

modeled using a linear-logistic regression function. However, there may still be

structure that linear models can fit if attention is restricted to subsets of the data,

496 CHAPTER 12 Ensemble learning

obtained, e.g., by splitting the data using a standard decision tree criterion such as

information gain. Thus, once no further improvement can be obtained by adding

more simple linear models, the data is split and boosting resumed separately in

each subset. This process takes the logistic model generated so far and refines it

separately for the data in each subset. Again, cross-validation is run in each subset

to determine an appropriate number of iterations to perform in that subset.

The process is applied recursively until the subsets become too small. The result-

ing tree will surely overfit the training data, and one of the standard methods of deci-

sion tree learning can be used to prune it. Experiments indicate that the pruning

operation is very important. Using the cost-complexity pruning method discussed in

Section 6.1, which chooses the right tree size using cross-validation, the algorithm

produces small but very accurate trees with linear-logistic models at the leaves.

12.7 STACKING
Stacked generalization, or stacking for short, is a different way of combining mul-

tiple models. Although developed some years ago, it is less widely mentioned in

the machine learning literature than bagging and boosting, partly because it is dif-

ficult to analyze theoretically and partly because there is no generally accepted

best way of doing it—the basic idea can be applied in many different variations.

Unlike bagging and boosting, stacking is not normally used to combine mod-

els of the same type—e.g., a set of decision trees. Instead it is applied to models

built by different learning algorithms. Suppose you have a decision tree inducer, a

Naı̈ve Bayes learner, and an instance-based learning scheme and you want to

form a classifier for a given dataset. The usual procedure would be to estimate

the expected error of each algorithm by cross-validation and to choose the best

one to form a model for prediction on future data. But is not there a better way?

With three learning algorithms available, cannot we use all three for prediction

and combine the outputs together?

One way to combine outputs is by voting—the same mechanism used in bag-

ging. However, (unweighted) voting only makes sense if the learning schemes

perform comparably well. If two of the three classifiers make predictions that are

grossly incorrect, we will be in trouble! Instead, stacking introduces the concept

of a metalearner, which replaces the voting procedure. The problem with voting

is that it is not clear which classifier to trust. Stacking tries to learn which classi-

fiers are the reliable ones, using another learning algorithm—the metalearner—to

discover how best to combine the output of the base learners.

The input to the metamodel—also called the level-1 model—are the predic-

tions of the base models, or level-0 models. A level-1 instance has as many attri-

butes as there are level-0 learners, and the attribute values give the predictions of

these learners on the corresponding level-0 instance. When the stacked learner is

used for classification, an instance is first fed into the level-0 models, and each

49712.7 Stacking

one guesses a class value. These guesses are fed into the level-1 model, which

combines them into the final prediction.

There remains the problem of training the level-1 learner. To do this, we need

to find a way of transforming the level-0 training data (used for training the level-

0 learners) into level-1 training data (used for training the level-1 learner). This

seems straightforward: let each level-0 model classify a training instance, and

attach to their predictions the instance’s actual class value to yield a level-1 train-

ing instance. Unfortunately, this does not work well. It would allow rules to be

learned such as always believe the output of classifier A, and ignore B and C.

This rule may well be appropriate for particular base classifiers A, B, and C; and

if so it will probably be learned. But just because it seems appropriate on the

training data does not necessarily mean that it will work well on the test data—

because it will inevitably learn to prefer classifiers that overfit the training data

over ones that make decisions more realistically.

Consequently, stacking does not simply transform the level-0 training data

into level-1 data in this manner. Recall from Chapter 5, Credibility: evaluating

what’s been learned, that there are better methods of estimating a classifier’s per-

formance than using the error on the training set. One is to hold out some

instances and use them for an independent evaluation. Applying this to stacking,

we reserve some instances to form the training data for the level-1 learner and

build level-0 classifiers from the remaining data. Once the level-0 classifiers have

been built they are used to classify the instances in the holdout set, forming the

level-1 training data. Because the level-0 classifiers have not been trained on

these instances, their predictions are unbiased; therefore the level-1 training data

accurately reflects the true performance of the level-0 learning algorithms. Once

the level-1 data has been generated by this holdout procedure, the level-0 learners

can be reapplied to generate classifiers from the full training set, making slightly

better use of the data and leading to better predictions.

The holdout method inevitably deprives the level-1 model of some of the

training data. In Chapter 5, Credibility: evaluating what’s been learned, cross-

validation was introduced as a means of circumventing this problem for error esti-

mation. This can be applied in conjunction with stacking by performing a cross-

validation for every level-0 learner. Each instance in the training data occurs in

exactly one of the test folds of the cross-validation, and the predictions of the

level-0 inducers built from the corresponding training fold are used to build a

level-1 training instance from it. This generates a level-1 training instance for

each level-0 training instance. Of course, it is slow because a level-0 classifier

has to be trained for each fold of the cross-validation, but it does allow the level-

1 classifier to make full use of the training data.

Given a test instance, most learning schemes are able to output probabilities

for every class label instead of making a single categorical prediction. This can

be exploited to improve the performance of stacking by using the probabilities to

form the level-1 data. The only difference to the standard procedure is that each

498 CHAPTER 12 Ensemble learning

nominal level-1 attribute—representing the class predicted by a level-0 learner—

is replaced by several numeric attributes, each representing a class probability

output by the level-0 learner. In other words, the number of attributes in the

level-1 data is multiplied by the number of classes. This procedure has the advan-

tage that the level-1 learner is privy to the confidence that each level-0 learner

associates with its predictions, thereby amplifying communication between the

two levels of learning.

An outstanding question remains: What algorithms are suitable for the level-1

learner? In principle, any learning scheme can be applied. However, because most

of the work is already done by the level-0 learners, the level-1 classifier is basi-

cally just an arbiter and it makes sense to choose a rather simple algorithm for

this purpose. In the words of David Wolpert, the inventor of stacking, it is reason-

able that “relatively global, smooth” level-1 generalizers should perform well.

Simple linear models or trees with linear models at the leaves usually work well.

Stacking can also be applied to numeric prediction. In that case, the level-0

models and the level-1 model all predict numeric values. The basic mechanism

remains the same; the only difference lies in the nature of the level-1 data. In the

numeric case, each level-1 attribute represents the numeric prediction made by

one of the level-0 models, and instead of a class value the numeric target value is

attached to level-1 training instances.

12.8 FURTHER READING AND BIBLIOGRAPHIC NOTES
Ensemble learning is a popular research topic in machine learning research, with

many related publications. The term bagging (for “bootstrap aggregating”) was

coined by Breiman (1996b), who investigated the properties of bagging theoreti-

cally and empirically for both classification and numeric prediction.

The bias�variance decomposition for classification presented in Section 12.2

is due to Dietterich and Kong (1995). We chose this version because it is both

accessible and elegant. However, the variance can turn out to be negative,

because, as we mentioned, aggregating models from independent training sets by

voting may in pathological situations actually increase the overall classification

error compared to a model from a single training set. This is a serious disadvan-

tage because variances are normally squared quantities—the square of the stan-

dard deviation—and therefore cannot become negative. Breiman, in the technical

report Breiman (1996c), proposed a different bias�variance decomposition for

classification. This has caused some confusion in the literature, because three dif-

ferent versions of this report can be located on the Web. The official version,

entitled “Arcing classifiers,” describes a more complex decomposition that can-

not, by construction, produce negative variance. However, the original version,

entitled “Bias, variance, and arcing classifiers,” follows Dietterich and Kong’s

49912.8 Further Reading and Bibliographic Notes

formulation (except that Breiman splits the bias term into bias plus noise), and

there is also an intermediate version with the original title but the new decompo-

sition that includes an appendix in which Breiman explains that he abandoned the

old definition because it can produce negative variance. However, in the new ver-

sion (and in decompositions proposed by other authors) the bias of the aggregated

classifier can exceed the bias of a classifier built from a single training set, which

also seems counterintuitive.

We discussed the fact that bagging can yield excellent results when used for

cost-sensitive classification. The MetaCost algorithm was introduced by

Domingos (1999).

The random subspace method was suggested as an approach for learning

ensemble classifiers by Ho (1998) and applied as a method for learning ensembles

of nearest-neighbor classifiers by Bay (1999). Randomization was evaluated by

Dietterich (2000) and compared with bagging and boosting. Random forests were

introduced by Breiman (2001). Rotation forests are a more recent ensemble learn-

ing method introduced by Rodriguez, Kuncheva, and Alonso (2006). Subsequent

studies by Kuncheva and Rodriguez (2007) show that the main factors responsible

for its performance are the use of principal component transformations (as

opposed to other feature extraction methods such as random projections) and the

application of principal component analysis to random subspaces of the original

input attributes.

Freund and Schapire (1996) developed the AdaBoost.M1 boosting algorithm,

and derived theoretical bounds for its performance. Later, they provided bounds

for generalization error using the concept of margins (Schapire, Freund, Bartlett,

& Lee, 1997). Drucker (1997) adapted AdaBoost.M1 for numeric prediction. The

LogitBoost algorithm was developed by Friedman, Hastie, and Tibshirani (2000).

Friedman (2001) described how to make boosting more resilient in the presence

of noisy data.

Domingos (1997) described how to derive a single interpretable model from

an ensemble using artificial training examples. Bayesian option trees were intro-

duced by Buntine (1992), and majority voting was incorporated into option trees

by Kohavi and Kunz (1997). Freund and Mason (1999) introduced alternating

decision trees; experiments with multiclass alternating decision trees were

reported by Holmes, Pfahringer, Kirkby, Frank, and Hall (2002). Landwehr, Hall,

and Frank (2005) developed logistic model trees using the LogitBoost algorithm.

Stacked generalization originated with Wolpert (1992), who presented the idea

in the neural network literature, and was applied to numeric prediction by

Breiman (1996a). Ting and Witten (1997a) compared different level-1 models

empirically and found that a simple linear model works well; they also demon-

strated the advantage of using probabilities as level-1 data. Dzeroski and Zenko

(2004) obtained improved performance using model trees instead of linear regres-

sion. A combination of stacking and bagging has also been investigated (Ting and

Witten 1997b).

500 CHAPTER 12 Ensemble learning

12.9 WEKA IMPLEMENTATIONS
• Bagging

Bagging (bag a classifier; works for regression too)

MetaCost (make a classifier cost-sensitive, in the metaCost package)

• Randomization

RandomCommittee (ensembles using different random number seeds)

RandomSubSpace (use a different randomly chosen subset of attributes)

RandomForest (bag ensembles of random trees)

RotationForest (ensembles using rotated random subspaces, in the

rotationForest package)

• Boosting: AdaBoostM1

• Additive regression:

AdditiveRegression

LogitBoost (additive logistic regression)

• Interpretable ensembles:

ADTree (alternating decision trees, in the alternatingDecisionTrees

package)

LADTree (learns alternating decision trees using LogitBoost, in the

alternatingDecisionTrees package)

LMT (logistic model trees)

• Stacking (learns how to combine predictions)

50112.9 WEKA Implementations

13Moving on: applications
and beyond

CHAPTER OUTLINE

13.1 Applying Machine Learning...504

13.2 Learning From Massive Datasets ...506

13.3 Data Stream Learning ...509

13.4 Incorporating Domain Knowledge ..512

13.5 Text Mining ...515

Document Classification and Clustering..516

Information Extraction ..517

Natural Language Processing...518

13.6 Web Mining ...519

Wrapper Induction..519

Page Rank ...520

13.7 Images and Speech..522

Images ..523

Speech..524

13.8 Adversarial Situations ..524

13.9 Ubiquitous Data Mining ..527

13.10 Further Reading and Bibliographic Notes ...529

13.11 WEKA Implementations...532

Machine learning is a burgeoning new technology for mining knowledge from data,

a technology that a lot of people are beginning to take seriously. Looking forward,

the main challenge ahead is applications. Opportunities abound. Wherever there is

data, things can be learned from it. Whenever there is too much data for people to

pore over themselves, the mechanics of learning will have to be automatic. But the

inspiration will certainly not be automatic! Applications will come not from com-

puter programs, nor from machine learning experts, nor from the data itself, but

from the people who work with the data and the problems from which it arises. That

is why we have written this book, and that is what the WEKA system described in

Appendix B is for—to empower those who are not machine learning experts to apply

these techniques to problems that arise in daily working life. The ideas are simple.

The algorithms are here. The rest is really up to you!

Of course, development of the technology is certainly not finished. Machine

learning is a hot research topic and new ideas and techniques continually emerge.

To give a flavor of the scope and variety of research fronts, we close Part II by

looking at some topical areas in the world of data mining.

13.1 APPLYING MACHINE LEARNING
In 2006 the International Data Mining Conference took a poll to identify the top 10

data mining algorithms. Although now somewhat dated, it is still instructive to con-

sider the result, shown in Table 13.1. It is good to see that all the algorithms are cov-

ered in this book! The conference organizers divided the algorithms into rough

categories, which are also shown. Some of the assignments are rather arbitrary—

Naı̈ve Bayes, e.g., is certainly a statistical learning method. Nevertheless the empha-

sis on classification over other forms of learning, which reflects the emphasis in this

book, is evident in the table; as is the prominence of C4.5, which we have also

noted. One algorithm in Table 13.1 that has not been mentioned so far is the

PageRank algorithm for link mining, which we were a little surprised to see in this

list. Section 13.6 contains a brief description.

We have repeatedly stressed that productive use of machine learning is not just

a matter of finding some data and then blindly applying learning algorithms to it.

Of course, the existence of tools such as the WEKA workbench makes that easy to

do—and therein lies a danger. We have seen many publications that seem to follow

this methodology: the authors run a plethora of learning algorithms on a particular

dataset and then write an article claiming that such-and-such a machine learning

method is best for such-and-such a problem—with little apparent understanding of

what those algorithms do, the nature of the data, or consideration for statistical sig-

nificance. The usefulness of such studies is questionable.

Table 13.1 The Top 10 Algorithms in Data Mining, According to a 2006 Poll

Algorithm Category Book Section

1 C4.5 Classification 4.3, 6.1
2 K-means Clustering 4.8
3 SVM Statistical learning 7.2
4 Apriori Association analysis 4.5, 6.3
5 EM Statistical learning 9.3, 9.4
6 PageRank Link mining 13.6
7 Adaboost Ensemble learning 12.4
8 kNN Classification 4.7, 7.1
9 Naïve Bayes Classification 4.2
10 CART Classification 6.1

504 CHAPTER 13 Moving on: applications and beyond

A related but rather different issue concerns the improvements in machine

learning methods that have been reported over the years. In a 2006 paper provoca-

tively entitled “Classifier technology and the illusion of progress,” David Hand, a

prominent statistician and machine learning researcher, points out that a great many

algorithms have been devised for supervised classification, and a great many com-

parative studies have been conducted that apparently establish the superiority of

new methods over their predecessors. Yet he contends that the continued steady

progress that publication of these studies seems to document is, in fact, to a large

extent illusory. This message brings to mind the 1R machine learning scheme some

15 years earlier with which we began Chapter 4, Algorithms: the basic methods,

which, as pointed out there, was never really intended as a machine learning

“method” but was devised to demonstrate that putting high-powered inductive

inference methods to work on simple datasets is like using a sledgehammer to

crack a nut. That insight underlies the simplicity-first methodology that pervades

this book, of which Hand’s recent paper is a salutary reminder.

How can progress be largely illusory, given documented improvements in

measured classification success? The claim is basically that the differences in per-

formance are very small, and in practical applications are likely to be swamped

by other sources of uncertainty. There are many reasons for this. Simple methods

may not perform as well as complex ones, but they often perform nearly as well.

An extremely simple model—always choose the majority class—sets a baseline

upon which any learning method should be able to improve. Consider the

improvement over the baseline achieved by a simple method as a proportion of

the improvement over the baseline achieved by a sophisticated method. For a

variety of randomly-chosen datasets, it turns out that a very simple method

achieved more than 90% of the improvement yielded by the most sophisticated

scheme. This is not so surprising. In standard classification schemes such as deci-

sion trees and rules, a huge proportional gain in predictive accuracy is achieved at

the beginning of the process when the first branch or rule is determined, and sub-

sequent gains are small—usually very small indeed.

Small improvements are easily swamped by other factors. A fundamental

assumption of machine learning is that the training data is representative of the dis-

tribution from which future data will be chosen—the assumption is generally that

the data is independent and identically distributed (often abbreviated to IID). But in

real life, things drift. Yet training data is always retrospective. And it might be quite

old. Consider the loan scenario introduced in Section 1.3. To collect a substantial

volume of training data (and thorough training needs a substantial volume), we

must wait until many loans have been issued. And then we must wait until the end

of the loan period (2 years? 5 years?) for the outcome to be known. By the time we

use it for training, the data is quite old. And what has changed in the meantime?

There are new ways of doing things. The bank has changed the way it defines mea-

surements on which the features are based. New features have become available.

Policies have altered. Is that ancient data really representative of today’s problem?

50513.1 Applying Machine Learning

Another fundamental problem is the reliability of the class labels in the training

data. There may be small errors—random or even systematic ones—in which

case, perhaps, we should stick to simpler models because the higher-order terms of

more complex models may be very inaccurate. In determining class labels, someone,

somewhere, may be mapping a gray world on to a black-and-white one, which

requires judgment and invites inconsistency. And things may change: the notion of a

“defaulter” on a loan—say, unpaid bills for 3 months—may be subtly different today

than it was before—perhaps, in today’s economic climate, hard-pressed customers

will be given another couple of month’s leeway before calling in the bailiffs. The

point is not that learning will necessarily fail. The changes may be fairly subtle, and

the learned models may still work well. The point is that the extra few percent gained

by a sophisticated model over a simple one may be swamped by other factors.

Another issue, when looking at comparative experiments with machine

learning methods, is who is doing the driving. It’s not just a matter of firing up

the various different methods and recording the results. Many machine learning

schemes benefit from tweaking—optimization to fit the problem at hand.

Hopefully the data used for tweaking is kept entirely separate from that used for

testing (otherwise the results are dishonest). But it is natural that an expert in

some particular method—maybe the person who developed it—is able to squeeze

more performance out of it than someone else. If they are trying to get their work

published, they will certainly want to present the new method in the best possible

light. They may not be so experienced at squeezing good performance out of

existing, competitive, methods—or so diligent. New methods always look better

than old ones; also, more complicated schemes are harder to criticize than simpler

ones!

The upshot is that small gains in laboratory performance, even though real,

may be swamped by other factors when machine learning is applied to a practical

data mining problem. If you want to do something worthwhile on a practical data-

set you need to take the entire problem context into account.

Before closing this section, we should note that Hand’s paper was written

before the breakthrough results obtained using deep learning. These show that

extremely complex models can yield substantial benefits in some applications, if

sufficient training data is available and sufficient care is taken when learning them.

13.2 LEARNING FROM MASSIVE DATASETS
The enormous proliferation of very large databases in today’s companies and sci-

entific institutions makes it necessary for machine learning algorithms to operate

on massive datasets. Two separate dimensions become critical when any algo-

rithm is applied to very large datasets: space and time.

Suppose the data is so large that it cannot be held in main memory. This causes

no difficulty if the learning scheme works in an incremental fashion, processing

506 CHAPTER 13 Moving on: applications and beyond

one instance at a time when generating the model. An instance can be read from

the input file, the model can be updated, the next instance can be read, and so on—

without ever holding more than one training instance in main memory. This is

“data stream learning,” and we discuss it in the next section. Other methods,

such as basic instance-based schemes and locally weighted regression, need

access to all the training instances at prediction time. In that case, sophisticated

caching and indexing mechanisms have to be employed to keep only the most

frequently used parts of a dataset in memory and to provide rapid access to rele-

vant instances in the file.

The other critical dimension when applying learning algorithms to massive

datasets is time. If the learning time does not scale linearly (or almost linearly)

with the number of training instances, it will eventually become infeasible to pro-

cess very large datasets. In some applications the number of attributes is a critical

factor, and only methods that scale linearly in the number of attributes are accept-

able. Alternatively, prediction time might be the crucial issue. Fortunately, there

are many learning algorithms that scale gracefully during both training and testing.

For example, the training time for Naı̈ve Bayes is linear in both the number of

instances and the number of attributes. For top-down decision tree inducers, we

saw in Section 6.1 that training time is linear in the number of attributes and, if

the tree is uniformly bushy, log-linear in the number of instances (if subtree raising

is not used).

When a dataset is too large for a particular learning algorithm to be applied,

there are three ways to make learning feasible. The first is trivial: instead of apply-

ing the scheme to the full dataset, use just a small subset for training. Of course,

information is lost when subsampling is employed. However, the loss may be negli-

gible because the predictive performance of a learned model often flattens out long

before all the training data is incorporated into it. If this is the case, it can easily be

verified by observing the model’s performance on a holdout test set for training

sets of different size.

This kind of behavior, called the law of diminishing returns, may arise

because the learning problem is a simple one, so that a small volume of training

data is sufficient to learn an accurate model. Alternatively, the learning algo-

rithm might be incapable of grasping the detailed structure of the underlying

domain. This is often observed when Naı̈ve Bayes is employed in a complex

domain: additional training data may not improve the performance of the model,

whereas a decision tree’s accuracy may continue to climb. In this case, of

course, if predictive performance is the main objective you should switch to the

more complex learning algorithm. But beware of overfitting! Take care not to

assess performance on the training data.

Parallelization is another way of reducing the time complexity of learning. The

idea is to split the problem into smaller parts, solve each using a separate processor,

and combine the results together. To do this, a parallelized version of the learning

algorithm must be created. Some algorithms lend themselves naturally to paralleli-

zation. Nearest-neighbor methods, e.g., can easily be distributed among several

50713.2 Learning From Massive Datasets

processors by splitting the data into parts and letting each processor find the nearest

neighbor in its part of the training set. Decision tree learners can be parallelized by

letting each processor build a subtree of the complete tree. Bagging and stacking

(although not boosting) are naturally parallel algorithms. However, parallelization

is only a partial remedy because with a fixed number of processors, the algorithm’s

asymptotic time complexity cannot be improved—although modern graphics cards

contain an enormous number of (very simple) processors!

A simple way to apply any algorithm to a large dataset is to split the data into

chunks of limited size and learn models separately for each one, combining the

result using voting or averaging. Either a parallel bagging-like scheme or a sequen-

tial boosting-like scheme can be employed for this purpose. Boosting has the

advantage that new chunks can be weighted based on the classifiers learned from

previous chunks, thus transferring knowledge between chunks. In both cases mem-

ory consumption increases linearly with dataset size; hence some form of pruning

is necessary for very large datasets. This can be done by setting aside some

validation data and only adding a model from a new chunk to the committee clas-

sifier if it increases the committee’s performance on the validation set. The vali-

dation set can also be used to identify an appropriate chunk size by running the

method with several different chunk sizes in parallel and monitoring performance

on the validation set.

The best but most challenging way to enable a learning paradigm to deal

with very large datasets would be to develop new algorithms with lower compu-

tational complexity. In some cases, it is provably impossible to derive exact

algorithms with lower complexity. Decision tree learners that deal with numeric

attributes fall into this category. Their asymptotic time complexity is dominated

by the sorting process for the numeric attribute values, a procedure that must be

performed at least once for any given dataset. However, stochastic algorithms

can sometimes be derived that approximate the true solution but require a much

smaller amount of time.

Background knowledge can make it possible to vastly reduce the amount of

data that needs to be processed by a learning algorithm. Depending on which

attribute is the class, most of the attributes in a huge dataset might turn out to be

irrelevant when background knowledge is taken into account. As usual, it pays to

carefully engineer the data that is passed to the learning scheme and make the

greatest possible use of any prior information about the learning problem at hand.

If insufficient background knowledge is available, the attribute filtering algo-

rithms described in Section 7.1 can often drastically reduce the amount of data—

possibly at the expense of a minor loss in predictive performance. Some of

these—e.g., attribute selection using decision trees or the 1R learning scheme—

are linear in the number of attributes.

To give a feeling for the volume of data that can be handled by straightfor-

ward implementations of machine learning algorithms on ordinary microcompu-

ters, we ran WEKA’s decision tree learner J48, an implementation of C4.5, on a

dataset with 5 M instances, 40 attributes (almost all numeric), and a class with 25

508 CHAPTER 13 Moving on: applications and beyond

values.1 We used a reasonably modern machine2 running a Java virtual machine3

with 6 Gbytes of heap space (half of this was required just to load the data). The

resulting tree, which had 1388 nodes, took 18 minutes to build. In general, Java is

a little slower than equivalent C/C11 code—but less than twice as slow.

There are datasets today that truly deserve the adjective massive. Scientific

datasets from astrophysics, nuclear physics, earth science, and molecular biology

are measured in terabytes. So are datasets containing records of financial transac-

tions. Application of standard programs for machine learning to such datasets in

their entirety is a very challenging proposition.

13.3 DATA STREAM LEARNING
One way of addressing massive datasets is to develop learning algorithms that treat

the input as a continuous data stream. In the new paradigm of data stream mining,

which has developed during the last decade, algorithms are developed that cope nat-

urally with datasets that are many times the size of main memory—perhaps even

indefinitely large. The core assumption is that each instance can be inspected once

only (or at most once) and must then be discarded to make room for subsequent

instances. The learning algorithm has no control over the order in which instances

are processed, and must update its model incrementally as each one arrives. Most

models also satisfy the “anytime” property—they are ready to be applied at any point

during the learning process. Such algorithms are ideal for real-time learning from

data streams, making predictions in real time whilst adapting the model to changes

in the evolving input stream. They are typically applied to online learning from data

produced by physical sensors.

For such applications, the algorithm must operate indefinitely yet use a limited

amount of memory. Even though we have stipulated that instances are discarded as

soon as they have been processed, it is obviously necessary to remember at least

something about at least some of the instances, otherwise the model would be static.

And as time progresses, the model may continue to grow—inexorably. But it must

not be allowed to grow without bound. When processing big data, memory is quickly

exhausted unless limits are enforced on every aspect of its use. Moving from space

to time, algorithms intended for real-time application must process instances

faster than they arrive, dealing with each one within a fixed, constant, preferably

small, time bound. This does not allow, e.g., for occasional complex reorganizations

of a tree model—unless the cost can be amortized over several instances, which

introduces a further level of complexity.

1We used a version of the 1999 KDD Cup data at http://kdd.ics.uci.edu/databases/kddcup99/

kddcup99.html.
2Apple OSX with a 4 GHz Intel Core i7 processor.
3Oracle’s 64-bit Java Virtual Machine (Java 1.8) in server mode.

50913.3 Data Stream Learning

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Naı̈ve Bayes is a rare example of an algorithm that needs no adaptation to deal

with data streams—as long as there are no substantial changes in the stream. Training

is incremental: it merely involves updating a fixed set of numeric parameters. Memory

usage is small because no structure is added to the model. Other classifiers with the

same properties include 1R and the basic perceptron. Multilayer neural nets usually

have a fixed structure as well, and as we saw in Section 7.2 stochastic backpropagation

updates weights incrementally after each training instance has been processed, rather

than in a batch operation, and thus is suitable for online learning. Rules with excep-

tions make modifications incrementally by expressing exceptions to existing rules

rather than reengineering the entire set, and thus could be rendered suitable for data

stream learning—although care would need to be taken to ensure that memory usage

did not increase inexorably as the number of exceptions increased. Instance-based

algorithms and related methods such as locally weighted linear regression are also

incremental, but need to be adapted to operate within a fixed memory bound.

To convey the flavor of how a standard algorithm might be adapted for stream

processing, we will examine the case of decision trees—which have the advantage

of evolving structure in a form that is interpretable. Early work on incremental

induction of decision trees devised methods for creating a tree and allowing it to

be restructured when sufficient evidence had accumulated that an alternative ver-

sion would be better. However, a large amount of information needs to be

retained to support the restructuring operation—in some cases, all of the training

data. Furthermore, restructuring tends to be slow—sometimes slower than recreat-

ing the entire tree from scratch. Although interesting, these methods do not sup-

port indefinite processing of data streams in real time.

Their problem is that they adopt the usual paradigm of squeezing as much

information as possible out of the available instances. With data streams, this is

not necessarily appropriate—it is perfectly acceptable to discard some information

about the instances, because if it is important it will always reappear. A new para-

digm of “Hoeffding trees” was introduced in 2000, which builds models that can

be proven equivalent to standard decision trees if the data is static and the number

of examples is large enough.

Hoeffding trees are based on a simple idea known as the Hoeffding bound. It

makes intuitive sense that, given enough independent observations, the true mean of

a random variable will not differ from the estimated mean by more than a certain

amount. In fact, the Hoeffding bound states that after n observations and with proba-

bility 1�δ, the true mean of a random variable of range R will not be smaller than

the estimated mean minus ε, where

ε5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1nð1=δÞ

2n

r
UR:

This bound holds regardless of the probability distribution that underlies the

values. Being general, it is more conservative than distribution-dependent bounds.

Although tighter bounds are known for particular distributions, the Hoeffding

formulation works well empirically.

510 CHAPTER 13 Moving on: applications and beyond

The basic issue in decision tree induction is to choose an attribute to branch

on at each stage. To apply the Hoeffding bound, first set a small value of δ
(say 1027), the probability that the choice of attribute will be incorrect. The ran-

dom variable being estimated is the difference in information gain between the

best two attributes, and R is the base two logarithm of the number of possible

class labels. For example, if the difference in gain between the best two attributes

is estimated to be 0.3, and the above formula yields a value for ε of 0.1,

the bound guarantees that the actual difference in gain exceeds 0.2 with high

probability, which represents positive separation for the best attribute. Thus it is

safe to split.

If the difference in information gain between the best two attributes is less than

ε, it is not safe to split. However, ε will decrease as n continues to increase, so it is

simply a matter of waiting until more examples have been seen—although, of

course, this may alter the estimate of which are the two best attributes and how far

apart they are.

This simple test is the core principle of Hoeffding trees: to decide, with proba-

bility 1�δ, that a particular attribute exhibits greater information gain than all the

others, i.e., the gap between it and its closest competitor exceeds ε. The bound

decays rapidly as more examples are seen: e.g., for a two-class problem (R5 1)

with δ5 1027 it falls below 0.1 after the first 1000 examples and below 0.01 after

the first 100,000. One might object that as the number of leaves grows indefi-

nitely, the probability of making incorrect decisions will continually increase

even though the probability of error at each one falls below δ. This is true—

except that, working within finite memory, the number of leaves cannot grow

indefinitely. Given a maximum tree size, keeping the overall probability of error

within a given bound is just a matter of choosing an appropriate value for δ. The
basic principle can be applied to measures other than the information gain, and to

learning methods other than decision trees.

There are many other issues. A tie-breaking strategy is advisable to permit

further development of the tree in situations where the top two attributes exhibit

very similar information gains. Indeed, the presence of two identical attributes

could block any development of the tree at all. To prevent this, nodes should be

split whenever the Hoeffding bound falls below a small prespecified tie-

breaking parameter, no matter how close the next best option. To increase effi-

ciency the Hoeffding test may be performed periodically for each leaf, after k

new instances have reached it, and only when a mix of classes have reached the

leaf—otherwise there is no need to split. Prepruning is another simple possibil-

ity. The algorithm can incorporate this by also evaluating the merit of not split-

ting at all: i.e., by splitting only if the best attribute’s information gain at the

node exceeds zero. Unlike prepruning in the batch learning setting, this is not a

permanent decision: nodes are only prevented from splitting until it appears that

a split will be useful.

Now consider memory usage. What must be stored within a leaf are simply

counts of the number of times each class label reaches that leaf, for each attribute

51113.3 Data Stream Learning

value. This causes problems for numeric attributes, which require separate treat-

ment. Unsupervised discretization is easy, but supervised prediscretization is trick-

ier. A Gaussian approximation can be made for numeric attributes on a per-class

basis and updated using simple incremental update algorithms for mean and vari-

ance. To prevent indefinite growth in memory requirements, a strategy must be

devised to limit the total number of nodes in the tree. This can be done by deacti-

vating leaves that look insufficiently promising in terms the accuracy gain that fur-

ther development might yield. The potential gain is bounded by the expected

number of mistakes a leaf might make, so this is an obvious candidate for measur-

ing its promise. Leaves can periodically be ordered from most to least promising

and deactivated accordingly. A further possibility for saving space is to abandon

attributes that seem to be poor predictors and discard their statistics from the

model.

Although this section has focused on decision trees for classification,

researchers have studied stream-based versions of all the classical data mining

problems: regression, clustering, ensemble methods, association rules, and so on.

An open-source system called MOA for Massive Online Analysis, closely related

to WEKA, contains a collection of online learning algorithms, as well as tools for

evaluation.4

13.4 INCORPORATING DOMAIN KNOWLEDGE
Throughout this book we have emphasized the importance of getting to know

your data when undertaking practical data mining. Knowledge of the domain is

absolutely essential for success. Data about data is often called metadata, and one

of the frontiers in machine learning is the development of ways to allow learning

methods to take metadata into account in a useful way.

You don’t have to look far for examples of how metadata might be applied.

In Chapter 2, Input: concepts, instances, attributes, we divided attributes into

nominal and numeric. But we also noted that many finer distinctions are po-

ssible. If an attribute is numeric an ordering is implied, but sometimes there is

a zero point and sometimes not (for time intervals there is, but for dates there

is not). Even the ordering may be nonstandard: angular degrees have a dif-

ferent ordering to integers because 360� is the same as 0� and 180� is the same

as 2180� or indeed 900�. Discretization schemes assume ordinary linear order-

ing, as do learning schemes that accommodate numeric attributes, but it would

be a routine matter to extend them to circular orderings. Categorical data

may also be ordered. Imagine how much more difficult our lives would be if

there were no conventional ordering for letters of the alphabet. (Looking up a

4http://moa.cs.waikato.ac.nz. The moa, like the WEKA, is a flightless New Zealand bird, but it is

very large—and also, unfortunately, extinct.

512 CHAPTER 13 Moving on: applications and beyond

http://moa.cs.waikato.ac.nz

listing in the Hong Kong telephone directory presents an interesting and

nontrivial problem!) And the rhythms of everyday life are reflected in circu-

lar orderings: days of the week, months of the year. To further complicate

matters there are many other kinds of ordering, such as partial orderings on

subsets: subset A may include subset B, or subset B may include subset A, or

neither may include the other. Extending ordinary learning schemes to take

account of this kind of information in a satisfactory and general way is an

active research area.

Metadata often involves relations among attributes. Three kinds of relation

can be distinguished: semantic, causal, and functional. A semantic relation

between two attributes indicates that if the first is included in a rule, the second

should be, too. In this case, it is known a priori that the attributes only make sense

together. For example, in agricultural data that we have analyzed, an attribute

called milk production measures how much milk an individual cow produces, and

the purpose of our investigation meant that this attribute had a semantic relation-

ship with three other attributes, cow-identifier, herd-identifier, and farmer-

identifier. In other words, a milk production value can only be understood in the

context of the cow that produced the milk, and the cow is further linked to a spe-

cific herd owned by a given farmer. Semantic relations are, of course, problem

dependent: they depend not just on the dataset but also on what you are trying to

do with it.

Causal relations occur when one attribute causes another. In a system that is

trying to predict an attribute caused by another, we know that the other attribute

should be included to make the prediction more meaningful. For example, in the

agricultural data mentioned previously there is a chain from the farmer, herd, and

cow identifiers, through measured attributes such as milk production, down to the

attribute that records whether a particular cow was retained or sold by the farmer.

Learned rules should recognize this chain of dependence.

Functional dependencies occur in many databases, and the people who create

databases strive to identify them for the purpose of normalizing the relations in

the database. When learning from the data, the significance of a functional depen-

dency of one attribute on another is that if the latter is used in a rule there is no

need to consider the former. Learning schemes often rediscover functional depen-

dencies that are already known. Not only does this generate meaningless, or more

accurately tautological, rules, but also other, more interesting patterns may be

obscured by the functional relationships. However, there has been much work in

automatic database design on the problem of inferring functional dependencies

from example queries, and the methods developed should prove useful in weeding

out tautological rules generated by learning schemes.

Taking these kinds of metadata, or prior domain knowledge, into account

when doing induction using any of the algorithms we have met does not seem to

present any deep or difficult technical challenges. The only real problem—and it

is a big one—is how to express the metadata in a general and easily understand-

able way so that it can be generated by a person and used by the algorithm.

51313.4 Incorporating Domain Knowledge

It seems attractive to couch the metadata knowledge in just the same represen-

tation as the machine learning scheme generates. We focus on rules, which are

the norm for much of this work. The rules that specify metadata correspond to

prior knowledge of the domain. Given training examples, additional rules can be

derived by one of the rule induction schemes we have already met. In this way,

the system might be able to combine “experience” (from examples) with “theory”

(from domain knowledge). It would be capable of confirming and modifying its

programmed-in knowledge based on empirical evidence. Loosely put, the user

tells the system what he or she knows, gives it some examples, and it figures the

rest out for itself!

To make use of prior knowledge expressed as rules in a sufficiently flexible

way, it is necessary for the system to be able to perform logical deduction.

Otherwise, the knowledge has to be expressed in precisely the right form for the

learning algorithm to take advantage of it, which is likely to be too demanding for

practical use. Consider causal metadata: if attribute A causes B and B causes C, we

would like the system to deduce that A causes C rather than having to state that

fact explicitly. Although in this simple example explicitly stating the new fact

presents little problem, in practice, with extensive metadata, it will be unrealistic

to 4expect users to express all logical consequences of their prior knowledge.

A combination of deduction from prespecified domain knowledge and

induction from training examples seems like a flexible way of accommodating

metadata. At one extreme, when examples are scarce (or nonexistent), deduction

is the prime (or only) means of generating new rules. At the other, when exam-

ples are abundant but metadata is scarce (or nonexistent), the standard machine

learning techniques described in this book suffice. Practical situations span the

territory between.

This is a compelling vision, and methods of inductive logic programming, men-

tioned in Section 3.4, offer a general way of specifying domain knowledge explicitly

through statements in a formal logic language. However, current logic programming

solutions suffer serious shortcomings in real-world environments. They tend to be

brittle and to lack robustness, and they may be so computation intensive as to be

infeasible on datasets of any practical size. Perhaps this stems from the fact that

they use first-order logic, i.e., they allow variables to be introduced into the rules.

The machine learning schemes we have seen, whose input and output are repre-

sented in terms of attributes and constant values, perform their machinations in

propositional logic, without variables—greatly reducing the search space and avoid-

ing all sorts of difficult problems of circularity and termination.

Some aspire to realize the vision without the accompanying brittleness and

computational infeasibility of full logic programming solutions by adopting sim-

plified reasoning systems. Others place their faith in the general mechanism of

Bayesian networks, discussed in Section 9.2, in which causal constraints can be

expressed in the initial network structure and hidden variables can be postulated

and evaluated automatically. Probabilistic logic learning offers a way to cope

with both the complexity and the uncertainty of the real world by combining logic

514 CHAPTER 13 Moving on: applications and beyond

programming with statistical reasoning. It will be interesting to see whether sys-

tems that allow flexible specification of different types of domain knowledge will

become widely deployed.

13.5 TEXT MINING
Data mining is about looking for patterns in data. Likewise, text mining is about

looking for patterns in text: it is the process of analyzing text to extract informa-

tion that is useful for particular purposes. Compared with the kind of data we

have been talking about in this book, text is unstructured, amorphous, and diffi-

cult to deal with. Nevertheless, in modern Western culture, text is the most com-

mon vehicle for the formal exchange of information. The motivation for trying to

extract information from it is compelling—even if success is only partial.

The superficial similarity between text and data mining conceals real differ-

ences. In Chapter 1, What’s it all about?, we characterized data mining as the

extraction of implicit, previously unknown, and potentially useful information

from data. With text mining, however, the information to be extracted is clearly

and explicitly stated in the text. It is not hidden at all—most authors go to great

pains to make sure that they express themselves clearly and unambiguously. From

a human point of view, the only sense in which it is “previously unknown” is that

time restrictions make it infeasible for people to read the text themselves. The

problem, of course, is that the information is not couched in a manner that is ame-

nable to automatic processing. Text mining strives to bring it out in a form that is

suitable for consumption by computers or by people who do not have time to

read the full text.

Both data and text mining seek to extract information that is potentially useful.

In one sense, this means actionable—capable of providing a basis for actions to

be taken automatically. In the case of data mining, this notion can be expressed in

a relatively domain-independent way: actionable patterns are ones that allow non-

trivial predictions to be made on new data from the same source. Performance

can be measured by counting successes and failures, statistical techniques can be

applied to compare different data mining methods on the same problem, and so

on. However, in many text mining situations it is hard to characterize what

“actionable” means in a way that is independent of the particular domain at hand.

This makes it difficult to find fair and objective measures of success.

As we have emphasized throughout this book, “potentially useful” is often

given another interpretation in practical data mining: the key for success is that the

information extracted must be comprehensible in that it helps to explain the data.

This is necessary whenever the result is intended for human consumption rather

than (or as well as) a basis for automatic action. This criterion is less applicable to

text mining because, unlike data mining, the input itself is comprehensible. Text

mining with comprehensible output is tantamount to summarizing salient features

from a large body of text, which is a subfield in its own right: text summarization.

51513.5 Text Mining

DOCUMENT CLASSIFICATION AND CLUSTERING

We have already encountered one important text mining problem: document clas-

sification, in which each instance represents a document and the instance’s class

is the document’s topic. Documents are characterized by the words that appear in

them. The presence or absence of each word can be treated as a Boolean attribute,

or documents can be treated as bags of words, rather than sets, by taking word

frequencies into account. We encountered this distinction in Section 4.2, where

we learned how to extend Naı̈ve Bayes to the bag-of-words representation, yield-

ing the multinomial version of the algorithm.

There is, of course, an immense number of different words, and most of

them are not very useful for document classification. This presents a classic

feature selection problem. Some words—e.g., function words, often called stop-

words—can usually be eliminated a priori, but although these occur very fre-

quently there are not all that many of them. Other words occur so rarely that

they are unlikely to be useful for classification. Paradoxically, infrequent words

are common—nearly half the words in a document or corpus of documents

occur just once. Nevertheless, such an overwhelming number of words remains

after these word classes are removed that further feature selection may be nec-

essary using the methods described in Section 8.1. Another issue is that the

bag-of-words (or set-of-words) model neglects word order and contextual

effects. There is a strong case for detecting common phrases and treating them

as single units.

Document classification is supervised learning: the categories are known

beforehand and given in advance for each training document. The unsupervised

version of the problem is called document clustering. Here there is no predefined

class, but groups of cognate documents are sought. Document clustering can assist

information retrieval by creating links between similar documents, which in turn

allows related documents to be retrieved once one of the documents has been

deemed relevant to a query.

There are many applications of document classification. A relatively easy cat-

egorization task, language identification, provides an important piece of metadata

for documents in international collections. A simple representation that works

well for language identification is to characterize each document by a profile that

consists of the n-grams, or sequences of n consecutive letters (for some small

value such as n5 3), that appear in it. The most frequent 300 or so n-grams are

highly correlated with the language. A more challenging application is authorship

ascription, where a document’s author is uncertain and must be guessed from the

text. Here, the stopwords, not the content words, are the giveaway, because their

distribution is author dependent but topic independent. A third problem is the

assignment of key phrases to documents from a controlled vocabulary of possible

phrases, given a large number of training documents that are tagged from this

vocabulary.

516 CHAPTER 13 Moving on: applications and beyond

INFORMATION EXTRACTION

Another general class of text mining problems is metadata extraction. Metadata

was mentioned above as data about data: in the realm of text the term generally

refers to salient features of a work, such as its author, title, subject classification,

subject headings, and keywords. Metadata is a kind of highly structured (and

therefore actionable) document summary. The idea of metadata is often expanded

to encompass words or phrases that stand for objects or “entities” in the world,

leading to the notion of entity extraction. Ordinary documents are full of such

terms: phone numbers, fax numbers, street addresses, email addresses, email sig-

natures, abstracts, tables of contents, lists of references, tables, figures, captions,

meeting announcements, Web addresses, and more. In addition, there are count-

less domain-specific entities, such as international standard book numbers

(ISBNs), stock symbols, chemical structures, and mathematical equations. These

terms act as single vocabulary items, and many document processing tasks can be

significantly improved if they are identified as such. They can aid searching,

interlinking and cross-referencing between documents.

How can textual entities be identified? Rote learning, i.e., dictionary lookup,

is one idea, particularly when coupled with existing resources—lists of personal

names and organizations, information about locations from gazetteers, or abbrevi-

ation and acronym dictionaries. Another is to use capitalization and punctuation

patterns for names and acronyms; titles (Ms.), suffixes (Jr.), and baronial prefixes

(von); or unusual language statistics for foreign names. Regular expressions suf-

fice for artificial constructs such as uniform resource locators (URLs); explicit

grammars can be written to recognize dates and sums of money. Even the sim-

plest task opens up opportunities for learning to cope with the huge variation that

real-life documents present. As just one example, what could be simpler than

looking up a name in a table? But the name of the former Libyan leader

Muammar Qaddafi is represented in 47 different ways in documents that have

been received by the Library of Congress!

Many short documents describe a particular kind of object or event, combining

entities into a higher-level composite that represent the document’s entire content.

The task of identifying the composite structure, which can often be represented as

a template with slots that are filled by individual pieces of structured information,

is called information extraction. Once the entities have been found, the text is

parsed to determine relationships among them. Typical extraction problems

require finding the predicate structure of a small set of predetermined proposi-

tions. These are usually simple enough to be captured by shallow parsing techni-

ques such as small finite-state grammars, although matters may be complicated

by ambiguous pronoun references and attached prepositional phrases and other

modifiers. Machine learning has been applied to information extraction by seek-

ing rules that extract fillers for slots in the template. These rules may be couched

in pattern-action form, the patterns expressing constraints on the slot-filler and

51713.5 Text Mining

words in its local context. These constraints may involve the words themselves,

their part-of-speech tags, and their semantic classes.

Taking information extraction a step further, the extracted information can be

used in a subsequent step to learn rules—not rules about how to extract informa-

tion but rules that characterize the content of the text itself. These rules might

predict the values for certain slot-fillers from the rest of the text. In certain tightly

constrained situations, such as Internet job postings for computing-related jobs,

information extraction based on a few manually constructed training examples

can compete with an entire manually constructed database in terms of the quality

of the rules inferred.

There is no real consensus about what text mining covers: broadly interpreted, all

natural language processing comes under the ambit of text mining. Since their intro-

duction, conditional random fields have been and remain one of the dominant tools in

this area. The problem of extracting meeting information from unstructured emails,

mentioned in Chapter 9, Probabilistic methods, is just one example: many other

information extraction tasks have similar conditional random field formulations.

NATURAL LANGUAGE PROCESSING

Natural language processing, a rich field of study with a long history, is an active

application area for deep learning. We have seen how latent semantic analysis

(LSA) and latent Dirichlet allocation (LDAb) permit exploratory topic analysis of

document collections. More recently, it has been observed that neural language

modeling techniques can perform significantly better than LSA for preserving

relationships among words; moreover, LDAb also has difficulty scaling to truly

massive data.

Researchers at Google have created a set of language models called word2vec,

based on single-hidden-layer networks trained with vast amounts of data—783

million words for initial experiments, and 30 billion for later ones. (Associated

software is available online.) One such model produces continuous representations

of words by training a neural bag-of-words model to predict words given their con-

text. Because word order in the context window is not captured, this is known as a

“continuous bag of words” model. Another model, “skip-gram,” gives each word

to a log-linear classifier with a linear projection layer—a form of shallow neural

network—that predicts nearby words within a certain distance before and after the

source word. Here the number of states for the output prediction equals the vocab-

ulary size, and with data at this scale the vocabulary ranges from 105 to 109 terms,

so the output is decomposed into a binary tree known as a “hierarchical softmax,”

which, for a V-word vocabulary needs to evaluate only log2(V) rather than V output

nodes.

A particularly noteworthy aspect of this work is that the representations

learned yield projections for words that allow inferences about their meaning to

be performed with vector operations. For example, upon projecting the words

Paris, France, Italy and Rome into the learned representation, one finds that

518 CHAPTER 13 Moving on: applications and beyond

simple vector subtraction and addition yield the relationship Paris�France1Italy

�Rome! More precisely, Rome is found to be the closest word when all words are

projected into this representation.

Many research and development groups are mining massive quantities of text

data in order to learn as much as possible from scratch, replacing features that

have previously been hand-engineered by ones that are learned automatically.

Large neural networks are being applied to tasks ranging from sentiment classifi-

cation and translation to dialog and question answering. The deep encoder-

decoder architecture discussed at the end of Chapter 10, Deep learning, represents

one such example: Google researchers have used it to learn how to translate lan-

guages from scratch, based on voluminous data.

13.6 WEB MINING
The World Wide Web is a massive repository of text. Almost all of it differs from

ordinary “plain” text because it contains explicit structural markup. Some markup is

internal and indicates document structure or format; other markup is external and

defines explicit hypertext links between documents. Both these information sources

give additional leverage for mining Web documents. Web mining is like text mining

but takes advantage of this extra information and often improves results by capital-

izing on the existence of topic directories and other information on the Web.

Consider internal markup. Internet resources that contain relational data—

telephone directories, product catalogs, and so on—use hypertext markup language

(HTML) formatting commands to clearly present the information they contain to

Web users. However, it is quite difficult to extract data from such resources in an

automatic way. To do so, software systems use simple parsing modules called wrap-

pers to analyze the page structure and extract the requisite information. If wrappers

are coded by hand, which they often are, this is a trivial kind of web mining because

it relies on the pages having a fixed, predetermined structure from which information

can be extracted algorithmically. But pages rarely obey the rules. Their structures

vary; Web sites evolve. Errors that are insignificant to human readers throw auto-

matic extraction procedures completely awry. When change occurs, adjusting a

wrapper manually can be a nightmare that involves getting your head around the

existing code and patching it up in a way that does not cause breakage elsewhere.

WRAPPER INDUCTION

Enter wrapper induction—learning wrappers automatically from examples. The

input is a training set of pages along with tuples representing the information

derived from each page. The output is a set of rules that extracts the tuples by pars-

ing the page. For example, the rules might look for certain HTML delimiters—

paragraph boundaries (, p.), list entries (, li.), or boldface (, b.)—that the

Web page designer has used to set off key items of information, and learn the

51913.6 Web Mining

sequence in which entities are presented. This could be accomplished by iterating

over all choices of delimiters, stopping when a consistent wrapper is encountered.

Then recognition will depend only on a minimal set of cues, providing some

defense against extraneous text and markers in the input. Alternatively, one might

follow Epicurus’s advice at the end of Section 5.10 and seek a robust wrapper that

uses multiple cues to guard against accidental variation. The great advantage of

automatic wrapper induction is that when errors are caused by stylistic variants it is

a simple matter to add these to the training data and reinduce a new wrapper that

takes them into account. Wrapper induction reduces recognition problems when

small changes occur and makes it far easier to produce new sets of extraction rules

when structures change radically.

PAGE RANK

One of the problems with the Web is that a lot of it is rubbish. In order to sepa-

rate the wheat from the chaff, a metric called PageRank was introduced by the

founders of Google; it is used in various guises by other search engines too, and

in many other Web mining applications. It attempts to measure the prestige of a

Web page or site, where prestige is, according to a dictionary definition, “high

standing achieved through success or influence.” The hope is that this is a good

way to determine authority, defined as “an accepted source of expert information

or advice.” Recall that the PageRank algorithm was identified in Table 13.1 as

one of the top 10 data mining algorithms, the only one that we have not encoun-

tered so far. It is perhaps questionable whether it should be classed as a data min-

ing algorithm, but it is worth describing all the same.

The key is external markup in the form of hyperlinks. In a networked commu-

nity, people reward success with links. If you link to my page, it’s probably

because you find it useful and informative—it’s a successful Web page. If a host

of people link to it, that indicates prestige: my page is successful and influential.

Look at Fig. 13.1, which shows a tiny fraction of the Web, including links

between pages. Which ones do you think are most authoritative? Page F has five

incoming links, which indicates that five people found it worth linking to, so

there’s a good chance that this page is more authoritative than the others. B is

second best, with four links.

Merely counting links is a crude measure. Some Web pages have thousands of

outgoing links whereas others have just one or two. Rarer links are more discriminat-

ing and should count more than others. A link from your page to mine bestows more

prestige if your page has few outlinks. In Fig. 13.1 the many links emanating from

page A mean that each one carries less weight, simply because A is a prolific linker.

From F’s point of view, the links from D and E may be more valuable than the one

from A. There is another factor: a link is more valuable if it comes from a prestigious

page. The link from B to F may be better than the others into F because B is more

prestigious. Admittedly this factor involves a certain circularity, and without further

analysis it’s not clear that it can be made to work. But indeed it can.

520 CHAPTER 13 Moving on: applications and beyond

Here are the details. We define the PageRank of a page to be a number between

0 and 1 that measures its prestige. Each link into the page contributes to its

PageRank. The amount it contributes is the PageRank of the linking page divided

by the number of outlinks from it. The PageRank of any page is calculated by

summing that quantity over all links into it. The value for D in Fig. 13.1 is calcu-

lated by adding one-fifth of the value for A (because it has five outlinks) to one-

half the value for C.
A simple iterative method is used to resolve the apparently circular nature of the

calculation. Start by randomly assigning an initial value to each page. Then recom-

pute each page’s PageRank by summing the appropriate quantities, described ear-

lier, over its inlinks. If the initial values are thought of as an approximation to the

true value of PageRank, the new values are a better approximation. Keep going,

generating a third approximation, and a fourth, and so on. At each stage, recompute

the PageRank for every page in the Web. Stop when, for every page, the next

iteration turns out to give almost exactly the same PageRank as the previous one.

Subject to two modifications discussed below, this iteration is guaranteed

to converge, and fairly quickly too. Although the precise details are shrouded

in secrecy, today’s search engines probably seek an accuracy for the final values of

between 1029 and 10212. An early experiment reported 50 iterations for a much

smaller version of the Web than today’s, before the details became commercial;

several times as many iterations are needed now. Google is thought to run pro-

grams for several days to perform the PageRank calculation for the entire Web,

and the operation is—or at any rate used to be—performed every few weeks.

There are two problems with the calculation we have described. You probably

have a mental picture of PageRank flowing through the tangled web of Fig. 13.1,

FIGURE 13.1

A tangled web.

52113.6 Web Mining

coming into a page through its inlinks and leaving it through its outlinks. What if

there are no inlinks (page H)? Or no outlinks (page G)?

To operationalize this picture, imagine a surfer who clicks links at random.

They takes the current page, choose an outlink at random, and go to that link’s

target page. The probability of taking any particular link is smaller if there are

many outlinks, which is exactly the behavior we want from PageRank. It turns

out that the PageRank of a given page is proportional to the probability that the

random surfer lands on that page.

Now the problem raised by a page with no outlinks becomes apparent: it’s a

PageRank sink because when surfers comes in they cannot get out. More gener-

ally, a set of pages might link to each other but not to anywhere else. This inces-

tuous group is also a PageRank sink: the random surfer gets stuck in a trap. And

a page with no inlinks? Random surfers never reach it. In fact, they never reach

any group of pages that has no inlinks from the rest of the Web, even though it

may have internal links, and outlinks to the Web at large.

These two problems mean that the iterative calculation described above does

not converge, as we earlier claimed it would. But the solution is simple: teleporta-

tion. With a certain small probability, just make the surfer arrive at a randomly

chosen page instead of following a link from the one they are on. That solves

both problems. If surfers are stuck at G they will eventually teleport out of it.

And if they can’t reach H by surfing, they will eventually teleport into it.

The teleport probability has a strong influence on the rate of convergence of

the iterative algorithm—and on the accuracy of its results. At the extreme, if

it were equal to 1, meaning that the surfer always teleported, the link structure

would have no effect on PageRank, and no iteration would be necessary. If it

were 0 and the surfer never teleported, the calculation would not converge at all.

Early published experiments used a teleportation probability of 0.15; some specu-

late that search engines increase it a little to hasten convergence.

Instead of teleporting to a randomly chosen page, you could choose a

predetermined probability for each page, and—once you had decided to

teleport—use that probability to determine where to land. This does not affect

the calculation. But it does affect the result. If a page was discriminated against

by receiving a smaller probability than the others, it would end up with a smal-

ler PageRank than it deserves. This gives search engine operators an opportunity

to influence the results of the calculation—an opportunity that they probably use

to discriminate against certain sites (e.g., ones they believe are trying to gain an

unfair advantage by exploiting the PageRank system). This is the stuff of which

lawsuits are made.

13.7 IMAGES AND SPEECH
Until recently, images and speech signals received less attention from data mining

researchers. However, the deep learning renaissance has changed all that. Signal

522 CHAPTER 13 Moving on: applications and beyond

processing in general is an area where massive amounts of data are easily avail-

able, and seems to be well suited to the kind of automatic extraction of low-level

features that are built up into successively higher levels that deep networks do so

well. The world abounds with signal data—but it is generally unlabeled. The pro-

duction of large collections of labeled data is stimulating practitioners to apply

deep learning techniques to many signal processing tasks, principally image rec-

ognition and face verification and recognition.

IMAGES

Chapter 10, Deep learning, discussed how deep learning techniques have revolu-

tionized aspects of the field of computer vision. This impact has only been possi-

ble because academic groups and technology companies made substantial

investments in mining and labeling data on a large scale. The availability of care-

fully curated datasets enables high-capacity supervised or discriminative deep

learning techniques to push recognition performance into the realm of usability

for many applications. In addition to the examples highlighted below, convolu-

tional neural network architectures have been used on tasks ranging from seg-

menting brain tumors to computing the depth in a scene from stereo cameras; the

Further reading section gives pointers to specific examples.

Deep convolutional neural network techniques have transformed the field of

object category recognition. On large-scale visual recognition challenges such as

ImageNet they can outperform people in terms of agreement with human

judgments. ImageNet imagery was mined from the Internet and labeled in a

large-scale academic project. Google has prepared a dataset of digits obtained by

mining and labeling house numbers in their massive collection of Street View

images; again, deep convolutional networks outperform people in terms of agree-

ment with human judgments.

There is an important distinction between recognizing object categories and

identifying particular objects: identifying your car in a photograph is quite differ-

ent from recognizing that a car is present. Here also deep learning based methods

are continually improving recognition performance. An alternative approach,

“SIFT descriptors,” which are based on the scale-invariant feature transform, are

already deployed in systems that recognize specific objects. These descriptors are

computed from “interest points” that are found in an image—things like corners,

which are easy to find and localize in images of the same object from different

viewpoints. Once these points have been found, a descriptor inspired by the

human visual system is computed based on a trick that helps select an appropriate

scale and orientation. This involves cutting out a patch with a certain orientation

and rotation, and then creating a histogram of image gradients using the patch.

While SIFT descriptors find their greatest application in 3D reconstruction, pan-

oramic image creation and robotic mapping, they are also widely used for identi-

fying and tracking specific instances of objects.

52313.7 Images and Speech

Face recognition, an important special case of object recognition, has been the

subject of intense research for decades—and deep convolutional networks have

transformed the field. Better-than-human performance has been achieved on the

task of face verification, using databases such as the “Labeled faces in the wild”

data collected by the University of Massachusetts. In face verification one is

given two photographs of faces and asked whether they belong to the same person

or not. Good results are achieved using a special “Siamese network” architecture

that takes two images as input and compares them using the internal representa-

tion of the convolutional neural network. The images are generally preprocessed

to center the faces, crop them, and register them on a common coordinate system.

Facial keypoint or landmark detection methods are used to help with the registra-

tion and warping process, or to localize key zones to be used as input.

It is worth noting, given the discussion of data mining and ethics in Chapter 1,

What’s it all about?, that face verification and face recognition raise difficult ethi-

cal issues. Federal governments deploy the technology in the fight against interna-

tional terrorism; airports use it to reduce lineups at immigration. Its potential

application in widespread video surveillance has a profound effect on the balance

between security and privacy, and other civil liberties. At the individual level,

stalkers would welcome end-user web services for face recognition.

SPEECH

Speech recognition is rapidly becoming a widely used technology. Major compa-

nies use large datasets to render their systems robust to different speakers and

noise sources. The classical architecture uses a signal processing front end to

compute features inspired by the human auditory system from a spectral analysis

of the audio input, and passes them to a large system of hidden Markov models

that have Gaussian mixture models for their observation likelihoods.

Sophisticated language models are used to help disambiguate what words are

present in the audio. Here again deep learning methods have been having substan-

tial impact, and many large industrial groups are replacing elements of the classic

speech recognition pipeline with deep learning techniques such as recurrent neural

networks.

13.8 ADVERSARIAL SITUATIONS
A prime application of machine learning is junk email filtering. When we wrote

the second edition of this book (late 2004) the scourge of unwanted email was a

burning issue; by the writing of the third edition of this book (early 2010), the

problem had abated despite the continual growth of spam email (by some esti-

mates it accounts for 95% of all emails). This is largely due to the widespread

use of spam filtering, which often uses learning techniques. At first blush junk

524 CHAPTER 13 Moving on: applications and beyond

email filtering appears to present a standard problem of document classification:

divide documents into “ham” and “spam” on the basis of the text they contain,

guided by training data, of which there are copious amounts. But it differs from

ordinary document classification because it involves an adversarial aspect. The

documents that are being classified are not chosen at random from an unimagin-

ably huge set of all possible documents; they contain emails that are carefully

crafted to evade the filtering process, designed specifically to beat the system.

Early spam filters simply discarded messages containing “spammy” words

that connote such things as sex, lucre, and quackery. Of course, much legitimate

correspondence concerns gender, money, and medicine: a balance must be struck.

So filter designers recruited Bayesian text classification schemes that learned to

strike an appropriate balance during the training process. Spammers quickly

adjusted with techniques that concealed the spammy words by misspelling them;

overwhelmed them with legitimate text, perhaps printed in white on a white back-

ground so that only the filter saw it; or simply put the spam text elsewhere, in an

image or a URL that most mail readers download automatically.

The problem is complicated by the fact that it is hard to compare spam detec-

tion algorithms objectively. Although training data abounds, privacy issues pre-

clude publishing large public corpora of representative email. And there are

strong temporal effects. Spam changes character rapidly, invalidating sensitive

statistical tests such as cross-validation. Finally, the bad guys can also use

machine learning. For example, if they could get hold of examples of what your

filter blocks and what it lets through, they could use this as training data to learn

how to evade it.

There are, unfortunately, many other examples of adversarial learning situa-

tions in our world today. Closely related to junk email is search engine spam:

sites that attempt to deceive Internet search engines into placing them promi-

nently in lists of search results. Highly ranked pages yield direct financial benefits

to their owners because they present opportunities for advertising, providing

strong motivation for profit seekers. Then there are the computer virus wars, in

which designers of viruses and virus-protection software react to one another’s

innovations. Here the motivation tends to be general disruption and denial of ser-

vice rather than monetary gain.

Computer network security is a continually escalating battle. Protectors harden

networks, operating systems, and applications, and attackers find vulnerabilities in

all three areas. Intrusion detection systems sniff out unusual patterns of activity

that might be caused by a hacker’s reconnaissance activity. Attackers realize this

and try to obfuscate their trails, perhaps by working indirectly or by spreading

their activities over a long time—or, conversely, by striking very quickly.

Machine learning is being applied to this problem in an attempt to discover seman-

tic connections among attacker traces in computer network data that intrusion

detection systems miss. This is a large-scale problem: audit logs used to monitor

computer network security can amount to gigabytes a day even in medium-sized

organizations.

52513.8 Adversarial Situations

Many automated threat detection systems are based on matching current data

to known attack types. The U.S. Federal Aviation Administration developed the

Computer Assisted Passenger Pre-Screening System (CAPPS), which screens air-

line passengers on the basis of their flight records and flags individuals for addi-

tional checked baggage screening. Although the exact details are unpublished,

CAPPS is, e.g., thought to assign higher threat scores to cash payments. However,

this approach can only spot known or anticipated threats. Researchers are using

unsupervised approaches such as anomaly and outlier detection in an attempt to

detect suspicious activity. As well as flagging potential threats, anomaly detection

systems can be applied to the detection of illegal activities such as financial fraud

and money laundering.

Data mining is being used today to sift through huge volumes of data in the

name of homeland defense. Heterogeneous information such as financial transac-

tions, health-care records, and network traffic is being mined to create profiles,

construct social network models, and detect terrorist communications. This activ-

ity raises serious privacy concerns and has resulted in the development of

privacy-preserving data mining techniques. These algorithms try to discern pat-

terns in the data without accessing the original data directly, typically by distort-

ing it with random values. To preserve privacy, they must guarantee that the

mining process does not receive enough information to reconstruct the original

data. This is easier said than done.

On a lighter note, not all adversarial data mining is aimed at combating nefari-

ous activity. Multiagent systems in complex, noisy real-time domains involve

autonomous agents that must both collaborate in a team and compete against

antagonists. If you are having trouble visualizing this, think soccer. Robo-soccer

is a rich and popular domain for exploring how machine learning can be applied

to such difficult problems—primarily using reinforcement learning techniques,

which are beyond the scope of this book. Players must not only hone low-level

skills but must also learn to work together and adapt to the behavior patterns of

different opponents.

Finally, machine learning has been used to solve an actual historical literary

mystery by unmasking a prolific author who had attempted to conceal his iden-

tity. Ben Ish Chai was the leading rabbinic scholar in Baghdad in the late 19th

century. Among his vast literary legacy are two separate collections of about 500

Hebrew-Aramaic letters written in response to legal queries. He is known to have

written one collection. Although he claims to have found the other in an archive,

historians suspect that he wrote it, too, but attempted to disguise his authorship by

deliberately altering his style. The problem this case presents to machine learning

is that there is no corpus of work to ascribe to the mystery author. There were a

few known candidates, but the letters could equally well have been written by

anyone else. A new technique appropriately called unmasking was developed that

creates a model to distinguish the known author’s work A from the unknown

author’s work X, iteratively removes those features that are most useful for distin-

guishing the two, and examines the speed with which cross-validation accuracy

526 CHAPTER 13 Moving on: applications and beyond

degrades as more features are removed. The hypothesis is that if work X is writ-

ten by work A’s author, who is trying to conceal his identity, whatever differ-

ences there are between work X and work A will be reflected in only a relatively

small number of features compared with the differences between work X and the

works of a completely different author, say the author of work B. In other words,

when work X is compared with works A and B, the accuracy curve as features

are removed will decline much faster for work A than it does for work B. It was

concluded that Ben Ish Chai did indeed write the mystery letters. This technique

is a striking example of original and creative use of machine learning in an adver-

sarial situation.

13.9 UBIQUITOUS DATA MINING
We began this book by pointing out that we are overwhelmed with data. Nowhere

does this impact the lives of ordinary people more than on the World Wide Web.

No-one can keep pace with the information explosion. Whereas data mining origi-

nated in the corporate world because that’s where the databases are, text and web

mining are moving machine learning technology out of the companies and into

the home. Whenever we are overwhelmed by data on the Web, mining techniques

promise tools to tame it. Applications are legion. Finding friends and contacting

them, maintaining financial portfolios, shopping for bargains in an electronic

world, using data detectors of any kind—all of these could be accomplished auto-

matically without explicit programming. Already mining techniques are being

used to predict what link you’re going to click next, to organize documents for

you, sort your mail, and prioritize your search results. In a world where informa-

tion is overwhelming, disorganized and anarchic, text and web mining may be the

solution we so desperately need.

Many believe that the Web is but the harbinger of an even greater paradigm

shift: ubiquitous computing. Small portable devices are everywhere—mobile

phones, personal digital assistants, personal stereo and video players, digital cam-

eras, mobile Web access. Already some devices integrate all these functions.

They know our location in physical time and space, help us communicate in

social space, organize our personal planning space, recall our past, and envelop

us in global information space. It is easy to find scores of processors in a middle-

class home in the US today, and they often communicate with one another and

with the global information infrastructure. Thus the potential for data mining will

soar.

Take consumer music. Popular music leads the vanguard of technological

advance. Sony’s original Walkman paved the way to today’s ubiquitous

portable electronics. Apple’s iPOD pioneered large-scale portable storage. Napster’s

network technology spurred the development of peer-to-peer protocols.

Recommender systems such as Firefly brought computing to social networks.

52713.9 Ubiquitous Data Mining

Content-aware music services are migrating to portable devices. Applications for

data mining in networked communities of people are legion: discovering musical

trends, tracking preferences and tastes, and analyzing listening behaviors.

Ubiquitous computing weaves digital space closely into real-world activities.

To many, extrapolating their own computer experiences of extreme frustration,

arcane technology, perceived personal inadequacy, and machine failure, this

sounds like a nightmare. But proponents point out that it can’t be like that,

because, if it is, it won’t work. Today’s visionaries foresee a world of “calm”

computing in which hidden machines silently cooperate behind the scenes to

make our lives richer and easier. They’ll reach beyond the big problems of corpo-

rate finance and school homework to the little annoyances such as where are the

car keys, can I get a parking place, and is that shirt I saw last week at Macy’s still

on the rack? Clocks will find the correct time after a power failure, the micro-

wave will download new recipes from the Internet, kid’s toys will refresh them-

selves with new games and new vocabularies. Clothes labels will track washing,

coffee cups will alert cleaning staff to mold, light switches will save energy if no-

one is in the room, and pencils will digitize everything we draw. Where will data

mining be in this new world? Everywhere!

It’s hard to point to examples of a future that does not yet exist. But advances

in user interface technology are suggestive. Many repetitive tasks in direct-

manipulation computer interfaces cannot be automated with standard application

tools, forcing users to perform the same interface actions over and over again.

This typifies the frustrations alluded to previously: who’s in charge—me or it?

Experienced programmers might write a script to carry out such tasks on their

behalf, but as operating systems accrue layer upon layer of complexity the power

of programmers to command the machine is eroded and vanishes altogether when

complex functionality is embedded in appliances rather than in general-purpose

computers.

Research in programming by demonstration enables ordinary users to auto-

mate predictable tasks without requiring any programming knowledge at all. The

user need only know how to perform the task in the usual way to be able to com-

municate it to the computer. One system, called Familiar, helps users automate

iterative tasks involving existing applications on Macintosh computers. It works

across applications and can work with completely new ones never before encoun-

tered. It does this by using Apple’s scripting language to glean information from

each application and exploiting that information to make predictions. The agent

tolerates noise. It generates explanations to inform the user about its predictions,

and incorporates feedback. It’s adaptive: it learns specialized tasks for individual

users. Furthermore, it is sensitive to each user’s style. If two people were teaching

a task and happened to give identical demonstrations, Familiar would not neces-

sarily infer identical programs—it’s tuned to their habits because it learns from

their interaction history.

Familiar employs standard machine learning techniques to infer the user’s

intent. Rules are used to evaluate predictions so that the best one can be presented

528 CHAPTER 13 Moving on: applications and beyond

to the user at each point. These rules are conditional so that users can teach classi-

fication tasks such as sorting files based on their type and assigning labels based

on their size. They are learned incrementally: the agent adapts to individual users

by recording their interaction history.

Many difficulties arise. One is scarcity of data. Users are loth to demonstrate

several iterations of a task—they think the agent should immediately catch on to

what they are doing. Whereas a data miner would consider a 100-instance dataset

miniscule, users bridle at the prospect of demonstrating a task even half a dozen

times. A second difficulty is the plethora of attributes. The computer desktop

environment has hundreds of features that any given action might depend upon.

This means that small datasets are overwhelmingly likely to contain attributes

that are apparently highly predictive but nevertheless irrelevant, and specialized

statistical tests are needed to compare alternative hypotheses. A third is that the

iterative, improvement-driven development style that characterizes data mining

applications fails. It is impossible in principle to create a fixed training and test-

ing corpus for an interactive problem such as programming by demonstration

because each improvement in the agent alters the test data by affecting how users

react to it. A fourth is that existing application programs provide limited access to

application and user data: often the raw material on which successful operation

depends is inaccessible, buried deep within the application program.

Machine learning is already widely used at work. Text and Web mining is

bringing the techniques in this book into our own lives, as we read our email and

surf the Web. As for the future, it will be stranger than we can imagine. The

spreading computing infrastructure will offer untold opportunities for learning.

Machine learning will be in there, behind the scenes, playing a role that will turn

out to be foundational.

13.10 FURTHER READING AND BIBLIOGRAPHIC NOTES
Wu et al. (2008) describe the process of identifying the top 10 algorithms in data

mining for presentation at the International Conference on Data Mining in 2006

in Hong Kong and have followed this up with a book that describes all the algo-

rithms (Wu and Kumar, 2009). The paper on the “illusion of progress” in classifi-

cation is by Hand (2006), and it was he who found that a very simple method

achieves more than 90% of the classification improvement yielded by the most

sophisticated scheme.

There is a substantial volume of literature that treats the topic of massive data-

sets, and we can only point to a few references here. Fayyad and Smyth (1995)

describe the application of data mining to voluminous data from scientific experi-

ments. Shafer, Agrawal, and Metha (1996) describe a parallel version of a top-

down decision tree inducer. A sequential decision tree algorithm for massive

disk-resident datasets has been developed by Mehta, Agrawal, and Rissanen

52913.10 Further Reading and Bibliographic Notes

(1996). The technique of applying any algorithm to a large dataset by splitting it

into smaller chunks and bagging or boosting the result is described by Breiman

(1999); Frank, Holmes, Kirkby, and Hall (2002) explain the related pruning and

selection scheme.

Early work on incremental work on decision trees is reported by Utgoff

(1989) and Utgoff, Berkman, and Clouse (1997). The Hoeffding tree was intro-

duced by Domingos and Hulten (2000). Our description of it, including extensions

and improvement, closely follows Kirkby’s (2007) PhD thesis. The MOA system

is described by Bifet, Holmes, Kirkby, and Pfahringer (2010).

Despite its importance, comparatively little seems to have been written about

the general problem of incorporating metadata into practical data mining. A

scheme for encoding domain knowledge into propositional rules and its use for

both deduction and induction has been investigated by Giraud-Carrier (1998). The

related area of inductive logic programming, which deals with knowledge repre-

sented by first-order logic rules, is covered by Bergadano and Gunetti (1996).

Probabilistic logic learning is covered by de Raedt (2008).

Text mining is a broad area, and there are few comprehensive surveys of the

area as a whole: Witten (2004) provides one. A large number of feature selection

and machine learning techniques have been applied to text categorization

(Sebastiani, 2002). Martin (1995) describes applications of document clustering to

information retrieval. Cavnar and Trenkle (1994) show how to use n-gram pro-

files to ascertain with high accuracy the language in which a document is written.

The use of support vector machines for authorship ascription is described by

Diederich, Kindermann, Leopold, and Paass (2003); the same technology was

used by Dumais, Platt, Heckerman, and Sahami (1998) to assign key phrases

from a controlled vocabulary to documents on the basis of a large number of

training documents. The use of machine learning to extract key phrases from the

document text has been investigated by Turney (1999), Frank, Paynter, Witten,

Gutwin, and Nevill-Manning (1999) and Medelyan and Witten (2008).

Appelt (1999) describes many problems of information extraction. Many

authors have applied machine learning to seek rules that extract slot-fillers for

templates, e.g., Soderland, Fisher, Aseltine, and Lehnert (1995), Huffman (1996),

and Freitag (2002). Califf and Mooney (1999) and Nahm and Mooney (2000)

investigated the problem of extracting information from job ads posted on

Internet newsgroups. An approach to finding information in running text based on

compression techniques has been reported by Witten, Bray, Mahoui, and Teahan

(1999a). Mann (1993) notes the plethora of variations of Muammar Qaddafi on

documents received by the Library of Congress.

Chakrabarti (2003) has written an excellent and comprehensive book on techni-

ques of Web mining. Kushmerick, Weld, and Doorenbos (1997) developed techni-

ques of wrapper induction. The founders of Google wrote an early paper that

introduced the PageRank algorithm (Brin and Page, 1998). At the same time

Kleinberg (1998) described a system called HITS (for hypertext-induced topic selec-

tion) that has some superficial similarities but produces strikingly different results.

530 CHAPTER 13 Moving on: applications and beyond

The first paper on junk email filtering was written by Sahami, Dumais,

Heckerman, and Horvitz (1998). Our material on computer network security is

culled from Yurcik et al. (2003). The information on the CAPPS system comes

from the U.S. House of Representatives Subcommittee on Aviation (2002), and

the use of unsupervised learning for threat detection is described by Bay and

Schwabacher (2003). Issues with privacy-preserving data mining techniques are

discussed by Datta, Kargupta, and Sivakumar (2003). Stone and Veloso (2000)

surveyed multiagent systems of the kind that are used for playing robo-soccer

from a machine learning perspective. The fascinating story of Ben Ish Chai and

the technique used to unmask him is from Koppel and Schler (2004).

A popular early framework for neural probabilistic language models was pro-

posed by Bengio, Ducharme, Vincent, and Janvin (2003): a key element of the

approach is to project words into a continuous vector representation. Extending

the general idea, Collobert and Weston (2008) present a large unified neural net-

work architecture for performing many natural language processing tasks using

the same underlying network and shared word representations, and showed that

its performance is competitive across many common tasks. The influential word2vec

technique was proposed by Mikolov, Chen, Corrado, and Dean, (2013a, 2013b),

while Morin and Bengio (2005) explored the hierarchical softmax technique for lan-

guage modeling.

Russakovsky et al. (2015) reviews the ImageNet challenge and the rise of con-

volutional neural networks to prominance in object category recognition. The

Google Street View house numbers are described by Netzer et al. (2011), who

estimate human performance at 98% accuracy—and now many experiments with

convolutional neural networks described in the literature exceed this figure. David

Lowe invented SIFT descriptors. Lowe (2004) gives details of their implementa-

tion and applications: they work well, and have been patented.

Facebook’s “DeepFace” Siamese architecture for face verification uses a facial

keypoint detector followed by a sophisticated 3D warping procedure to frontalize

faces (Taigman, Yang, Ranzato, & Wolf, 2014). Of course, Facebook has access

to a huge labeled database—4.4 million labeled faces from 4000 people (about

1000 each, on average). Siamese neural architectures were proposed by Bromley,

Guyon, LeCun, Säckinger, and Shah (1994). The first system to produce face ver-

ification that rivaled human performance was Sun, Chen, Wang, and Tang

(2014)’s convolutional neural network, which used a 200,000-image database of

faces of 10,000 celebrities. This system uses fewer facial landmarks, and crops

patches out of images centered on the key points; ensembles of many models pro-

duced the best performance.

Amongst many other applications, Havaei et al. (2016) used deep convolu-

tional neural networks for brain tumor segmentation; Zbontar and LeCun (2015)

present impressive results for stereo vision.

The vision of calm computing, as well as the examples we have mentioned, is

from Weiser (1996) and Weiser and Brown (1997). More information on different

methods of programming by demonstration can be found in compendia by Cypher

53113.10 Further Reading and Bibliographic Notes

(1993) and Lieberman (2001). Mitchell, Caruana, Freitag, McDermott, and

Zabowski (1994) report some experience with learning apprentices. Familiar is

described by Paynter (2000). Permutation tests (Good, 1994) are statistical tests

that are suitable for small sample problems: Frank (2000) describes their applica-

tion in machine learning.

13.11 WEKA IMPLEMENTATIONS
• HoeffdingTree (creates decision trees and modifies them incrementally).

532 CHAPTER 13 Moving on: applications and beyond

A.1 MATRIX ALGEBRA

BASIC MANIPULATIONS AND PROPERTIES

A column vector x with d dimensions can be written

x �

x1

x2

^

xd

2
66664

3
777755 x1 x2 ? xd �T ;

�

where the transpose operator, superscript T, allows it be written as a transposed

row vector—which is useful when defining vectors in running text. In this book,

vectors are assumed to be row vectors.

The transpose AT of a matrix A involves copying all the rows of the original

matrix A into the columns of AT. Thus a matrix with m rows and n columns

becomes a matrix with n rows and m columns:

A �

a11 a12 ? a1n

a21 a21 ? a2n

^ ^ & ^

am1 am2 ? amn

2
66664

3
77775 . AT 5

a11 a21 ? am1

a12 a21 ? am2

^ ^ & ^

a1n a2n ? anm

2
66664

3
77775 :

The dot product or inner product between vector x and vector y of the same

dimensionality yields a scalar quantity,

x � y5 hx; yi5 xTy5
XD
i51

xiyi:

For example, the Euclidean norm can be written as the square root of the dot

product of a vector x with itself, jjxjj25
ffiffiffiffiffiffiffiffi
xTx

p
.

The tensor product or outer product 	 between an m-dimensional vector x
and an n-dimensional vector y yields a matrix,

x	 y � xyT 5

x1

x2

^

xm

2
6664

3
7775½ y1 y2 ? yn �5

x1y1 x1y2 ? x1yn

x2y1 x2y2 ? x2yn

^ ^ & ^

xmy1 xmy2 ? xmyn

2
6664

3
7775

Theoretical foundations

Given an N row and K column matrix A, and a K row and M column matrix

B, if we write each row of A as aTn and each column of B as bm, the matrix prod-

uct AB (i.e., matrix multiplication) can be written

AB5

aT1

aT2

^

aTN

2
66664

3
77775½ b1 b2 ? bM �5

aT1b1 aT1b2 ? aT1bM

aT2b1 aT2b2 ? aT2bM

^ ^ & ^

aTNb1 aTNb2 ? aTNbM

2
66664

3
77775:

If we write each column of A as ak and each row of B as bTk , the matrix

product AB can also be written in terms of tensor products

AB5 ½ a1 a2 ? aK �

bT1

bT2

^

bTK

2
66664

3
777755

XK
k51

akb
T
k :

The elementwise product or Hadamard product of two matrices that are of the

same size is

A3B5

a11 a12 ? a1n

a21 a21 ? a2n

^ ^ & ^

am1 am2 ? amn

2
66666664

3
77777775
3

b11 b12 ? b1n

b21 b21 ? b2n

^ ^ & ^

bm1 bm2 ? bmn

2
66666664

3
77777775

5

a11b11 a12b12 ? a1nb1n

a211b21 b21b21 ? a2nb2n

^ ^ & ^

am1bm1 am2bm2 ? amnbmn

2
66666664

3
77777775
:

A square matrix A with n rows and n columns is invertible if there exists a

square matrix B5A21 such that AB5BA5 I, where I is the identity matrix con-

sisting of all zeros except that all diagonal elements are one. Square matrices that

are not invertible are called singular. A square matrix A is singular if and only if

its determinant, det(A), is zero. The following equation for the inverse shows why

a zero determinant implies that a matrix is not invertible:

A21 5
1

detðAÞC
T ;

where det(A) is the determinant of A and C is another matrix known as the cofac-

tor matrix. Finally, if a matrix A is orthogonal, then A215AT.

534 Appendix A: Theoretical foundations

DERIVATIVES OF VECTOR AND SCALAR FUNCTIONS

Given a scalar function y of an m-dimensional column vector x,

@y

@x
�

@y

@x1

@y

@x2

^

@y1
@xm

2
6666666666664

3
7777777777775
5 g:

This quantity is known as the gradient, g. We have defined it here as a col-

umn vector, but it is sometimes defined as a row vector. Defining the gradient as

a column vector implies certain orientations for the other quantities defined

below, so keep in mind that the derivatives that follow are sometimes defined as

the transposes of those given here. Using the definition and orientation above we

can write the types of parameter updates frequently used in algorithms like gradi-

ent descent in vector form with expressions such as θnew 5 θold 2 g, where θ is a

parameter (column) vector.

Given a scalar x and n-dimensional vector function y,

@y

@x
�

@y1
@x

@y2
@x

?
@yn
@x

" #
:

For an m-dimensional vector x and an n-dimensional vector y, the Jacobian

matrix is given by

@y

@x
�

@y1
@x1

@y2
@x1

?
@yn
@x1

@y1
@x2

@y2
@x2

?
@yn
@x2

^ ^ & ^

@y1
@xm

@y2
@xm

?
@yn
@xm

2
666666666664

3
777777777775
:

The Jacobian is sometimes defined as the transpose of this quantitiy even

given the other definitions above. Watch out for the implications. The derivative

of a scalar function y5 f(X) with respect to an m3 n dimensional matrix X is

known as a gradient matrix and is given by

@f

@X
�

@y

@x11

@y

@x12
?

@y

@x1n

@y

@x21

@y

@x22
?

@y

@x2n

^ ^ & ^

@y

@xm1

@y

@xm2
?

@y

@xmn

2
666666666664

3
777777777775
5G:

535Appendix A: Theoretical foundations

Our choice for the orientations of these quantities means that the gradient

matrix has the same layout as the original matrix, so updates to a parameter

matrix X take the form Xnew 5Xold 2G.

While many quantities can be expressed as scalars, vectors, or matrices, there

are many that cannot. Inspired by the tabular visualization of Minka (2000), the

scalar, vector, matrix, and tensor quantities resulting from taking the derivatives

of different combinations of quantities are shown in Table A.1.

THE CHAIN RULE

The chain rule for a function z, which is a function of y, which is a function of x,

all of which are scalars, is

@z

@x
5

@z

@y

@y

@x

where the two terms could be reversed, because multiplication is commutative.

Now, given an m-dimensional vector x, an n-dimensional vector y, and an o-

dimensional vector z, if z5 z(y(x)), then

@z

@x
�

@z1
@x1

@z2
@x1

?
@zo
@x1

@z1
@x2

@z2
@x2

?
@zo
@x2

^ ^ & ^

@z1
@xm

@z2
@xm

?
@zo
@xm

2
666666666664

3
777777777775
;

where each entry in the m3 n matrix can be computed using

@zi
@xj

5
Xn
k51

@yk
@xj

@zi
@yk

5
@y

@xj

� �
@zi
@y

� �
:

Table A.1 Quantities That Result From Various Derivatives
(After Minka, 2000)

Scalar
@f
U

Vector
@f
U

Matrix
@F
U

Scalar
U
@x Scalar:

@f
@x

5 g Vector:
@f
@x

� @fi
@x

� �
5gT Matrix:

@F
@x

� @fij
@x

� �
5GT

Vector
U
@x Vector:

@f
@x

� @f
@xi

� �
5g Matrix:

@f
@x

� @fi
@xj

� �
5G Tensor:

@F
@x

� @Fij

@xk

� �
Matrix

U
@X Matrix:

@f
@X

� @f
@xij

� �
5G Tensor:

@f
@X

� @fi
@xjk

� �
Tensor:

@F
@X

� @fij
@xkl

� �

536 Appendix A: Theoretical foundations

The vector form could be viewed as

@z

@x
5

@y1
@x1

@y2
@x1

?
@yn
@x1

@y1
@x2

@y2
@x2

?
@yn
@x2

^ ^ & ^

@y1
@xm

@y2
@xm

?
@yn
@xm

2
666666666666664

3
777777777777775

@z1
@y1

@z2
@y1

?
@zo
@y1

@z1
@y2

@z2
@y2

?
@zo
@y2

^ ^ & ^

@z1
@yn

@z2
@yn

?
@zo
@yn

2
666666666666664

3
777777777777775

@z

@x
5

@y

@x

@z

@y
;

which yields the chain rule for vectors, where chains extend toward the left as

opposed to the right as is often done with the scalar version. For the special case

when the final function evaluates to a scalar—which is frequently encountered

when optimizing a loss function, we have

@z

@xj
5
Xn
k51

@yk
@xj

@z

@yk
;

@z

@x
5

@y

@x

@z

@y
:

The rule generalizes, so that if there were yet another vector function w that is

a function of x, through z, then

@w

@x
5

@y

@x

@z

@y

@w

@z
:

To find the derivative of a matrix that is the function of another matrix, the

chain rule generalizes. For example, for a matrix X if matrix Y5 f(X), the deriva-

tive of a function g(Y) is

@gðYÞ
@X

5
@gð f ðXÞÞ

@X

@gðYÞ
@xij

5
XK
k51

XL
l51

@gðYÞ
@ykl

@ykl
@xij

COMPUTATION GRAPHS AND BACKPROPAGATION

Computation networks help to show how the gradients required for deep learning

with backpropagation can be computed. They also provide the basis for many

software packages for deep learning, which partially or fully automate the compu-

tations involved.

537Appendix A: Theoretical foundations

We begin with an example that computes intermediate quantities that are sca-

lars, and then extend it to networks involving vectors that represent entire layers

of variables at each node. Fig. A.1 gives a computation graph that implements the

function z1(y1,z2(y2(y1),z3(y3(y2(y1))))), and shows how to compute the gradients.

The chain rule for a scalar function a involving intermediate results b1,. . .,bk that
are dependent on c is

@aðb1; . . .; bkÞ
@c

5
Xn
k51

@a

@bk

@bk
@c

:

In the example, the partial derivative of z1 with respect to y1 therefore consists

of three terms

@z1
@y1

5
@z1
@y1|{z}
ð1Þ

1
@z1
@z2

@z2
@y2

@y2
@y1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ð2Þ

1
@z1
@z2

@z2
@z3

@z3
@y3

@y3
@y2

@y2
@y1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð3Þ

5
@z1
@y1

1
@z1
@z2

@z2
@y2

1
@z2
@z3

@z3
@y3

@y3
@y2

2
4

3
5 @y2
@y1

The sums needed to compute this involve following back along the flows of

the subcomputations that were performed to evaluate the original function. These

can be implemented efficiently by passing them between nodes in the graph, as

Fig. A.1 shows.

This high-level notion of following flows in a graph generalizes to deep net-

works involving entire layers of variables. If Fig. A.1 were drawn using a scalar

for z1 and vectors for each of the other nodes, the partial derivatives could be

replaced by their vector versions. It is necessary to reverse the order of the multi-

plications, because in the case of partial derivatives of vectors with respect to vec-

tors, computations grow to the left, yielding

@z1
@y1

5
@z1
@y1

1
@y2
@y1

@z2
@y2

1
@y3
@y2

@z3
@y3

@z2
@z3

� �
@z1
@z2

FIGURE A.1

Decomposing partial derivatives using a computation graph.

538 Appendix A: Theoretical foundations

To see this, consider (1) the chain rule for the partial derivative of a scalar

function z with a vector x as argument, but involving the computation of an inter-

mediate vector y:

@zðyÞ
@xj

5
Xn
k51

@yk
@xj

@z

@yk

@z

@x
5

@y

@x

@z

@y

5Dd;

and (2) the chain rule for the same scalar function z(x), but involving the compu-

tation of an intermediate matrix Y:

@zðYÞ
@x

5
XL
l51

@yl
@x

@z

@yl

5
XL
l51

Dldl:

DERIVATIVES OF FUNCTIONS OF VECTORS AND MATRICES

Here are some useful derivatives for functions of vectors and matrices. Petersen

and Pedersen (2012) gives an even larger list.

@

@x
Ax5AT

@

@x
xTx5 2x

@

@a
aTx5

@

@a
xTa5 x

@

@x
xTAx5Ax1ATx

@

@A
yTAx5 yxT

@

@x
ða2xÞT ða2 xÞ52 2ða2 xÞ

Notice that the first identity above would be equal to simply A, had we

defined the Jacobian to be the transpose of our definition above.

539Appendix A: Theoretical foundations

For a symmetric matrix C (e.g., an inverse covariance matrix),

@

@a
ða2bÞTCða2bÞ5 2Cða2bÞ

@

@b
ða2bÞTCða2bÞ52 2Cða2 bÞ

@

@w
ðy2AwÞTCðy2AwÞ52 2ATCðy2AwÞ

VECTOR TAYLOR SERIES EXPANSION, SECOND-ORDER METHODS,
AND LEARNING RATES

The method of gradient descent, the interpretation of learning rates, and more

sophisticated second-order methods can be viewed through the lens of the Taylor

series expansion of a function. The approach presented below is also known as

Newton’s method.

The Taylor expansion of a function near point xo can be written

f ðxÞ5 f ðxoÞ1 f 0ðxoÞ
1!

ðx2 xoÞ1 f vðxoÞ
2!

ðx2xoÞ2 1 f ð3ÞðxoÞ
3!

ðx2xoÞ3 1?

Using the approximation up to the second-order (squared) terms in x, taking

the derivative, setting the result to zero, and solving for x, gives

05
d

dx
f ðxoÞ1 f 0ðxoÞðx2 xoÞ1

f vðxoÞ
2

ðx2xoÞ2
2
4

3
5

5 f 0ðxoÞ1 f vðxoÞðx2 xoÞ; thus solving for δx � ðx2 xoÞ

.δx52
f 0ðxoÞ
f vðxoÞ

; or x5 xo 2
f 0ðxoÞ
f vðxoÞ

:

This generalizes to the vector version of a Taylor series for a scalar function

with matrix arguments, where

f ðθÞ5 f ðθoÞ1 gTo ðθ2 θoÞ1
1

2
ðθ2θoÞTHoðθ2 θoÞ1?;

go 5
df

dθo
;Ho 5

d

dθo
df

dθo
5

d2f

dθ2o
:

Using the identities given in the previous section, taking the derivative with

respect to the parameter vector θ, setting it to zero and then solving for the point

at which the quadratic approximation to the function would be zero, yields

df ðθÞ
dθ

5 05 go 1Hoðθ2 θoÞ;Δθ � ðθ2 θoÞ

.Δθ52H21
o go:

540 Appendix A: Theoretical foundations

This means that for the update θnew 5 θo2H21
o go, the learning rate used for

gradient descent can be thought of in terms of a simple diagonal matrix approxi-

mation to the inverse Hessian matrix in a second-order method. In other words,

using a simple learning rate is analogous to making an approximation, so that

H21
o 5 ηI.
Full-blown second-order methods take more effective steps at each iteration.

However, they can be expensive because of the need to compute this quantity.

For convex problems like logistic regression, a popular second-order method

known as L-BFGS builds an approximation to the Hessian. Here, L stands for

limited memory and BFGS stands for the inventors of the approach, Broyden�
Fletcher�Goldfarb�Shanno. Another family of approaches are known as the

conjugate gradient algorithms and involve working with the linear system of

equations associated with Hox5 2 go when solving for x5Δθ as opposed to

computing the inverse of Ho.

One needs to keep in mind that when solving nonconvex problems (e.g., learn-

ing for multilayer neural networks) the Hessian is not guaranteed to be positive

definite, which means that it may not even be invertible. Consequently the use

of heuristic adaptive learning rates and momentum terms remain popular and

effective for neural network methods.

EIGENVECTORS, EIGENVALUES, AND COVARIANCE MATRICES

There is a strong connection between eigenvectors, eigenvalues and diagonaliza-

tion of a covariance matrix, and the method of principal component analysis. If λ
is a scalar eigenvalue of a matrix A, there exists a vector x called an eigenvector

of A such that Ax5λx. Define a matrix Φ to consist of eigenvectors in each

column, and define Λ as a matrix with the corresponding eigenvalues on the

diagonal, then the matrix equation AΦ5ΦΛ defines the eigenvalues and eigen-

vectors of A.

Many numerical linear algebra software packages (e.g., Matlab) can determine

solutions to this equation. If the eigenvectors in Φ are orthogonal, which they are

for symmetric matrices, the inverse of Φ equals its transpose, which implies that

we could equally well write ΦTAΦ5Λ. To find the eigenvectors of a covariance

matrix, set A5Σ, the covariance matrix. This yields the definition of the

eigenvectors of a covariance matrix Σ as the set of orthogonal vectors stored in a

matrix Φ and normalized to have unit length, such that ΦTΣΦ5Λ. Since Λ is

diagonal matrix of eigenvalues, the operation ΦTΣΦ has been used to diagonal-

ize the covariance matrix.

While these results may seem esoteric at first glance, their use is widespread.

For example, in computer vision an eigenanalysis-based principal component

analysis for face recognition yields what are known as “eigenfaces.” The general

technique is widely used in numerous other contexts, and classic, well-cited

eigenanalysis-based papers appear in many diverse fields.

541Appendix A: Theoretical foundations

THE SINGULAR VALUE DECOMPOSITION

The singular value decomposition is a type of matrix factorization that is widely

used in data mining and machine learning settings and is implemented as a core

routine in many numerical linear algebra packages. It decomposes a matrix X into

the product of three matrices such that X5USVT, where U has orthogonal col-

umns, S is a diagonal matrix containing the singular values (normally) sorted along

the diagonal, and V also has orthogonal columns. By keeping only the k largest sin-

gular values, this factorization allows the data matrix to be reconstructed in a way

that is optimal in a least squares sense for each value of k. For any given k, we

could therefore write X � UkSkV
T
k . Fig. 9.10 illustrates how this works visually.

In our discussion earlier on eigendecompositions we developed an expression

for diagonalizing a covariance matrix Σ using ΦTΣΦ5Λ, where Φ holds the

eigenvectors and Λ is a diagonal matrix of eigenvalues. This amounts to seeking

a decomposition of the covariance matrix that factorizes into Σ5ΦΛΦT . This

reveals the relationship between principal component analysis and the singular

value decomposition applied to data stored in the columns of matrix X. We will

use the fact that the covariance matrix Σ for mean centered data stored as vectors

in the columns of X is simply Σ5XXT . Since orthogonal matrices have the

property that UUT5 I, through the following substitution we can see that the

matrix Φ, known as the right singular vectors of X, corresponds to the eigenvec-

tors of the covariance matrix. In other words, to factorize a covariance matrix

into Σ5ΦΛΦT , mean center the data and perform an singular value decomposi-

tion on X. Then the covariance matrix is Σ5XXT 5USDTDSTUT 5US2UT , so

U5Φ and S5Λ
1
2—in other words, the so-called singular values are the square

roots of the eigenvalues.

A.2 FUNDAMENTAL ELEMENTS OF PROBABILISTIC METHODS

EXPECTATIONS

The expectation of a discrete random variable X is

E½X �5
X
x

xPðX5 xÞ;

where the sum is over all possible values for X. The conditional expectation

for discrete random variable X given random variable Y5 y has a similar form

E½XjY5 y�5
X
x

xPðX5 xjY5 yÞ:

Given a probability density function p(x) for a continuous random variable X,

E½X �5
ðN
2N

xpðxÞdx:

542 Appendix A: Theoretical foundations

The empirical expectation of a continuous-valued variable X is obtained by

placing a Dirac delta function on each empirical observation or example, and nor-

malizing by the number of examples, to define p(x). The expected value of a

matrix is defined as a matrix of expected values.

The expectation of a function of a continuous random variable X and a

discrete random variable y is

E½ f ðX; YÞ�5
ðN
2N

X
y

f ðx; YÞpðx; Y5 yÞdx:

Expectations of sums of random variables are equal to sums of expecta-

tions, or

E½X1Y �5E½X �1E½Y �:
If there is a scaling factor s and bias or constant c, that

E½sX1 c�5 sE½X �1 c:

The variance is defined as

Var½X �5
X
x

ðx2E½X �Þ2pðX5 xÞ

5E½ðX2E½X �ÞðX2E½X �Þ�
5E½X2 2 2XE½X �1 ðE½X �Þ2�
5E½X2�2 2E½X �E½X �1 ðE½X �Þ2

5E½X2�2E½X �2:
The expectation of the product of continuous random variables X and Y with

joint probability p(x,y) is given by

E½XY �5
ðN
2N

ðN
2N

xypðx; yÞdxdy:

The covariance between X and Y is given by

Cov½X; Y �5E½ðX2E½X �ÞðY 2E½Y �Þ�
5
X
x

X
y

ðx2E½X �Þðy2E½ Y �ÞpðX5 x; Y5 yÞ

5E½XY �2E½X �E ½ Y �:

Therefore Cov½X; Y �5 0.E½XY �5E½X �E ½ Y �, and X and Y are said to be

uncorrelated. Clearly Cov[X,X]5Var[X]. The covariance matrix for a d-dimen-

sional continuous random variable x is obtained from

Cov½x�5
Covðx1; x1Þ ? Covðx1; xdÞ

^ ^ ^

Covðxd ; x1Þ ? Covðxd; xdÞ

2
664

3
775:

543Appendix A: Theoretical foundations

CONJUGATE PRIORS

In more fully Bayesian methods one treats both variables and parameters as ran-

dom quantities. The use of prior distributions over parameters can provide simple

and well justified ways to regularize model parameters and avoid overfitting.

Applying the Bayesian modeling philosophy and techniques can lead to simple

adjustments to traditional maximum likelihood estimates. In particular, the use of

a conjugate prior distribution for a parameter in an appropriately defined probabil-

ity model means that the posterior distribution over that parameter will remain

in the same form as the prior. This makes it easy to adapt traditional maximum

likelihood estimates for parameters using simple weighted averages of the maxi-

mum likelihood estimate and the relevant parameters of the conjugate prior.

We will see how this works for the Bernoulli, categorical, and Gaussian distribu-

tions below. Other more sophisticated Bayesian manipulations are also simplified

through the use of conjugacy.

BERNOULLI, BINOMIAL, AND BETA DISTRIBUTIONS

The Bernoulli probability distribution is defined for binary random variables.

Suppose xAf0; 1g, the probability of x5 1 is given by π and the probability of

x5 0 is given by 12π. The probability distribution can be written in the follow-

ing way

Pðx;πÞ5π xð12πÞ12x:

The binomial distribution generalizes the Bernoulli distribution. It defines the

probability for a certain number of successes in a sequence of binary experiments,

where the outcome of each experiment is governed by a Bernoulli distribution.

The probability of exactly k successes in n experiments under the binomial

distribution is

Pðk; n;πÞ5 n

k

� �
πkð12πÞn2k;

and defined for k5 0, 1, 2,. . ., n where

n

k

� �
5

n!

k!ðn2 kÞ!
is the binomial coefficient. Intuitively, the binomial coefficient is needed to

account for the fact that the definition of this distribution ignores the order of the

results of the experiments—the k results where x5 1 could have occurred any-

where in the sequence of the n experiments. The binomial coefficient gives the

number of different ways in which one could have obtained the k results where

x5 1. Intuitively, the term πk is the probability of exactly k results where x5 1,

and πn2k is the probability of having exactly n2 k results where x5 0. These two

terms are valid for each of the possible ways in which the sequence of outcomes

544 Appendix A: Theoretical foundations

could have occurred, and we therefore simply multiply by the number of

possibilities.

The Beta distribution is defined for a random variable π where 0#π# 1.

It uses two shape parameters α;β. 0 such that

Pðπ;α;βÞ5 1

Bðα;βÞπ
α21ð12πÞβ21; (A.1)

where Bðα;βÞ is the beta function and serves as a normalization constant that

ensures that the function integrates to one. The Beta distribution is useful because

it can be used as a conjugate prior distribution for the Bernoulli and binomial dis-

tributions. Its mean is

πB 5
α

α1 β

� �
;

and it can be shown that if the maximum likelihood estimate for the Bernoulli

distribution is given by πML then the posterior mean π� of the Beta distribution is

π� 5wπB 1 ð12wÞπML;

where

w5
α1 β

α1 β1 n
;

and n is the number of examples used to estimate πML. The use of the posterior

mean value π� as the regularized or smoothed estimate, replacing πML in a Bernoulli

model, is therefore justified under Bayesian principles by the fact that the mean

value of the posterior predictive distribution of a Beta-Bernoulli model is equivalent

to plugging the posterior mean parameters of the Beta into the Bernoulli, i.e.

pðxjDÞ5
ð1
0

BernðxjπÞ BetaðπjDÞdπ5Bernðx;π� Þ:

This supports the intuitive notion of thinking of α and β as imaginary observa-

tions for x5 1 and x5 0, respectively, and justifies it in a Bayesian sense.

CATEGORICAL, MULTINOMIAL, AND DIRICHLET DISTRIBUTIONS

The categorical distribution is defined for discrete random variables with more

than two states; it generalizes the Bernoulli distribution. For K categories one

might define AAfa1; a2;?; aKg or xAf1; 2;?;Kg; however, the order of the inte-

gers used to encode the categories is arbitrary. If the probability of x being in

state or category k is given by πk, and if we use a one hot encoding for a vector

representation x in which all the elements of x are zero except for exactly one

dimension that is equal to 1, representing the state or category of x, then the cate-

gorical distribution is

Pðx;πÞ5 L
K

k51

πxk
k :

545Appendix A: Theoretical foundations

The multinomial distribution generalizes the categorical distribution. Given

multiple independent observations of a discrete random variable with a fixed cate-

gorical probability πk for each class k, the multinomial distribution defines the

probability of observing a particular number of instances of each category. If the

vector x is defined as the number of times each category has been observed, then

the multinomial distribution can be expressed as

Pðx; n;πÞ5 n!
x1!?xK !

� �
L
K

k51

πxk
k :

The Dirichlet distribution is defined for a random variable or parameter vector

π such that π1; . . .;πK . 0, π1; . . .;πK , 1, π1 1π21 . . .;πK 5 1, which is pre-

cisely the form of π used to define the categorical and multinomial distributions

above. The Dirichlet distribution with parameters α1; . . .;αK . 0, K$ 2 is

Pðπ;αÞ5 1

BðαÞL
K

i5k

παk21
k

where B(α), the multinomial beta function, serves as the normalization constant

that ensures that the function integrates to one:

BðαÞ5 LK

k51
ΓðαkÞ

Γ
PK

k51 αk

� �
where ΓðUÞ is the gamma function.

The Dirichlet distribution is useful because it can be used as a conjugate prior

distribution for the categorical and multinomial distributions. Its mean (vector) is

πD 5
αPK

k51

αk

:

And it generalizes the case of the Bernoulli distribution with a Beta prior. That is,

it can be shown that if the traditional maximum likelihood estimate for the cate-

gorical distribution is given by πML, then the posterior mean π� of a model con-

sisting of a categorical likelihood and a Dirichlet prior has the form of a Dirichlet

distribution with mean

π� 5wπD 1 ð12wÞπML

where

w5
αK

αK 1 n
; αK 5

XK
k51

αk ;

and where n is the number of examples used to estimate πML. The use of the

posterior mean value π� as the regularized or smoothed estimate to replace πML

in a categorical probability model is therefore justified under Bayesian principles

by the fact that the mean value of the posterior predictive distribution of a

546 Appendix A: Theoretical foundations

categorical model with a Dirichlet prior is equivalent to plugging the posterior

mean parameters of the Dirichlet posterior into the categorical probability

model, i.e.,

pðxjDÞ5
ð
π
CatðxjπÞ DirichletðπjDÞdπ5Catðx;π� Þ:

Again the intuitive notion of thinking of each of the elements αk of the param-

eter vector α for the Dirichlet as imaginary observations is justified under a

Bayesian analysis.

ESTIMATING THE PARAMETERS OF A DISCRETE DISTRIBUTION

Suppose we wish to estimate the parameters of a discrete probability distribu-

tion—of which the binary distribution is a special case. Let the probability of a

variable being in category k be πk, and write the parameters of the distribution as

the length�k vector π. Encode each example using a one hot vector xi, i5 1,. . ., N,
which is all zero except for one dimension that corresponds to the observed category,

where xi,k5 1. The probability of a dataset can be expressed as

Pðx1; . . .; xN ;πÞ5 L
N

i51

L
K

k51

πxi;k
k :

If nk is the number of times that each class k in the data has been observed,

the log-likelihood of the data is

log Pðn1; . . .; nK ;πÞ5
XK
k51

nk logπk :

To ensure that the parameter vector defines a valid probability, the log-

likelihood is augmented with a term involving a Lagrange multiplier λ that

enforces the constraint that the probabilities sum to one:

L5
XK
k51

nk logπk 1λ 12
XK
k51

πk

" #
:

Taking the derivative of this function with respect to λ and setting the result

to zero tells us that the sum over the probabilities in our model should be 1 (as

desired). We then take the derivative of the function with respect to each parame-

ter and set it to zero, which gives

@L

@πk

5 0 . nk 5λπk:

We can solve for λ by summing both sides over k:

XK
k51

nk 5λ
XK
k51

πk . λ5
XK
k51

nk 5N:

547Appendix A: Theoretical foundations

Therefore we can determine that the gradient of the augmented objective func-

tion is zero when

πk 5
nk

N
:

This simple result should be in line with your intuition about how to estimate

probabilities.

We discussed above how specifying a Dirichlet prior for the parameters can

regularize the estimation problem and compute a smoothed probability π
�
k. The

regularization can equivalently be viewed as imaginary data or counts αk for each

class k, to give an estimate

π
�
k 5

nk 1αk

N1αK

; αK 5
XK
k51

αk;

which can also be written

π
�
k 5

αK

N1αK

� �
αk

αK

� �
1

N

N1αK

� �
nk

N

� �
:

This also follows from the analysis above that expressed the smoothed proba-

bility vector π� as a weighted combination of the prior probability vector πD and

the maximum likelihood estimate πML, π� 5wπD 1 ð12wÞπML.

THE GAUSSIAN DISTRIBUTION

The one-dimensional Gaussian probability distribution has the following form:

Pðx;μ;σÞ5 1

σ
ffiffiffiffiffiffi
2π

p exp 2
ðx2μÞ2
2σ2

� �
;

where the parameters of the model are its mean μ and variance σ2 (the standard

deviation σ is simply the square root of the variance). Given N examples

xi5 1,. . ., N, the maximum likelihood estimates of these parameters are

μ5
1

N

XN
i51

xi; σ2 5
1

N

XN
i51

ðxi2μÞ2:

When estimating the variance, the equation above is sometimes modified to

use N�1 in place of N in the denominator to obtain an unbiased estimate, giving

the standard deviation as

σ5

ffi
1

N2 1

XN
i51

ðxi2μÞ2
vuut ;

especially with sample sizes less than 10. This is known as the (corrected) sample

standard deviation.

548 Appendix A: Theoretical foundations

The Gaussian distribution can be generalized from one to two dimensions, or

indeed to any number of dimensions. Consider a two-dimensional model consist-

ing of independent Gaussian distributions for each dimension, which is equivalent

to a model with a diagonal covariance matrix when written using matrix notation.

We can transform from scalar to matrix notation for a two-dimensional Gaussian

distribution:

Pðx1; x2Þ5
1ffiffiffiffiffiffi
2π

p
σ1

exp 2
ðx12μ1Þ2

2σ2
1

2
4

3
5 1ffiffiffiffiffiffi

2π
p

σ2

exp 2
ðx22μ2Þ2

2σ2
2

2
4

3
5

5 ð2πÞ21ðσ2
1σ

2
2Þ21=2exp 2

1

2
ðx2μÞT σ2

1 0

0 σ2
2

" #21

ðx2μÞ
8<
:

9=
;

5 ð2πÞ21 Σj j21=2exp 2
1

2
ðx2μÞTΣ21ðx2μÞ

8<
:

9=
;;

where the covariance matrix of the model is given by Σ, the vector x5 [x1 x2]
T,

and the mean vector μ5 [μ1 μ2]
T. This progression of equations is true because

the inverse of a diagonal matrix is simply a diagonal matrix consisting of one

over each of the original diagonal elements, which explains how the scalar nota-

tion converts to the matrix notation for an inverse covariance matrix. The covari-

ance matrix is the matrix with this entry on row i and column j:

Σij 5 covðxi; xjÞ5E½ðxi 2μiÞðxj 2μjÞ�
where E[.] refers to the expected value and μi 5E½xi�. The mean can be computed

in vector form:

μ5
1

N

XN
i51

xi:

The equation for estimating a covariance matrix is

Σ5
1

N

XN
i51

ðxi 2μÞðxi2μÞT :

In general the multivariate Gaussian distribution can be written

Pðx1; x2; . . .; xdÞ5 ð2πÞ2d=2jΣj21=2exp 2
1

2
ðx2μÞTΣ21ðx2μÞ

� �
:

When a variable is to be modeled with a Gaussian distribution with mean

μ and covariance matrix Σ, it is common to write P(x)5N(x; μ, Σ). Notice

the semicolon: this implies that the mean and covariance will be treated as

parameters. In contrast, the “|” (or “given”) symbol is used when the parameters

are treated as variables and their uncertainty is to be modeled. Treating para-

meters as random variables is popular in Bayesian techniques such as latent

Dirichlet allocation.

549Appendix A: Theoretical foundations

USEFUL PROPERTIES OF LINEAR GAUSSIAN MODELS

Consider a Gaussian random variable x with mean μ and covariance matrix

A, pðxÞ5Nðx;μ;AÞ, and a random variable y whose conditional distribution

given x is Gaussian with mean Wx1 b and covariance matrix B, pðyjxÞ5
Nðy;Wx1b;BÞ. The marginal distribution of y and conditional distribution of x
given y can be written

pðyÞ5Nðy;Wx1 b;B1WAWT Þ;
pðxjyÞ5Nðx;C½WTB21ðy2 bÞ1A21µ�;CÞ;

respectively, where C5 ðA211WTB21WÞ21.

PROBABILISTIC PCA AND THE EIGENVECTORS
OF A COVARIANCE MATRIX

When explaining principal component analysis in Section 9.6 we discussed the

idea of diagonalizing a covariance matrix Σ and formulated this in terms of find-

ing a matrix of eigenvectors Φ such that ΦTΣΦ5Λ, a diagonal matrix. The

same objective could be formulated as finding a factorization of the covariance

matrix such that Σ5ΦΛΦT . Recall that in our presentation of probabilistic PCA

in Chapter 9 we saw that the marginal probability for P(x) under principal compo-

nent analysis involves a covariance matrix given by Σ5 ðWTW1 σ2IÞ.
Therefore, when σ2-0 we can see that if W5ΦΛ

1
2 we would have precisely the

same W that one could obtain from matrix factorization methods based on eigen-

decomposition. Importantly, for σ2. 0 it can be shown that maximum likelihood

learning will produce Ws that are not in general orthogonal (Tipping and Bishop,

1999a, 1999b); however, some more recent work has shown how to impose

orthogonality constraints during a maximum likelihood�based optimization

procedure.

THE EXPONENTIAL FAMILY OF DISTRIBUTIONS

The exponential family of distributions includes Gaussian, Bernoulli, Binomial,

Beta, Gamma, Categorical, Multinomial, Dirichlet, Chi-squared, Exponential

and Poisson, among many others. In addition to their commonly used forms, these

distributions can all be written in the standardized exponential family form that

makes them easy to work with algebraically:

pðxÞ5 hðxÞ exp½θTTðxÞ2AðθÞ�;
where θ is a vector of natural parameters, T(x) is a vector of sufficient

statistics, A(θ) is known as cumulant generating function, and h(x) is an

additional function of x. As an example, for the 1D Gaussian distribution

these parameters are θ5 ½μ=σ2 21=ð2σ2Þ�T , TðxÞ5 x x2 �T
�

, hðxÞ5 1=
ffiffiffiffiffiffi
2π

p
,

and AðθÞ5μ2=ð2σ2Þ1 lnjσj.

550 Appendix A: Theoretical foundations

VARIATIONAL METHODS AND THE EM ALGORITHM

With a complex probability model for which the posterior distribution cannot be

computed exactly, a method called variational EM can be used. This involves

manipulating approximations to the model’s true posterior distribution during an

EM optimization procedure. The following variational analysis also helps to show

why and how the EM algorithm involving exact posterior distributions works.

Before we begin, when using variational methods with approximate distribu-

tions it is helpful to make a distinction between the parameters used to build an

approximation to the true posterior distribution and the parameters of the original

model. Consider a probability model with a set of hidden variables H and a set of

observed variables X. The observed values are given by ~X. Let p5 pðHj ~X; θÞ be
the model’s exact posterior distribution, and q5 qðHj ~X;ΦÞ be a variational

approximation, with a set Φ of variational parameters.

To understand how variational methods are used in practice, we first examine

the well-known “variational bound.” This is created using two tricks. The first is

to divide and multiply by the same quantity; the second is to apply an inequality

known as Jensen’s inequality. These allow the construction of a variational lower

bound L(q) on the log marginal likelihood:

log pð ~X; θÞ5 log
X
H

pð ~X;H; θÞ

5 log
X
H

qðHj ~X;ΦÞ
qðHj ~X;ΦÞ pð

~X;H; θÞ

$
X
H

qðHj ~X;ΦÞ log
pð ~X;H; θÞ
qðHj ~X;ΦÞ

5E½log Pð ~X;H; θÞ�q 1HðqÞ
5LðqÞ:

Here, H(q) is the entropy of q, which is

HðqÞ52
X
H

qðHj ~X;ΦÞ log qðHj ~X;ΦÞ:

The bound L(q) becomes an equality when q5 p. In the case of “exact” EM, this

confirms that each M-step will increase the likelihood of the data. However, to make

the lower bound tight again in preparation for the next M-step, the new exact posterior

must be recomputed with the updated parameters as a part of the subsequent E-step.

When q is merely an approximation to p, the relationship between the mar-

ginal log-likelihood and the expected log-likelihood under distribution q can be

written with an equality as opposed to an inequality:

log Pð ~X; θÞ5E½log Pð ~X;H; θÞ�q 1HðqÞ1DKLðqjj pÞ
5LðqÞ1DKLðqjjpÞ:

KL(q||p) is known as the Kullback�Leibler (KL) divergence, a measure of

the distance between distributions q and p. It is not a true distance in the

551Appendix A: Theoretical foundations

mathematical sense, but rather a quantity that always exceeds zero and only

becomes zero when q5 p. Here it is given by

DKLðqjjpÞ5
X
H

qðHj ~X;ΦÞ log
qðHj ~X;ΦÞ
pðHj ~X; θÞ :

The difference between the log marginal likelihood and the variational bound

is given by the KL divergence between the approximate q and the true p. This

means that if q is approximate, the bound can be tightened by improving the qual-

ity of the approximation q to the true posterior p. So, as we also saw above, when

q is not an approximation but equals p exactly, DKLðqjjpÞ5 0 and

log Pð ~X; θÞ5E½log Pð ~X;H; θÞ�q 1HðqÞ:

Variational inference techniques are often used to improve the quality of an

approximate posterior distribution within an EM algorithm, and the term “varia-

tional EM” refers to this general method. However, the result of a variational infer-

ence procedure is sometimes useful in itself. A key feature of variational methods

arises from the existence of the variational bound and the fact that algorithms can be

formulated that iteratively bring q closer to p in the sense of the KL divergence.

The mean-field approach is one of the simplest variational methods. It mini-

mizes the KL divergence between an approximation, which consists of giving

each variable its own separate variational distribution (and parameters), and the

true joint distribution. This is known as a “fully factored variational approxima-

tion” and could be written

qðHj ~X;ΦÞ5 L
j

qjðhjj ~X;φjÞ:

Given some initial parameters for the separate distributions for each variable

qj5 qj(hj), one proceeds to update each variable iteratively, given expectations of

the model under the current variational approximation for the other variables.

These updates take this general form:

qjðhjj ~X;φjÞ5
1

Z
E½log PðX;H; θÞ�L

i6¼j

qiðhiÞ;

where the expectation is performed using the approximate qs for all variables hi
other than hj, and Z is a normalization constant obtained by summing over the

numerator for all values of hj.

Early work on variational methods for graphical models is well represented in

Jordan, Ghahramani, Jaakkola, and Saul (1999). If distributions are placed over

parameters as well as hidden variables, variational Bayesian methods and varia-

tional Bayesian EM can be used to perform more fully Bayesian learning

(Ghahramani and Beal, 2001). Winn and Bishop (2005) gives a good comparison

of belief propagation and variational inference methods when viewed as message

passing algorithms. Bishop’s textbook (Bishop, 2006), as well as Koller and

Friedman (2009)’s, provide further detail and more advanced machine learning

techniques based on the variational perspective.

552 Appendix A: Theoretical foundations

The WEKA workbench is a collection of machine learning algorithms and data

preprocessing tools that includes virtually all the algorithms described in this

book. It is designed so that you can quickly try out existing methods on new data-

sets in flexible ways. It provides extensive support for the whole process of exper-

imental data mining, including preparing the input data, evaluating learning

schemes statistically, and visualizing the input data and the result of learning.

As well as a wide variety of learning algorithms, it includes a wide range of

preprocessing tools. This diverse and comprehensive toolkit is accessed through a

common interface so that its users can compare different methods and identify

those that are most appropriate for the problem at hand.

WEKA was developed at the University of Waikato in New Zealand;

the name stands for Waikato Environment for Knowledge Analysis. Outside the

university the WEKA, pronounced to rhyme with Mecca, is a flightless bird with

an inquisitive nature found only on the islands of New Zealand. The system is

written in Java and distributed under the terms of the GNU General Public

License. It runs on almost any platform and has been tested under Linux,

Windows, and Macintosh operating systems.

B.1 WHAT’S IN WEKA?
WEKA provides implementations of learning algorithms that you can easily

apply to your dataset. It also includes a variety of tools for transforming datasets,

such as the algorithms for discretization and sampling. You can preprocess a

dataset, feed it into a learning scheme, and analyze the resulting classifier and its

performance—all without writing any program code at all.

The workbench includes methods for the main data mining problems: regres-

sion, classification, clustering, association rule mining, and attribute selection.

Getting to know the data is an integral part of the work, and many data visualiza-

tion facilities and data preprocessing tools are provided. All algorithms take their

input in the form of a single relational table that can be read from a file or gener-

ated by a database query.

One way of using WEKA is to apply a learning method to a dataset and ana-

lyze its output to learn more about the data. Another is to use learned models to

generate predictions on new instances. A third is to apply several different lear-

ners and compare their performance in order to choose one for prediction. In the

interactive WEKA interface you select the learning method you want from a

WEKA workbench

menu. Many methods have tunable parameters, which you access through a prop-

erty sheet or object editor. A common evaluation module is used to measure the

performance of all classifiers.

Implementations of actual learning schemes are the most valuable resource

that WEKA provides. But tools for preprocessing the data, called filters, come a

close second. Like classifiers, you select filters from a menu and tailor them to

your requirements.

HOW DO YOU USE IT?

The easiest way to use WEKA is through a graphical user interface called the

Explorer. This gives access to all of its facilities using menu selection and form

filling. For example, you can quickly read in a dataset from a file and build a

decision tree from it. The Explorer guides you by presenting options as forms to

be filled out. Helpful tool tips pop up as the mouse passes over items on the

screen to explain what they do. Sensible default values ensure that you can get

results with a minimum of effort—but you will have to think about what you are

doing to understand what the results mean.

There are three other graphical user interfaces to WEKA. The Knowledge

Flow interface allows you to design configurations for streamed data processing.

A fundamental disadvantage of the Explorer is that it holds everything in main

memory—when you open a dataset, it immediately loads it all in. That means

that it can only be applied to small- to medium-sized problems. However, WEKA

contains some incremental algorithms that can be used to process very large data-

sets. The Knowledge Flow interface lets you drag boxes representing learning

algorithms and data sources around the screen and join them together into the

configuration you want. It enables you to specify a data stream by connecting

components representing data sources, preprocessing tools, learning algorithms,

evaluation methods, and visualization modules. If the filters and learning

algorithms are capable of incremental learning, data will be loaded and processed

incrementally.

WEKA’s third interface, the Experimenter, is designed to help you answer a

basic practical question when applying classification and regression techniques:

Which methods and parameter values work best for the given problem? There

is usually no way to answer this question a priori, and one reason we developed

the workbench was to provide an environment that enables WEKA users to com-

pare a variety of learning techniques. This can be done interactively using the

Explorer. However, the Experimenter allows you to automate the process by mak-

ing it easy to run classifiers and filters with different parameter settings on a cor-

pus of datasets, collect performance statistics, and perform significance tests.

Advanced users can employ the Experimenter to distribute the computing load

across multiple machines using Java remote method invocation. In this way you

can set up large-scale statistical experiments and leave them to run.

554 Appendix B: The WEKA workbench

The fourth interface, called the Workbench, is a unified graphical user interface

that combines the other three (and any plugins that the user has installed) into one

application. The Workbench is highly configurable, allowing the user to specify

which applications and plugins will appear, along with settings relating to them.

Behind these interactive interfaces lies the basic functionality of WEKA. This

can be accessed in raw form by entering textual commands, which gives access to

all features of the system. When you fire up WEKA you have to choose among

five different user interfaces via the WEKA GUI Chooser: the Explorer,

Knowledge Flow, Experimenter, Workbench, and command-line interfaces

(we do not consider the command-line interface in this Appendix). Most people

choose the Explorer, at least initially.

WHAT ELSE CAN YOU DO?

An important resource when working with WEKA is the online documentation,

which has been automatically generated from the source code and concisely

reflects its structure. The online documentation gives the only complete list of

available algorithms because WEKA is continually growing and—being generated

automatically from the source code—the online documentation is always up to

date. Moreover, it becomes essential if you want to proceed to the next level and

access the library from your own Java programs or write and test learning

schemes of your own.

In most data mining applications, the machine learning component is just a

small part of a far larger software system. If you intend to write a data mining

application, you will want to access the programs in WEKA from inside your

own code. By doing so, you can solve the machine learning subproblem of your

application with a minimum of additional programming.

If you intend to become an expert in machine learning algorithms (or, indeed,

if you already are one), you will probably want to implement your own algo-

rithms without having to address such mundane details as reading the data from a

file, implementing filtering algorithms, or providing code to evaluate the results.

If so, we have good news for you: WEKA already includes all this. To make full

use of it, you must become acquainted with the basic data structures.

An extended version of this Appendix, which discusses these opportunities for

advanced users and also describes the command-line interface, is available at

http://www.cs.waikato.ac.nz/ml/book.html.

B.2 THE PACKAGE MANAGEMENT SYSTEM
The WEKA software has evolved considerably since the third edition of this book

was published. Many new algorithms and features have been added to the system,

a number of which have been contributed by the community. With so many

555Appendix B: The WEKA workbench

http://www.cs.waikato.ac.nz/ml/book.html

algorithms on offer we felt that the software could be considered overwhelming

to the new user. Therefore a number of algorithms and community contributions

were removed and placed into plugin packages. A package management system

was added that allows the user to browse for, and selectively install, packages of

interest.

Another motivation for introducing the package management system was to

make the process of contributing to the WEKA software easier, and to ease the

maintenance burden on the WEKA development team. A contributor of a

plugin package is responsible for maintaining its code and hosting the install-

able archive, while WEKA simply tracks the package metadata. The package

system also opens the door to the use of third-party libraries, something that

we would have discouraged in the past in order to keep a lightweight footprint

for WEKA.

The graphical package manager can be accessed from the Tools menu of

WEKA’s GUI Chooser. The very first time the package manager is accessed it

will download information about the currently available packages. This requires

an internet connection, however, once the package metadata has been downloaded

it is possible to use the package manager to browse package information while

offline. Of course, an Internet connection is still required to be able to actually

install a package.

The package manager presents a list of packages near the top of its window

and a panel at the bottom that displays information on the currently selected

package in the list. The user can choose to display packages that are available

but not yet installed, only packages that are installed, or all packages. The list

presents the name of each package, the broad category that it belongs to, the

version currently installed (if any), the most recent version of the package avail-

able that is compatible with the version of WEKA being used, and a field that,

for installed packages, indicates whether the package has been loaded success-

fully by WEKA or not. Although not obvious at first glance, it is possible to

install older versions of a particular package. The Repository version field in the

list is actually a drop-down box. The list of packages can be sorted, in ascending

or descending order, by clicking on either the package or category column

header.

The information panel at the bottom of the window has clickable links for

each version of a given package. “Latest” always refers to the latest version of

the package, and is the same as the highest version number available. Clicking

one of these links displays further information, such as the author of the package,

its license, where the installable archive is located, and its dependencies. The

information about each package is also browsable at the Web location where

WEKA’s package metadata is hosted. All packages have at least one dependency

listed—the minimum version of the core WEKA system that they can work with.

Some packages list further dependencies on other packages. For example, the

multi-InstanceLearning package depends on the multi-InstanceFilters package.

When installing multi-InstanceLearning, and assuming that multi-InstanceFilters

556 Appendix B: The WEKA workbench

is not already installed, the system will inform the user the multi-InstanceFilters

is required and will be installed automatically.

The package manager displays what are known as official packages for

WEKA. These are packages that have been submitted to the WEKA team for a

review and have had their metadata added to the official central metadata reposi-

tory. For one reason or another, an author of a package might decide to make it

available in an unofficial capacity. These packages do not appear in the official

list on the Web, or in the list displayed by the graphical package manager. If the

user knows the URL to an archive containing an unofficial package, it can be

installed by using the button in the upper right-hand corner of the package man-

ager window.

Whenever a new package, or new version of an existing one, becomes

available the package manager informs the user by displaying a large yellow

warning icon. Hovering over this icon displays a tool-tip popup that lists the new

packages and prompts the user to click the Refresh repository cache button.

Clicking this button downloads a fresh copy of all the package information to the

user’s computer.

The Install and Uninstall buttons at the top of the package manager’s window

do exactly as their names suggest. More than one package can be installed or

uninstalled in one go by selecting multiple entries in the list. By default, WEKA

attempts to load all installed packages, and if a package cannot be loaded for

some reason a message will be displayed in the Loaded column of the list. The

user can opt to prevent a particular package from being loaded by selecting it and

then clicking the Toggle load button. This will mark the package as one that

should not be loaded the next time that WEKA is started. This can be useful if an

unstable package is generating errors, conflicting with another package (perhaps

due to third-party libraries), or otherwise preventing WEKA from operating

properly.

B.3 THE EXPLORER
WEKA’s historically most popular graphical user interface, the Explorer,

gives access to all its facilities using menu selection and form filling. To begin,

there are six different panels, selected by the tabs at the top, corresponding to the

various data mining tasks that WEKA supports. Further panels can become

available by installing appropriate packages.

Loading the data into the Explorer
To illustrate what can be done with the Explorer, suppose we want to build

a decision tree from the weather data included in the WEKA download. Fire

up WEKA to get the GUI Chooser. Select Explorer from the five choices on

557Appendix B: The WEKA workbench

the right-hand side. (The others were mentioned earlier: Simple CLI is the old-

fashioned command-line interface.)

What you see next is the main Explorer screen. The six tabs along the top are

the basic operations that the Explorer supports: right now we are on Preprocess.

Click the Open file button to bring up a standard dialog through which you can

select a file. Choose the weather.arff file. If you have it in CSV format, change

from ARFF data files to CSV data files.

Having loaded the file, the Preprocess screen tells you about the dataset: it has

14 instances and 5 attributes (center left); the attributes are called outlook, tem-

perature, humidity, windy, and play (lower left). The first attribute, outlook, is

selected by default (you can choose others by clicking them) and has no missing

values, three distinct values, and no unique values; the actual values are sunny,

overcast, and rainy and they occur five, four, and five times, respectively (center

right). A histogram at the lower right shows how often each of the two values of

the class, play, occurs for each value of the outlook attribute. The attribute out-

look is used because it appears in the box above the histogram, but you can draw

a histogram of any other attribute instead. Here play is selected as the class attri-

bute; it is used to color the histogram, and any filters that require a class value

use it too.

The outlook attribute is nominal. If you select a numeric attribute, you

see its minimum and maximum values, mean, and standard deviation. In this

case the histogram will show the distribution of the class as a function of this

attribute.

You can delete an attribute by clicking its checkbox and using the Remove

button. All selects all the attributes, None selects none, Invert inverts the current

selection, and Pattern selects those attributes whose names match a user-

supplied regular expression. You can undo a change by clicking the Undo but-

ton. The Edit button brings up an editor that allows you to inspect the data,

search for particular values and edit them, and delete instances and attributes.

Right-clicking on values and column headers brings up corresponding context

menus.

Building a decision tree
To build a decision tree, click the Classify tab to get access to WEKA’s classifi-

cation and regression schemes. In the Classify panel, select the classifier by click-

ing the Choose button at the top left, opening up the trees section of the

hierarchical menu that appears, and finding J48. The menu structure represents

the organization of the WEKA code into modules and the items you need to

select are always at the lowest level. Once selected, J48 appears in the line beside

the Choose button, along with its default parameter values. If you click that line,

the J48 classifier’s object editor opens up and you can see what the parameters

mean and alter their values if you wish. The Explorer generally chooses sensible

defaults.

558 Appendix B: The WEKA workbench

Having chosen the classifier, invoke it by clicking the Start button.

WEKA works for a brief period—when it is working, the little bird at the

lower right of the Explorer jumps up and dances—and then produces the output

for J48.

Examining the output
At the beginning of the output is a summary of the dataset, and the fact that 10-

fold cross-validation was used to evaluate it. That is the default, and if you look

closely at the Classify panel you will see that the Cross-validation box at the left

is checked. Then comes a pruned decision tree in textual form. The model that is

shown here is always the one generated from the full dataset available from the

Preprocess panel.

The next part of the output gives estimates of the tree’s predictive perfor-

mance. In this case they are obtained using stratified cross-validation with 10

folds. As well as the classification error, the evaluation module also outputs sev-

eral other performance statistics.

The Classify panel has several other test options: Use training set, which is

generally not recommended; Supplied test set, in which you specify a separate

file containing the test set; and Percentage split, with which you can hold out a

certain percentage of the data for testing. You can output the predictions for each

instance by clicking the More options button and checking the appropriate entry.

There are other useful options, such as suppressing some output and including

other statistics such as entropy evaluation measures and cost-sensitive evaluation.

Working with models
The small pane at the lower left of the Classify panel, which contains one

highlighted line, is a history list of the results. The Explorer adds a new line

whenever you run a classifier. To return to a previous result set, click the corre-

sponding line and the output for that run will appear in the Classifier Output

pane. This makes it easy to explore different classifiers or evaluation schemes

and revisit the results to compare them.

When you right-click an entry a menu appears that allows you to view the

results in a separate window, or save the result buffer. More importantly, you can

save the model that WEKA has generated in the form of a Java object file. You

can reload a model that was saved previously, which generates a new entry in the

result list. If you now supply a test set, you can reevaluate the old model on that

new set.

Several items on the right-click menu allow you to visualize the results in var-

ious ways. At the top of the Explorer interface is a separate Visualize tab, but that

is different: it shows the dataset, not the results for a particular model. By right-

clicking an entry in the history list you can see the classifier errors. If the model

is a tree or a Bayesian network you can see its structure. You can also view the

margin curve and various cost and threshold curves, and perform a cost/benefit

analysis.

559Appendix B: The WEKA workbench

EXPLORING THE EXPLORER

We have briefly investigated two of the six tabs at the top of the Explorer.

In summary, here is what all the basic tabs do:

1. Preprocess: Choose the dataset and modify it in various ways.

2. Classify: Train learning schemes that perform classification or regression and

evaluate them.

3. Cluster: Learn clusters for the dataset.

4. Associate: Learn association rules for the data and evaluate them.

5. Select attributes: Select the most relevant aspects in the dataset.

6. Visualize: View different two-dimensional plots of the data and interact

with them.

Each tab gives access to a whole range of facilities. In our tour so far,

we have barely scratched the surface of the Preprocess and Classify panels.

At the bottom of every panel is a Status box and a Log button. The status box

displays messages that keep you informed about what is going on. For example,

if the Explorer is busy loading a file, the status box will say so. Right-clicking

anywhere inside this box brings up a little menu with two options: display the

amount of memory available to WEKA, and run the Java garbage collector. Note

that the garbage collector runs constantly as a background task anyway.

Clicking the Log button opens a textual log of the actions that WEKA has

performed in this session, with timestamps.

As noted earlier, the little bird at the lower right of the window jumps up and

dances when WEKA is active. The number beside the 3 shows how many con-

current processes are running. If the bird is standing but stops moving, it is sick!

Something has gone wrong, and you may have to restart the Explorer.

Loading and filtering files
Along the top of the Preprocess panel are buttons for opening files, URLs, and

databases. Initially, only files whose names end in .arff appear in the file browser;

to see others, change the Format item in the file selection box.

Data can be saved in various formats using the Save button in the Preprocess

panel. It is also possible to generate artificial data using the Generate button.

Apart from loading and saving datasets, the Preprocess panel also allows you to

filter them. Clicking Choose (near the top left) in the Preprocess panel gives a

list of filters. We will describe how to use a simple filter to delete specified attri-

butes from a dataset, in other words, to perform manual attribute selection. The

same effect can be achieved more easily by selecting the relevant attributes using

the tick boxes and pressing the Remove button. Nevertheless we describe the

equivalent filtering operation explicitly, as an example.

Remove is an unsupervised attribute filter, and to see it you must first expand

the unsupervised category and then the attribute category. This will reveal quite

a formidable list of filters, and you will have to scroll further down to find Remove.

560 Appendix B: The WEKA workbench

When selected, it appears in the line beside the Choose button, along with its

parameter values—in this case the line reads simply “Remove.” Click that line to

bring up a generic object editor with which you can examine and alter the filter’s

properties.

To learn about it, click More button. This explains that the filter removes a

range of attributes from the dataset. It has an option, attributeIndices, that speci-

fies the range to act on and another called invertSelection that determines whether

the filter selects attributes or deletes them. There are boxes for both of these in

the object editor. After configuring an object it is often worth glancing at the

resulting command-line formulation that the Explorer sets up, which is shown

next to the Choose button.

Algorithms in WEKA may provide information about what data characteristics

they can handle, and, if they do, a Capabilities button appears underneath More

in the generic object editor. Clicking it brings up information about what the

method can do. In this case it states that Remove can handle many attribute char-

acteristics, such as different types (nominal, numeric, relational, etc.) and missing

values. It shows the minimum number of instances that are required for Remove

to operate on.

A list of selected constraints on capabilities can be obtained by clicking the

Filter button at the bottom of the generic object editor. If the current dataset exhi-

bits some characteristic that is ticked in this list but missing from the capabilities

for the Remove filter the Apply button to the right of Choose in the Preprocess

panel will be grayed out, as will the entry in the list that appears when the

Choose button is pressed. Although you cannot apply it, you can nevertheless

select a grayed-out entry to inspect its options, documentation, and capabilities

using the generic object editor. You can release individual constraints by deselect-

ing them in the constraints list, or click the Remove filter button to clear all the

constraints.

Clustering and association rules
Use the Cluster and Associate panels to invoke clustering algorithms and methods

for finding association rules. When clustering, WEKA shows the number of clus-

ters and how many instances each cluster contains. For some algorithms the num-

ber of clusters can be specified by setting a parameter in the object editor. For

probabilistic clustering methods, WEKA measures the log-likelihood of the clus-

ters on the training data: the larger this quantity, the better the model fits the data.

Increasing the number of clusters normally increases the likelihood, but may

overfit.

The controls on the Cluster panel are similar to those for Classify. You can

specify some of the same evaluation methods—use training set, supplied test set,

and percentage split (the last two are used with the log-likelihood). A further

method, classes to clusters evaluation, compares how well the chosen clusters

match a preassigned class in the data. You select an attribute (which must be

nominal) that represents the “true” class. Having clustered the data, WEKA

561Appendix B: The WEKA workbench

determines the majority class in each cluster and prints a confusion matrix show-

ing how many errors there would be if the clusters were used instead of the true

class. If your dataset has a class attribute, you can ignore it during clustering by

selecting it from a pull-down list of attributes, and see how well the clusters cor-

respond to actual class values. Finally, you can choose whether or not to store the

clusters for visualization. The only reason not to do so is to conserve space.

As with classifiers, you visualize the results by right-clicking on the result list,

which allows you to view two-dimensional scatter plots. If you have chosen

classes to clusters evaluation, the class assignment errors are shown. For the

Cobweb clustering scheme, you can also visualize the tree.

The Associate panel is simpler than Classify or Cluster. WEKA contains

several algorithms for determining association rules, but no methods for evaluat-

ing such rules.

Attribute selection
The Select attributes panel gives access to several methods for attribute selection.

These involve an attribute evaluator and a search method. Both are chosen in the

usual way and configured with the object editor. You must also decide which

attribute to use as the class. Attribute selection can be performed using the full

training set or using cross-validation. In the latter case it is done separately for

each fold, and the output shows how many times—i.e., in how many of the

folds—each attribute was selected. The results are stored in the history list. When

you right-click an entry here you can visualize the dataset in terms of the selected

attributes (choose Visualize reduced data).

Visualization
The Visualize panel helps you visualize a dataset—not the result of a classi-

fication or clustering model, but the dataset itself. It displays a matrix of

two-dimensional scatter plots of every pair of attributes. You can select an

attribute—normally the class—for coloring the data points using the controls at

the bottom. If it is nominal, the coloring is discrete; if it is numeric, the color

spectrum ranges continuously from blue (low values) to orange (high values).

Data points with no class value are shown in black. You can change the size of

each plot, the size of the points, and the amount of jitter, which is a random

displacement applied to X and Y values to separate points that lie on top of one

another. Without jitter, a thousand instances at the same data point would look

just the same as one instance. You can reduce the size of the matrix of plots

by selecting certain attributes, and you can subsample the data for efficiency.

Changes in the controls do not take effect until the Update button is clicked.

Clicking one of the plots in the matrix enlarges it. You can zoom in on

any area of the resulting panel by choosing Rectangle from the menu near the

top right and dragging out a rectangle on the viewing area like that shown.

The Submit button near the top left rescales the rectangle into the viewing area.

562 Appendix B: The WEKA workbench

FILTERING ALGORITHMS

Now we take a closer look at the filtering algorithms implemented within

WEKA. There are two kinds of filter: unsupervised and supervised. This

seemingly innocuous distinction masks a rather fundamental issue. Filters are

often applied to a training dataset and then also applied to the test file. If the

filter is supervised—e.g., if it uses class values to derive good intervals for

discretization—applying it to the test data will bias the results. It is the discreti-

zation intervals derived from the training data that must be applied to the

test data. When using supervised filters you must be careful to ensure that the

results are evaluated fairly, an issue that does not generally arise with unsuper-

vised filters.

Because of popular demand, WEKA allows you to invoke supervised filters as

a preprocessing operation, just like unsupervised filters. However, if you intend

using them for classification you should adopt a different methodology. A meta-

learner is provided in the Classify panel that invokes a filter in a way that wraps

the learning algorithm into the filtering mechanism. This filters the test data using

the filter that has been created by the training data. It is also useful for some

unsupervised filters. For example, in WEKA’s StringToWordVector filter the dic-

tionary will be created from the training data alone: words that are novel in the

test data will be discarded. To use a supervised filter in this way, invoke the

FilteredClassifier metalearning scheme from in the meta section of the menu dis-

played by the Classify panel’s Choose button.

Within each type there is a further distinction between attribute filters, which

work on the attributes in the datasets, and instance filters, which work on the

instances. To learn more about a particular filter, select it in the WEKA Explorer

and look at its associated object editor, which defines what the filter does and the

parameters it takes.

LEARNING ALGORITHMS

On the Classify panel, when you select a learning algorithm using the Choose but-

ton the command-line version of the classifier appears in the line beside the but-

ton, including the parameters specified with minus signs. To change them, click

that line to get an appropriate object editor. The classifiers in WEKA are divided

into Bayesian classifiers, trees, rules, functions, lazy classifiers, meta classifiers,

and a final miscellaneous category.

Metalearning algorithms take classifiers and turn them into more powerful

learners, or retarget them for other applications. They are used to perform boost-

ing, bagging, cost-sensitive classification and learning, automatic parameter opti-

mization, and many other tasks. We already mentioned FilteredClassifier: it runs

a classifier on data that has been passed through a filter, which is a parameter.

The filter’s own parameters are based exclusively on the training data, which is

the appropriate way to apply a supervised filter to test data.

563Appendix B: The WEKA workbench

ATTRIBUTE SELECTION

Attribute selection can be performed in the Explorer’s Select attributes tab. It is

normally done by searching the space of attribute subsets, evaluating each one.

A potentially faster but less accurate approach is to evaluate the attributes individ-

ually and sort them, discarding attributes that fall below a chosen cut-off point.

WEKA supports both methods.

Subset evaluators take a subset of attributes and return a numerical measure

that guides the search. They are configured like any other WEKA object. Single-

attribute evaluators are used with the Ranker search method to generate a ranked

list from which Ranker discards a given number.

Search methods traverse the attribute space to find a good subset. Quality is

measured by the chosen attribute subset evaluator. Each search method can be

configured with WEKA’s object editor, just like evaluator objects.

B.4 THE KNOWLEDGE FLOW INTERFACE
With the Knowledge Flow interface, users select WEKA components from a tool

bar, place them on a layout canvas, and connect them into a directed graph that

processes and analyzes data. It provides an alternative to the Explorer for those

who like thinking in terms of how data flows through the system. It also allows

the design and execution of configurations for streamed data processing, which

the Explorer cannot do. You invoke the Knowledge Flow interface by selecting

KnowledgeFlow from the choices on the GUIChooser.

GETTING STARTED

Let us examine a step-by-step example that loads a data file and performs a cross-

validation using the J48 decision tree learner. First create a source of data by

expanding the DataSources folder in the Design palette on the left-hand side of the

Knowledge Flow and select ARFFLoader. The mouse cursor changes to crosshairs

to signal that you should next place the component. Do this by clicking anywhere

on the canvas, whereupon a copy of the ARFF loader icon appears there. To con-

nect it to an ARFF file, right-click it to bring up a pop-up menu and then click

Configure to get an editor dialog. From here you can either browse for an ARFF

file by clicking the Browse button, or type the path to one in the Filename field.

Now we specify which attribute is the class using a ClassAssigner object. This

is found under the Evaluation folder in the Design palette, so expand the

Evaluation folder, select the ClassAssigner, and place it on the canvas. To con-

nect the data source to the class assigner, right-click the data source icon and

select dataset from the menu. A rubber-band line appears. Move the mouse over

the class assigner component and left-click. A red line labeled dataset appears,

joining the two components. Having connected the class assigner, choose the

564 Appendix B: The WEKA workbench

class by right-clicking it, selecting Configure, and entering the location of the

class attribute.

We will perform cross-validation on the J48 classifier. In the data flow model,

we first connect the CrossValidationFoldMaker to create the folds on which the clas-

sifier will run, and then pass its output to an object representing J48.

CrossValidationFoldMaker is in the Evaluation folder. Select it, place it on the can-

vas, and connect it to the class assigner by right-clicking the latter and selecting

dataset from the menu. Next select J48 from the trees folder under the Classifiers

folder and place a J48 component on the canvas. Connect J48 to the cross-validation

fold maker in the usual way, but make the connection twice by first choosing

trainingSet and then testSet from the pop-up menu for the cross-validation fold

maker. The next step is to select a ClassifierPerformanceEvaluator from the

Evaluation folder and connect J48 to it by selecting the batchClassifier entry from

the pop-up menu for J48. Finally, from the Visualization folder we place a

TextViewer component on the canvas. Connect the classifier performance evaluator

to it by selecting the text entry from the pop-up menu for the performance evaluator.

The flow of execution is started by clicking one of the two triangular-shaped

“play” buttons at the left side of the main toolbar. The leftmost play button

launches all data sources present in the flow in parallel; the other play button

launches the data sources sequentially, where a particular order of execution can

be specified by including a number at the start of the component’s name (a name

can be set via the Set name entry on popup menu). For a small dataset things

happen quickly. Progress information appears in the status area at the bottom of

the interface. The entries in the status area show the progress of each step in the

flow, along with their parameter settings (for learning schemes) and elapsed time.

Any errors that occur in a processing step are shown in the status area by

highlighting the corresponding row in red. Choosing Show results from the text

viewer’s pop-up menu brings the results of cross-validation up in a separate

window, in the same form as for the Explorer.

To complete the example, we can add a GraphViewer and connect it to J48’s

graph output to see a graphical representation of the trees produced for each fold

of the cross-validation. Once you have redone the cross-validation with this extra

component in place, selecting Show results from its pop-up menu produces a list

of trees, one for each cross-validation fold. By creating cross-validation folds and

passing them to the classifier, the Knowledge Flow model provides a way to

hook into the results for each fold.

The flow that we have just considered is actually available (minus the

GraphViewer) as a built-in template. Example templates can be accessed from the

Template button, which is the third icon from the right in the toolbar at the top of

the Knowledge Flow interface. There are a number of templates that come with

WEKA, and certain packages, once installed via the package manager, add further

ones to the menu. The majority of template flows can be executed without further

modification as they have been configured to load datasets that come with the

WEKA distribution.

565Appendix B: The WEKA workbench

KNOWLEDGE FLOW COMPONENTS

Most of the Knowledge Flow components will be familiar from the Explorer. The

Classifiers folder contains all of WEKA’s classifiers, the Filters folder contains

the filters, the Clusterers folder holds the clusterers, the AttSelection folder con-

tains evaluators and search methods for attribute selection, and the Associations

panel holds the association rule learners. All components in the Knowledge

Flow are run in a separate thread of execution, except in the case where data is

being processed incrementally—in this case a single thread of execution is

used because, generally, the amount of processing done per data point is small,

and launching a separate thread to process each one would incur a significant

overhead.

CONFIGURING AND CONNECTING THE COMPONENTS

You establish the knowledge flow by configuring the individual components and

connecting them up. The menus that are available by right-clicking various com-

ponent types have up to three sections: Edit, Connections, and Actions. The Edit

operations delete components and open up their configuration panel. You can

give a component a name by choosing Set name from the pop-up menu.

Classifiers and filters are configured just as in the Explorer. Data sources are con-

figured by opening a file (as we saw previously) or by setting a database connec-

tion, and evaluation components are configured by setting parameters such as the

number of folds for cross-validation. The Connections operations are used to

connect components together by selecting the type of connection from the source

component and then clicking on the target object. Not all targets are suitable;

applicable ones are highlighted. Items on the connections menu are disabled

(grayed out) until the component receives other connections that render them

applicable.

There are two kinds of connection from data sources: dataset connections and

instance connections. The former are for batch operations such as classifiers like

J48; the latter are for stream operations such as NaiveBayesUpdateable (an incre-

mental version of the Naı̈ve Bayes classifier). A data source component cannot

provide both types of connection: once one is selected, the other is disabled.

When a dataset connection is made to a batch classifier, the classifier needs to

know whether it is intended to serve as a training set or a test set. To do this, you

first make the data source into a test or training set using the TestSetMaker or

TrainingSetMaker components from the Evaluation panel. On the other hand, an

instance connection to an incremental classifier is made directly: there is no dis-

tinction between training and testing because the instances that flow update the

classifier incrementally. In this case a prediction is made for each incoming

instance and incorporated into the test results; then the classifier is trained on that

instance. If you make an instance connection to a batch classifier it will be used

as a test instance because training cannot possibly be incremental whereas testing

566 Appendix B: The WEKA workbench

always can be. Conversely, it is quite possible to test an incremental classifier in

batch mode using a dataset connection.

Connections from a filter component are enabled when it receives input from

a data source, whereupon follow-on dataset or instance connections can be made.

Instance connections cannot be made to supervised filters or to unsupervised fil-

ters that cannot handle data incrementally (such as Discretize). To get a test or

training set out of a filter, you need to put the appropriate kind in.

The classifier menu has two types of connection. The first type, namely, graph

and text connections, provides graphical and textual representations of the classi-

fier’s learned state and is only activated when it receives a training set input. The

other type, namely, batchClassifier and incrementalClassifier connections, makes

data available to a performance evaluator and is only activated when a test set

input is present too. Which one is activated depends on the type of the classifier.

Evaluation components are a mixed bag. TrainingSetMaker and TestSetMaker

turn a dataset into a training or test set. CrossValidationFoldMaker turns a dataset

into both a training set and a test set. ClassifierPerformanceEvaluator generates

textual and graphical output for visualization components. Other evaluation com-

ponents operate like filters: they enable follow-on dataset, instance, training set,

or test set connections depending on the input (e.g., ClassAssigner assigns a class

to a dataset). Visualization components do not have connections, although some

have actions such as Show results and Clear results.

INCREMENTAL LEARNING

In most respects the Knowledge Flow interface is functionally similar to the

Explorer: you can do similar things with both. It does provide some additional

flexibility—e.g., you can see the tree that J48 makes for each cross-validation

fold. But its real strength is the potential for incremental operation.

If all components connected up in the Knowledge Flow interface operate

incrementally, so does the resulting learning system. It does not read in the dataset

before learning starts, as the Explorer does. Instead, the data source component reads

the input instance by instance and passes it through the Knowledge Flow chain.

Selecting the “Learn and evaluate Naive Bayes incrementally” template from

the templates menu brings up a configuration that works incrementally. An

instance connection is made from the loader to a class assigner component,

which, in turn, is connected to the updatable Naı̈ve Bayes classifier. The classi-

fier’s text output is taken to a viewer that gives a textual description of the model.

Also, an incrementalClassifier connection is made to the corresponding perfor-

mance evaluator. This produces an output of type chart, which is piped to a strip

chart visualization component to generate a scrolling data plot.

This particular Knowledge Flow configuration can process input files of any

size, even ones that do not fit into the computer’s main memory. However, it all

depends on how the classifier operates internally. For example, although they are

incremental, many instance-based learners store the entire dataset internally.

567Appendix B: The WEKA workbench

B.5 THE EXPERIMENTER
The Explorer and Knowledge Flow environments help you determine how

well machine learning schemes perform on given datasets. But serious investiga-

tive work involves substantial experiments—typically running several learning

schemes on different datasets, often with various parameter settings—and these

interfaces are not really suitable for this. The Experimenter enables you to set up

large-scale experiments, start them running, leave them, and come back when

they have finished and analyze the performance statistics that have been collected.

They automate the experimental process. The statistics can be stored in a file or

database, and can themselves be the subject of further data mining. You invoke

this interface by selecting Experimenter from the choices at the side of the

GUIChooser.

Whereas the Knowledge Flow transcends limitations of space by allowing

machine learning runs that do not load in the whole dataset at once, the

Experimenter transcends limitations of time. It contains facilities for advanced

users to distribute the computing load across multiple machines using Java RMI.

You can set up big experiments and just leave them to run.

GETTING STARTED

As an example, we will compare the J48 decision tree method with the baseline

methods OneR and ZeroR on the Iris dataset. The Experimenter has three panels:

Setup, Run, and Analyze. To configure an experiment, first click New (toward the

right at the top) to start a new experiment (the other two buttons in that row save

an experiment and open a previously saved one). Then, on the line below, select

the destination for the results—in this case the file Experiment1—and choose

CSV file. Underneath, select the datasets—we have only one, the Iris data. To the

right of the datasets, select the algorithms to be tested—we have three. Click Add

new to get a standard WEKA object editor from which you can choose and

configure a classifier. Repeat this operation to add the three classifiers. Now the

experiment is ready.

The other settings are all default values. If you want to reconfigure a classifier

that is already in the list, you can use the Edit selected button. You can also save

the options for a particular classifier in XML format for later reuse. You can

right-click on an entry to copy the configuration to the clipboard, and add or enter

a configuration from the clipboard.

Running an experiment
To run the experiment, click the Run tab, which brings up a panel that contains a

Start button (and little else); click it. A brief report is displayed when the opera-

tion is finished. The file Experiment1.csv contains the results, in CSV format,

which can be directly read into a spreadsheet. Each row represents 1-fold of a

568 Appendix B: The WEKA workbench

10-fold cross-validation (see the Fold column). The cross-validation is run

10 times (the Run column) for each classifier (the Scheme column). Thus the file

contains 100 rows for each classifier, which makes 300 rows in all (plus the

header row). Each row contains plenty of information, including the options sup-

plied to the machine learning scheme; the number of training and test instances;

the number (and percentage) of correct, incorrect, and unclassified instances; the

mean absolute error, root mean-squared error, and many more.

There is a great deal of information in the spreadsheet, but it is hard to digest.

In particular, it is not easy to answer the question posed previously: How does

J48 compare with the baseline methods OneR and ZeroR on this dataset? For that

we need the Analyze panel.

Analyzing the results
The reason that we generated the output in CSV format was to allow you to

explore the raw data produced by the Experimenter in a spreadsheet. The

Experimenter normally produces its output in ARFF format. You can also leave

the file name blank, in which case the Experimenter stores the results in a tempo-

rary file.

To analyze the experiment that has just been performed, select the Analyze

panel and click the Experiment button at the right near the top; otherwise, supply

a file that contains the results of another experiment. Then click Perform test

(near the bottom on the left). The result of a statistical significance test of the per-

formance of the first learning scheme (J48) versus the other two (OneR and

ZeroR) will be displayed in the large panel on the right.

We are comparing the percent correct statistic: this is selected by default as

the comparison field shown toward the left of the output. The three methods are

displayed horizontally, numbered (1), (2), and (3), as the heading of a little table.

The labels for the columns are repeated at the bottom—trees.J48, rules.OneR,

and rules.ZeroR—in case there is insufficient space for them in the heading.

The inscrutable integers beside the scheme names identify which version of

the scheme is being used. They are present by default to avoid confusion

among results generated using different versions of the algorithms. The value in

brackets at the beginning of the iris row (100) is the number of experimental

runs: 10 times 10-fold cross-validation.

The percentage correct is shown for the three schemes: 94.73% for method 1,

92.53% for method 2, and 33.33% for method 3. The symbol placed beside a

result indicates that it is statistically better (v) or worse (�) than the baseline

scheme—in this case J48—at the specified significance level (0.05, or 5%). The

corrected resampled t-test is used here. Here, method 3 is significantly worse than

method 1, because its success rate is followed by an asterisk. At the bottom of

columns 2 and 3 are counts (x/y/z) of the number of times the scheme was better

than (x), the same as (y), or worse than (z) the baseline scheme on the datasets

used in the experiment. In this case there is only one dataset; method 2 was

equivalent to method 1 (the baseline) once and method 3 was worse than it once.

569Appendix B: The WEKA workbench

(The annotation (v/ / �) is placed at the bottom of column 1 to help you remember

the meanings of the three counts x/y/z.)

The output in the Analyze panel can be saved into a file by clicking the

“Save output” button. It is also possible to open a WEKA Explorer window

to further analyze the experimental results obtained, by clicking on the

“Open Explorer” button.

ADVANCED SETUP

The Experimenter has an advanced mode, which is accessed by selecting

Advanced from the drop down box near the top of the Setup panel. This enlarges

the options available for controlling the experiment—including, e.g., the ability to

generate learning curves. However, the advanced mode is hard to use, and the

simple version suffices for most purposes. For example, in advanced mode you

can set up an iteration to test an algorithm with a succession of different parame-

ter values, but the same effect can be achieved in simple mode by putting the

algorithm into the list several times with different parameter values.

One thing you can do in advanced mode but not in simple mode is run experi-

ments using clustering algorithms. Here, experiments are limited to those clus-

terers that can compute probability or density estimates, and the main evaluation

measure for comparison purposes is the log-likelihood. Another use for the

advanced mode for is to set up distributed experiments.

THE ANALYZE PANEL

Our walkthrough used the Analyze panel to perform a statistical significance test

of one learning scheme (J48) versus two others (OneR and ZeroR). The test was

on the error rate. Other statistics can be selected from the drop-down menu

instead, including various entropy figures. Moreover, you can see the standard

deviation of the attribute being evaluated by ticking the Show std deviations

checkbox.

Use the Test base menu to change the baseline scheme from J48 to one of the

other learning schemes. For example, selecting OneR causes the others to be com-

pared with this scheme. Apart from the learning schemes, there are two other

choices in the Select base menu: Summary and Ranking. The former compares

each learning scheme with every other scheme and prints a matrix whose cells

contain the number of datasets on which one is significantly better than the other.

The latter ranks the schemes according to the total number of datasets that repre-

sent wins (.) and losses (,) and prints a league table. The first column in the

output gives the difference between the number of wins and the number of losses.

The Row and Column fields determine the dimensions of the comparison matrix.

Clicking Select brings up a list of all the features that have been measured in the

experiment. You can select which to use as the rows and columns of the matrix.

570 Appendix B: The WEKA workbench

(The selection does not appear in the Select box because more than one parameter

can be chosen simultaneously.)

There is a button that allows you to select a subset of columns to display

(the baseline column is always included), and another that allows you to select

the output format: plain text (default), output for the LaTeX typesetting system,

CSV format, HTML, data and script suitable for input to the GNUPlot graph

plotting software, and just the significance symbols in plain text format. It is also

possible to show averages and abbreviate filter class names in the output.

There is an option to choose whether to use the paired corrected t-test or the

standard t-test for computing significance. The way the rows are sorted in

the results table can be changed by choosing the Sorting (asc.) by option from the

drop-down box. The default is to use natural ordering, presenting them in the

order that the user entered the dataset names in the Setup panel. Alternatively,

the rows can be sorted according to any of the measures that are available in the

Comparison field.

571Appendix B: The WEKA workbench

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2016).

TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv

preprint, arXiv:1603.04467.

Abe, N., Zadrozny, B., & Langford, J. (2006). Outlier detection by active learning.

Proceedings of the 12th ACM SIGKDD international conference on knowledge discov-

ery and data mining (pp. 767�772). New York, NY: ACM Press.

Adriaans, P., & Zantige, D. (1996). Data mining. Harlow: Addison-Wesley.

Agrawal, R., Imielinski, T., & Swami, A. (1993a). Database mining: A performance

perspective. IEEE Transactions on Knowledge and Data Engineering, 5(6), 914�925.

Agrawal, R., Imielinski, T., & Swami, A. (1993b). Mining association rules between sets

of items in large databases. In P. Buneman, & S. Jajodia (Eds.), Proceedings of the

ACM SIGMOD international conference on management of data, Washington, DC

(pp. 207�216). New York, NY: ACM Press.

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large

databases. In J. Bocca, M. Jarke, & C. Zaniolo (Eds.), Proceedings of the international

conference on very large data bases, Santiago, Chile (pp. 478�499). San Francisco,

CA: Morgan Kaufmann.

Aha, D. (1992). Tolerating noisy, irrelevant, and novel attributes in instance-based learning

algorithms. International Journal of Man-Machine Studies, 36(2), 267�287.

Almuallin, H., & Dietterich, T. G. (1991). Learning with many irrelevant features.

Proceedings of the ninth national conference on artificial intelligence, Anaheim, CA

(pp. 547�552). Menlo Park, CA: AAAI Press.

Almuallin, H., & Dietterich, T. G. (1992). Efficient algorithms for identifying relevant

features. Proceedings of the ninth Canadian conference on artificial intelligence,

Vancouver, BC (pp. 38�45). San Francisco, CA: Morgan Kaufmann.

Andrews, S., Tsochantaridis, I., & Hofmann, T. (2003). Support vector machines for

multiple-instance learning. Proceedings of the conference on neural information

processing systems, Vancouver, Canada (pp. 561�568). Cambridge, MA: MIT Press.

Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J. (1999). OPTICS: Ordering points

to identify the clustering structure. Proceedings of the ACM SIGMOD international

conference on management of data (pp. 49�60). New York, NY: ACM Press.

Arthur, D., & Vassilvitskii, S. (2007). K-means11: The advantages of careful seeding.

Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms.

New Orleans, Louisiana (pp. 1027�1035). Philadelphia, PA: Society for Industrial

and Applied Mathematics.

Asmis, E. (1984). Epicurus’ scientific method. Ithaca, NY: Cornell University Press.

Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. Irvine, CA:

University of California, School of Information and Computer Science. ,http://www.

ics.uci.edu/Bmlearn/MLRepository.html..

Atkeson, C. G., Schaal, S. A., & Moore, A. W. (1997). Locally weighted learning.

AI Review, 11, 11�71.

Auer, P., & Ortner, R. (2004). A boosting approach to multiple instance learning.

Proceedings of the European conference on machine learning, Pisa, Italy (pp. 63�74).

Berlin: Springer-Verlag.

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref1
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref1
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref1
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref2
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref2
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref2
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref2
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref3
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref4
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref4
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref4
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref5
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref5
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref5
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref5
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref5
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref6
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref6
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref6
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref6
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref6
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref7
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref7
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref7
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref8
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref8
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref8
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref8
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref9
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref9
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref9
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref9
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref10
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref10
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref10
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref10
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref11
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref11
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref11
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref11
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref12
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref12
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref12
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref12
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref12
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref12
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref12
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref12
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref12
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref12
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref12
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref13
http://www.ics.uci.edu/∼mlearn/MLRepository.html
http://www.ics.uci.edu/∼mlearn/MLRepository.html
http://www.ics.uci.edu/∼mlearn/MLRepository.html
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref15
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref15
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref15
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref16
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref16
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref16
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref16

Baldi, P., & Hornik, K. (1989). Neural networks and principal component analysis:

Learning from examples without local minima. Neural Networks, 2(1), 53�58.

Barnett, V., & Lewis, T. (1994). Outliers in statistical data. West Sussex: John Wiley and Sons.

Bay, S. D. (1999). Nearest neighbor classification from multiple feature subsets. Intelligent

Data Analysis, 3(3), 191�209.

Bay, S. D., & Schwabacher, M. (2003). Near linear time detection of distance-based out-

liers and applications to security. Proceedings of the workshop on data mining for

counter terrorism and security, San Francisco. Philadelphia, PA: Society for Industrial

and Applied Mathematics.

Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances.

Philosophical Transactions of the Royal Society of London, 53, 370�418.

Beck, J. R., & Schultz, E. K. (1986). The use of ROC curves in test performance evalua-

tion. Archives of Pathology and Laboratory Medicine, 110, 13�20.

Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. fisherfaces:

Recognition using class specific linear projection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 19(7), 711�720.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends® in

Machine Learning, 2(1), 1�127.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep archi-

tectures. Neural networks: Tricks of the trade (pp. 437�478). Heidelberg: Springer

Berlin Heidelberg.

Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A neural probabilistic

language model. Journal of Machine Learning Research, 3, 1137�1155.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157�166.

Bergadano, F., & Gunetti, D. (1996). Inductive logic programming: From machine learn-

ing to software engineering. Cambridge, MA: MIT Press.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization.

The Journal of Machine Learning Research, 13(1), 281�305.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., & Bengio, Y.

(2010). Theano: A CPU and GPU math expression compiler. Proceedings of the python for

scientific computing conference (SciPy) (Vol. 4, p. 3). Austin, TX: BibTeX, June 30�July 3.

Berry, M. J. A., & Linoff, G. (1997). Data mining techniques for marketing, sales, and

customer support. New York, NY: John Wiley.

Besag, J. E. (1986). On the statistical analysis of dirty pictures. Journal of the Royal

Statistical Society, Series B, 48(3), 259�302.

Beygelzimer, A., Kakade, S., & Langford, J. (2006). Cover trees for nearest neighbor.

Proceedings of the 23rd international conference on machine learning (pp. 97�104).

New York, NY: ACM Press.

Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). MOA: Massive online analysis.

Journal of Machine Learning Research, 9, 1601�1604.

Bigus, J. P. (1996). Data mining with neural networks. New York, NY: McGraw Hill.

Bishop, C. M. (1995). Neural networks for pattern recognition. New York, NY: Oxford

University Press.

Bishop, C. M. (2006). Pattern recognition and machine learning. New York, NY: Springer

Verlag.

Bishop, C.M., Spiegelhalter, D. & Winn, J. (2002). VIBES: A variational inference

engine for Bayesian networks. In Advances in neural information processing systems

(pp. 777�784). Cambridge, MA: MIT Press

574 References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref17
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref17
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref17
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref18
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref19
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref19
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref19
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref20
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref20
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref20
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref20
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref21
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref21
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref21
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref22
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref22
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref22
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref23
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref23
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref23
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref23
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref24
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref24
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref24
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref24
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref25
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref25
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref25
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref25
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref26
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref26
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref26
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref27
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref27
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref27
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref28
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref28
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref29
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref29
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref29
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref30
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref30
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref30
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref30
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref31
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref31
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref32
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref32
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref32
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref33
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref33
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref33
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref33
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref34
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref34
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref34
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref35
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref36
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref36
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref37
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref37

Blei, D. M., & Lafferty, J. D. (2006). Dynamic topic models. Proceedings of the 23rd

international conference on machine learning (pp. 113�120). New York: ACM Press.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. The Journal of

Machine Learning Research, 3, 993�1022.

BLI (Bureau of Labour Information) (1988). Collective bargaining review (November).

Ottawa, ON: Labour Canada, Bureau of Labour Information.

Blockeel, H., Page, D., & Srinivasan, A. (2005). Multi-instance tree learning. Proceedings

of the 22nd international conference on machine learning, Bonn, Germany (pp. 57�64).

New York, NY: ACM Press.

Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training.

Proceedings of the eleventh annual conference on computational learning theory,

Madison, WI (pp. 92�100). San Francisco, CA: Morgan Kaufmann.

Bottou, L. (2012). Stochastic gradient descent tricksIn (2nd ed.). G. Montavon, G. B. Orr,

& K.-R. Muller (Eds.), Neural networks: Tricks of the trade (vol. 7700, Heidelberg:

Springer, LNCS.

Bouckaert, R. R. (1995). Bayesian belief networks: From construction to inference. PhD

Dissertation. The Netherlands: Computer Science Department, University of Utrecht.

Bouckaert, R. R. (2004). Bayesian network classifiers in Weka. New Zealand: Department

of Computer Science, University of Waikato, Working Paper 14/2004.

Bouckaert, R. R. (2010). DensiTree: Making sense of sets of phylogenetic trees.

Bioinformatics, 26(10), 1372�1373.

Bourlard, H., & Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular

value decomposition. Biological Cybernetics, 59, 291�294.

Brachman, R. J., & Levesque, H. J. (Eds.), (1985). Readings in knowledge representation

San Francisco, CA: Morgan Kaufmann.

Brants, T., & Franz, A. (2006). Web 1T 5-gram Version 1 LDC2006T13. DVD.

Philadelphia, PA: Linguistic Data Consortium.

Brefeld, U., & Scheffer, T. (2004). Co-EM support vector learning. In R. Greiner, &

D. Schuurmans (Eds.), Proceedings of the twenty-first international conference on

machine learning, Banff, Alberta, Canada (pp. 121�128). New York: ACM Press.

Breiman, L. (1996a). Stacked regression. Machine Learning, 24(1), 49�64.

Breiman, L. (1996b). Bagging predictors. Machine Learning, 24(2), 123�140.

Breiman, L. (1996c). [Bias, variance, and] Arcing classifiers. Technical Report 460.

Berkeley, CA: Department of Statistics, University of California.

Breiman, L. (1999). Pasting small votes for classification in large databases and online.

Machine Learning, 36(1�2), 85�103.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5�32.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and

regression trees. Monterey, CA: Wadsworth.

Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification network

outputs, with relationships to statistical pattern recognition. Neurocomputing

(pp. 227�236). Berlin: Springer Berlin Heidelberg.

Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic itemset counting and

implication rules for market basket data. ACM SIGMOD Record, 26(2), 255�264.

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertext search engine.

Computer Networks and ISDN Systems, 33, 107�117.

Brodley, C. E., & Fried, M. A. (1996). Identifying and eliminating mislabeled training

instances. Proceedings of the thirteenth national conference on artificial intelligence,

Portland, OR (pp. 799�805). Menlo Park, CA: AAAI Press.

575References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref38
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref38
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref38
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref39
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref39
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref39
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref40
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref40
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref41
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref41
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref41
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref41
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref42
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref42
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref42
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref42
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref43
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref43
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref43
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref44
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref44
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref45
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref45
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref46
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref46
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref46
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref47
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref47
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref47
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref48
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref48
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref49
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref49
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref50
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref50
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref50
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref50
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref51
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref51
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref52
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref52
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref53
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref53
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref54
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref54
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref54
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref54
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref55
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref55
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref56
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref56
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref57
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref57
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref57
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref57
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref58
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref58
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref58
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref59
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref59
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref59
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref60
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref60
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref60
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref60

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., & Shah, R. (1994). Signature verification

using a “Siamese” time delay neural network. Advances in neural information proces-

sing systems (pp. 737�744). Burlington, MA: Morgan Kaufmann.

Brownstown, L., Farrell, R., Kant, E., & Martin, N. (1985). Programming expert systems

in OPS5. Reading, MA: Addison-Wesley.

Buntine, W. (1992). Learning classification trees. Statistics and Computing, 2(2), 63�73.

Buntine, W. (2002). Variational extensions to EM and multinomial PCA. Machine

Learning: ECML 2002 (pp. 23�34). Berlin: Springer Berlin Heidelberg.

Buntine, W. L. (1994). Operations for learning with graphical models. Journal of Artificial

Intelligence Research, 2, 159�225.

Burge, C., & Karlin, S. (1997). Prediction of complete gene structures in human genomic

DNA. Journal of Molecular Biology, 268(1), 78�94.

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2(2), 121�167.

Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A. (1998). Discovering data

mining: From concept to implementation. Upper Saddle River, NJ: Prentice Hall.

Califf, M. E., & Mooney, R. J. (1999). Relational learning of pattern-match rules for infor-

mation extraction. Proceedings of the sixteenth national conference on artificial intelli-

gence, Orlando, FL (pp. 328�334). Menlo Park, CA: AAAI Press.

Cardie, C. (1993). Using decision trees to improve case-based learning. In P. Utgoff (Ed.),

Proceedings of the tenth international conference on machine learning, Amherst, MA

(pp. 25�32). San Francisco, CA: Morgan Kaufmann.

Cavnar, W. B., & Trenkle, J. M. (1994). N-Gram-based text categorization. Proceedings of

the third symposium on document analysis and information retrieval (pp. 161�175).

Las Vegas, NV: UNLV Publications/Reprographics.

Ceglar, A., & Roddick, J. F. (2006). Association mining. ACM Computing Surveys, 38(2),

ACM, New York, NY.

Cendrowska, J. (1987). PRISM: An algorithm for inducing modular rules. International

Journal of Man-Machine Studies, 27(4), 349�370.

Chakrabarti, S. (2003). Mining the web: Discovering knowledge from hypertext data. San

Francisco, CA: Morgan Kaufmann.

Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: A library for support vector machines.

Software available at http://www.csie.ntu.edu.tw/Bcjlin/libsvm.

Cheeseman, P., & Stutz, J. (1995). Bayesian classification (AutoClass): Theory and results.

In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances

in knowledge discovery and data mining (pp. 153�180). Menlo Park, CA: AAAI Press.

Chen, J., & Chaudhari, N. S. (2004). Capturing long-term dependencies for protein second-

ary structure prediction. International Symposium on Neural Networks (pp. 494�500).

Berlin: Springer Berlin Heidelberg.

Chen, M. S., Jan, J., & Yu, P. S. (1996). Data mining: An overview from a

database perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6),

866�883.

Chen, Y., Bi, J., & Wang, J. Z. (2006). MILES: Multiple-instance learning via embedded

instance selection. IEEE Transactions on Pattern Analysis and Machine Intelligence,

28(12), 1931�1947.

Cherkauer, K. J., & Shavlik, J. W. (1996). Growing simpler decision trees to facilitate

knowledge discovery. In E. Simoudis, J. W. Han, & U. Fayyad (Eds.), Proceedings of

576 References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref61
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref61
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref61
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref61
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref62
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref62
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref63
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref63
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref64
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref64
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref64
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref65
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref65
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref65
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref66
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref66
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref66
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref67
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref67
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref67
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref68
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref68
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref69
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref69
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref69
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref69
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref70
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref70
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref70
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref70
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref71
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref71
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref71
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref71
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref72
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref72
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref73
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref73
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref73
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref74
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref74
http://www.csie.ntu.edu.tw/∼cjlin/libsvm
http://www.csie.ntu.edu.tw/∼cjlin/libsvm
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref75
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref75
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref75
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref75
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref76
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref76
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref76
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref76
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref77
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref77
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref77
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref77
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref78
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref78
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref78
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref78
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref79
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref79

the second international conference on knowledge discovery and data mining,

Portland, OR (pp. 315�318). Menlo Park, CA: AAAI Press.

Chevaleyre, Y., & Zucker, J.-D. (2001). Solving multiple-instance and multiple-part learn-

ing problems with decision trees and rule sets: Application to the mutagenesis problem.

Proceedings of the biennial conference of the Canadian society for computational stud-

ies of intelligence, Ottawa, Canada (pp. 204�214). Berlin: Springer-Verlag.

Cho, K., & Chen, X. (2014). Classifying and visualizing motion capture sequences using

deep neural networks., IEEE international conference on computer vision theory and

applications (VISAPP) (Vol. 2, pp. 122�130). Setúbal: SciTePress.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Scwenk, H., &

Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder�Decoder for

Statistical Machine Translation. Empirical Methods on Natural Language Processing.

arXiv preprint arXiv:1406.1078.

Chollet, F. (2015). Keras: Theano-based deep learning library. Code: https://github.com/

fchollet/keras. Documentation: http://keras.io.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv preprint, arXiv:1412.3555.

Ciresan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J. (2010). Deep, big, simple

neural nets for handwritten digit recognition. Neural Computation, 22(12), 3207�3220.

Ciresan, D.C., Meier, U., Masci, J., Maria Gambardella, L., & Schmidhuber, J. (2011).

Flexible, high performance convolutional neural networks for image classification. In

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).

vol. 22, no. 1, pp. 1237.

Ciresan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for

image classification. In Proceedings of Computer Vision and Pattern Recognition

(CVPR). pp. 3642�3649.

Cleary, J. G., & Trigg, L. E. (1995). K�: An instance-based learner using an entropic dis-

tance measure. In A. Prieditis, & S. Russell (Eds.), Proceedings of the twelfth interna-

tional conference on machine learning, Tahoe City, CA (pp. 108�114). San Francisco,

CA: Morgan Kaufmann.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and

Psychological Measurement, 20, 37�46.

Cohen, W. W. (1995). Fast effective rule induction. In A. Prieditis, & S. Russell (Eds.),

Proceedings of the twelfth international conference on machine learning, Tahoe City,

CA (pp. 115�123). San Francisco, CA: Morgan Kaufmann.

Collobert, R., Kavukcuoglu, K., & Farabet, C. (2011). Torch7: A matlab-like environment

for machine learning. In BigLearn, NIPS Workshop (No. EPFL-CONF-192376).

Collobert, R., & Weston, J. (2008, July). A unified architecture for natural language processing:

Deep neural networks with multitask learning. Proceedings of the 25th international

conference on machine learning (pp. 160�167). New York, NY: ACM Press.

Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilis-

tic networks from data. Machine Learning, 9(4), 309�347.

Cortes, C., & Vapnik, V. (1995). Support vector networks.Machine Learning, 20(3), 273�297.

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE

Transactions on Information Theory IT, 13, 21�27.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and

other kernel-based learning methods. Cambridge: Cambridge University Press.

577References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref79
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref79
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref79
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref80
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref80
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref80
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref80
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref80
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref81
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref81
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref81
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref81
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref82
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref82
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref82
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref82
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref82
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://keras.io
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref83
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref83
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref456
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref456
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref456
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref84
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref84
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref84
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref84
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref84
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref84
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref85
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref85
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref85
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref86
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref86
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref86
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref86
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref87
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref87
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref87
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref87
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref88
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref88
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref88
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref89
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref89
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref90
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref90
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref90
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref91
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref91

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics

of Control, Signals and Systems, 2(4), 303�314.

Cypher, A. (Ed.), (1993). Watch what I do: Programming by demonstration Cambridge,

MA: MIT Press.

Dasgupta, S. (2002). Performance guarantees for hierarchical clustering. In J. Kivinen, &

R. H. Sloan (Eds.), Proceedings of the fifteenth annual conference on computational

learning theory, Sydney, Australia (pp. 351�363). Berlin: Springer-Verlag.

Dasu, T., Koutsofios, E., & Wright, J. (2006). Zen and the art of data mining.

In Proceedings of the KDD Workshop on Data Mining for Business Applications

(pp. 37�43). Philadelphia, PA.

Datta, S., Kargupta, H., & Sivakumar, K. (2003). Homeland defense, privacy-sensitive

data mining, and random value distortion. Proceedings of the workshop on data

mining for counter terrorism and security, San Francisco (pp. 27�33). Philadelphia,

PA: Society for International and Applied Mathematics.

Day, W. H. E., & Edelsbrünner, H. (1984). Efficient algorithms for agglomerative hierar-

chical clustering methods. Journal of Classification, 1(1), 7�24.

de Raedt, L. (2008). Logical and relational learning. New York, NY: Springer-Verlag.

Decoste, D., & Schölkopf, B. (2002). Training invariant support vector machines. Machine

Learning, 46(1�3), 161�190.

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., & Harshman, R. A.

(1990). Indexing by latent semantic analysis. JAsIs, 41(6), 391�407.

Demiroz, G., & Guvenir, A. (1997). Classification by voting feature intervals. In M. van

Someren, & G. Widmer (Eds.), Proceedings of the ninth European conference on

machine learning, Prague, Czech Republic (pp. 85�92). Berlin: Springer-Verlag.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1�38.

Devroye, L., Györfi, L., & Lugosi, G. (1996). A probabilistic theory of pattern recognition.

New York, NY: Springer-Verlag.

Dhar, V., & Stein, R. (1997). Seven methods for transforming corporate data into business

intelligence. Upper Saddle River, NJ: Prentice Hall.

Diederich, J., Kindermann, J., Leopold, E., & Paass, G. (2003). Authorship attribution with

support vector machines. Applied Intelligence, 19(1), 109�123.

Dietterich, T. G. (2000). An experimental comparison of three methods for constructing

ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning,

40(2), 139�158.

Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via error-

correcting output codes. Journal Artificial Intelligence Research, 2, 263�286.

Dietterich, T. G., & Kong, E. B. (1995). Error-correcting output coding corrects bias and

variance. Proceedings of the twelfth international conference on machine learning,

Tahoe City, CA (pp. 313�321). San Francisco, CA: Morgan Kaufmann.

Dietterich, T. G., Lathrop, R. H., & Lozano-Perez, T. (1997). Solving the multiple-

instance problem with axis-parallel rectangles. Artificial Intelligence Journal, 89

(1�2), 31�71.

Domingos, P. (1997). Knowledge acquisition from examples via multiple models.

In D. H. Fisher (Ed.), Proceedings of the fourteenth international conference on

machine learning, Nashville, TN (pp. 98�106). San Francisco, CA: Morgan

Kaufmann.

578 References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref92
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref92
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref92
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref93
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref93
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref94
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref94
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref94
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref94
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref95
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref95
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref95
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref95
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref95
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref96
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref96
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref96
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref97
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref457
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref457
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref457
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref457
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref98
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref98
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref98
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref99
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref99
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref99
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref99
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref100
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref100
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref100
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref101
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref101
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref102
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref102
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref103
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref103
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref103
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref104
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref104
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref104
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref104
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref105
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref105
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref105
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref106
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref106
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref106
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref106
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref107
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref107
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref107
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref107
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref107
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref108
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref108
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref108
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref108
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref108

Domingos, P. (1999). MetaCost: A general method for making classifiers cost-sensitive.

In U. M. Fayyad, S. Chaudhuri, & D. Madigan (Eds.), Proceedings of the fifth interna-

tional conference on knowledge discovery and data mining. San Diego, CA

(pp. 155�164). New York, NY: ACM Press.

Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. International

conference on knowledge discovery and data mining (pp. 71�80). New York, NY:

ACM Press.

Domingos, P., & Lowd, D. (2009). Markov logic: An interface layer for AI. San Rafael,

CA: Morgan and Claypool.

Domingos, P., & Pazzani, M. (1997). Beyond independence: Conditions for the optimality

of the simple Bayesian classifier. Machine Learning, 29, 103�130.

Dong, L., Frank, E., & Kramer, S. (2005). Ensembles of balanced nested dichotomies for

multi-class problems. Proc of the ninth European conference on principles and practice

of knowledge discovery in databases, Porto, Portugal (pp. 84�95). Berlin: Springer-

Verlag.

Dony, R. D., & Haykin, D. (1997). Image segmentation using a mixture of principal

components representation. IEE Proceedings—Vision, Image and Signal Processing,

144(2), 73�80.

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretiza-

tion of continuous features. In A. Prieditis, & S. Russell (Eds.), Proceedings of the

twelfth international conference on machine learning, Tahoe City, CA (pp. 194�202).

San Francisco, CA: Morgan Kaufmann.

Drucker, H. (1997). Improving regressors using boosting techniques. In D. H. Fisher (Ed.),

Proceedings of the fourteenth international conference on machine learning, Nashville,

TN (pp. 107�115). San Francisco, CA: Morgan Kaufmann.

Drummond, C., & Holte, R. C. (2000). Explicitly representing expected cost: An alterna-

tive to ROC representation. In R. Ramakrishnan, S. Stolfo, R. Bayardo, & I. Parsa

(Eds.), Proceedings of the sixth international conference on knowledge discovery and

data mining. Boston, MA (pp. 198�207). New York, NY: ACM Press.

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York,

NY: John Wiley.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd ed.). New

York, NY: John Wiley.

Dumais, S. T., Platt, J., Heckerman, D., & Sahami, M. (1998). Inductive learning algo-

rithms and representations for text categorization. Proceedings of the ACM seventh

international conference on information and knowledge management, Bethesda, MD

(pp. 148�155). New York, NY: ACM Press.

Dzeroski, S., & Zenko, B. (2004). Is combining classifiers with stacking better than select-

ing the best one? Machine Learning, 54, 255�273.

Edwards, D. (2012). Introduction to graphical modeling. New York, NY: Springer Science

and Business Media.

Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. London: Chapman

and Hall.

Egan, J. P. (1975). Signal detection theory and ROC analysis. New York, NY: Series in

Cognition and Perception Academic Press.

Epanechnikov, V. A. (1969). Non-parametric estimation of a multivariate probability den-

sity. Theory of Probability and its Applications, 14, 153�158.

579References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref109
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref109
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref109
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref109
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref109
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref110
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref110
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref110
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref110
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref111
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref111
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref112
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref112
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref112
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref113
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref113
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref113
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref113
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref113
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref114
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref114
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref114
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref114
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref115
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref115
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref115
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref115
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref115
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref116
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref116
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref116
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref116
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref117
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref117
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref117
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref117
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref117
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref118
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref118
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref119
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref119
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref120
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref120
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref120
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref120
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref120
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref121
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref121
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref121
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref122
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref122
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref123
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref123
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref124
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref124
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref125
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref125
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref125

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm

for discovering clusters in large spatial databases with noise. Proceedings of the second

international conference on knowledge discovery and data mining (KDD-96)

(pp. 226�231). Portland, OR: AAAI Press.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). LIBLINEAR: A

library for large linear classification. J Machine Learning Research, 9, 1871�1874.

Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuous-valued

attributes for classification learning. Proceedings of the thirteenth international joint

conference on artificial intelligence, Chambery, France (pp. 1022�1027). San

Francisco, CA: Morgan Kaufmann.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. (Eds.), (1996). Advances

in knowledge discovery and data mining Menlo Park, CA: AAAI Press/MIT Press.

Fayyad, U. M., & Smyth, P. (1995). From massive datasets to science catalogs: Applications

and challenges. Proceedings of the workshop on massive datasets (pp. 129�141).

Washington, DC: NRC, Committee on Applied and Theoretical Statistics.

Finkel, J. R., Grenager, T., & Manning, C. (2005). Incorporating non-local information into

information extraction systems by Gibbs sampling. Proceedings of the 43rd annual

meeting on association for computational linguistics (pp. 363�370). Stroudsburg:

Association for Computational Linguistics.

Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering. Machine

Learning, 2(2), 139�172.

Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Annual

Eugenics 7 (part II): 179�188. Reprinted in Contributions to Mathematical Statistics,

1950. New York, NY: John Wiley.

Fix, E., & Hodges Jr., J.L. (1951). Discriminatory analysis; non-parametric discrimination:

Consistency properties. Technical Report 21-49-004(4), USAF School of Aviation

Medicine, Randolph Field, Texas.

Flach, P. A., & Lachiche, N. (1999). Confirmation-guided discovery of first-order rules

with Tertius. Machine Learning, 42, 61�95.

Fletcher, R. (1987). Practical methods of optimization (2nd ed.). New York, NY: John

Wiley.

Foulds, J., & Frank, E. (2008). Revisiting multiple-instance learning via embedded instance

selection. Proceedings of the Australasian joint conference on artificial intelligence,

Auckland, New Zealand (pp. 300�310). Berlin: Springer-Verlag.

Foulds, J., & Frank, E. (2010a). A review of multi-instance learning assumptions.

Knowledge Engineering Review, 25(1), 1�25.

Foulds, J., & Frank, E. (2010b). Speeding up and boosting diverse density learning. Proc 13th

international conference on discovery science (pp. 102�116). New York, NY: Springer.

Fradkin, D., & Madigan, D. (2003). Experiments with random projections for machine

learning. In L. Getoor, T. E. Senator, P. Domingos, & C. Faloutsos (Eds.), Proceedings

of the ninth international conference on knowledge discovery and data mining,

Washington, D.C (pp. 517�522). New York, NY: ACM Press.

Frank, E. (2000). Pruning decision trees and lists. PhD Dissertation. New Zealand:

Department of Computer Science, University of Waikato.

Frank, E., & Hall, M. (2001). A simple approach to ordinal classification. In L. de Raedt,

& P. A. Flach (Eds.), Proceedings of the twelfth European conference on machine

learning. Freiburg, Germany (pp. 145�156). Berlin: Springer-Verlag.

580 References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref126
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref126
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref126
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref126
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref126
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref127
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref127
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref127
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref128
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref128
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref128
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref128
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref128
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref129
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref129
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref130
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref130
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref130
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref130
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref131
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref131
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref131
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref131
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref131
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref132
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref132
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref132
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref133
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref133
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref133
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref134
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref134
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref135
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref135
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref135
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref135
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref136
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref136
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref136
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref137
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref137
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref137
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref138
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref138
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref138
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref138
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref138
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref139
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref139
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref140
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref140
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref140
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref140

Frank, E., Hall, M., & Pfahringer, B. (2003). Locally weighted Naı̈ve Bayes. In

U. Kjærulff, & C. Meek (Eds.), Proceedings of the nineteenth conference on uncer-

tainty in artificial intelligence, Acapulco, Mexico (pp. 249�256). San Francisco, CA:

Morgan Kaufmann.

Frank, E., Holmes, G., Kirkby, R., & Hall, M. (2002). Racing committees for large

datasets. In S. Lange, K. Satoh, & C. H. Smith (Eds.), Proceedings of the fifth interna-

tional conference on discovery science, Lübeck, Germany (pp. 153�164). Berlin:

Springer-Verlag.

Frank, E., & Kramer, S. (2004). Ensembles of nested dichotomies for multi-class problems.

Proceedings of the twenty-first international conference on machine learning, Banff,

Alberta, Canada (pp. 305�312). New York, NY: ACM Press.

Frank, E., Paynter, G. W., Witten, I. H., Gutwin, C., & Nevill-Manning, C. G. (1999).

Domain-specific key phrase extraction. Proceedings of the sixteenth international joint

conference on artificial intelligence, Stockholm, Sweden (pp. 668�673). San Francisco,

CA: Morgan Kaufmann.

Frank, E., Wang, Y., Inglis, S., Holmes, G., & Witten, I. H. (1998). Using model trees for

classification. Machine Learning, 32(1), 63�76.

Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization.

In J. Shavlik (Ed.), Proceedings of the fifteenth international conference on machine

learning, Madison, WI (pp. 144�151). San Francisco, CA: Morgan Kaufmann.

Frank, E., & Witten, I. H. (1999). Making better use of global discretization. In I. Bratko,

& S. Dzeroski (Eds.), Proceedings of the sixteenth international conference on machine

learning, Bled, Slovenia (pp. 115�123). San Francisco, CA: Morgan Kaufmann.

Frank, E., & Xu, X. (2003). Applying propositional learning algorithms to multi-instance

data. Technical Report 06/03. New Zealand: Department of Computer Science,

University of Waikato.

Franz, A., & Brants, T. (2006). “All Our N-gram are Belong to You”. Google Research

Blog. Retrieved 2015-09-14.

Freitag, D. (2002). Machine learning for information extraction in informal domains.

Machine Learning, 39(2/3), 169�202.

Freund, Y., & Mason, L. (1999). The alternating decision tree learning algorithm. In I. Bratko,

& S. Dzeroski (Eds.), Proceedings of the sixteenth international conference on

machine learning, Bled, Slovenia (pp. 124�133). San Francisco, CA: Morgan Kaufmann.

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In

L. Saitta (Ed.), Proceedings of the thirteenth international conference on machine

learning, Bari, Italy (pp. 148�156). San Francisco, CA: Morgan Kaufmann.

Freund, Y., & Schapire, R. E. (1999). Large margin classification using the perceptron

algorithm. Machine Learning, 37(3), 277�296.

Frey, B. J. (1998). Graphical models for machine learning and digital communication.

MIT Press.

Friedman, J. H. (1996). Another approach to polychotomous classification. Technical

report. Stanford, CA: Department of Statistics, Stanford University.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.

Annals of Statistics, 29(5), 1189�1232.

Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An algorithm for finding best

matches in logarithmic expected time. ACM Transactions on Mathematical Software, 3

(3), 209�266.

581References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref141
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref141
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref141
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref141
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref141
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref142
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref142
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref142
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref142
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref142
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref143
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref143
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref143
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref143
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref144
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref144
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref144
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref144
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref144
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref145
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref145
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref145
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref146
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref146
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref146
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref146
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref147
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref147
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref147
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref147
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref458
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref458
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref458
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref148
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref148
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref148
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref149
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref149
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref149
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref149
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref150
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref150
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref150
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref150
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref151
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref151
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref151
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref459
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref459
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref152
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref152
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref153
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref153
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref153
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref154
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref154
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref154
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref154

Friedman, J. H., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statisti-

cal view of boosting. Annals of Statistics, 28(2), 337�374.

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine

Learning, 29(2), 131�163.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mecha-

nism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36

(4), 193�202.

Fulton, T., Kasif, S., & Salzberg, S. (1995). Efficient algorithms for finding multiway

splits for decision trees. In A. Prieditis, & S. Russell (Eds.), Proceedings of the twelfth

international conference on machine learning, Tahoe City, CA (pp. 244�251).

San Francisco, CA: Morgan Kaufmann.

Fürnkranz, J. (2002). Round robin classification. Journal of Machine Learning Research,

2, 721�747.

Fürnkranz, J. (2003). Round robin ensembles. Intelligent Data Analysis, 7(5), 385�403.

Fürnkranz, J., & Flach, P. A. (2005). ROC ‘n’ rule learning: Towards a better understand-

ing of covering algorithms. Machine Learning, 58(1), 39�77.

Fürnkranz, J., & Widmer, G. (1994). Incremental reduced-error pruning. In H. Hirsh, &

W. Cohen (Eds.), Proceedings of the eleventh international conference on machine

learning, New Brunswick, NJ (pp. 70�77). San Francisco, CA: Morgan Kaufmann.

Gaines, B. R., & Compton, P. (1995). Induction of ripple-down rules applied to modeling

large data bases. Journal of Intelligent Information Systems, 5(3), 211�228.

Gama, J. (2004). Functional trees. Machine Learning, 55(3), 219�250.

Gärtner, T., Flach, P. A., Kowalczyk, A., & Smola, A. J. (2002). Multi-instance kernels.

Proceedings of the international conference on machine learning, Sydney, Australia

(pp. 179�186). San Francisco, CA: Morgan Kaufmann.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2014). Bayesian data analysis

(Vol. 2). London: Chapman and Hall/CRC.

Geman, S., & Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayes-

ian restoration of images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 6(6), 721�741.

Genkin, A., Lewis, D. D., & Madigan, D. (2007). Large-scale Bayesian logistic regression

for text categorization. Technometrics, 49(3), 291�304.

Gennari, J. H., Langley, P., & Fisher, D. (1990). Models of incremental concept formation.

Artificial Intelligence, 40, 11�61.

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual predic-

tion with LSTM. Neural Computation, 12(10), 2451�2471.

Ghahramani, Z., & Beal, M. J. (1999). Variational inference for bayesian mixtures of factor

analysers. NIPS, 12, 449�455.

Ghahramani, Z., & Beal, M. J. (2001). Propagation algorithms for variational Bayesian

learning. Proceedings of Advances in Neural Information Processing Systems, 13,

507�513.

Ghahramani, Z., & Hinton, G. E. (1996). The EM algorithm for mixtures of factor analy-

zers (Vol. 60). Technical Report CRG-TR-96-1. University of Toronto.

Ghani, R. (2002). Combining labeled and unlabeled data for multiclass text categorization.

In C. Sammut, & A. Hoffmann (Eds.), Proceedings of the nineteenth international con-

ference on machine learning, Sydney, Australia (pp. 187�194). San Francisco, CA:

Morgan Kaufmann.

582 References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref155
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref155
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref155
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref156
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref156
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref156
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref157
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref157
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref157
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref157
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref158
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref158
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref158
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref158
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref158
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref159
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref159
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref159
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref160
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref160
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref161
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref161
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref161
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref162
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref162
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref162
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref162
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref163
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref163
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref163
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref164
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref164
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref165
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref165
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref165
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref165
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref166
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref166
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref167
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref167
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref167
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref167
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref168
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref168
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref168
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref169
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref169
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref169
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref170
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref170
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref170
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref171
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref171
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref171
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref172
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref172
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref172
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref172
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref173
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref173
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref174
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref174
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref174
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref174
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref174

Gilad-Bachrach, R., Navot, A., & Tishby, N. (2004). Margin based feature selection:

Theory and algorithms. In R. Greiner, & D. Schuurmans (Eds.), Proceedings of the

twenty-first international conference on machine learning, Banff, Alberta, Canada

(pp. 337�344). New York, NY: ACM Press.

Gilks, W. R. (2005). Markov chain monte carlo. New York, NY: John Wiley and Sons, Ltd.

Giraud-Carrier, C. (1996). FLARE: Induction with prior knowledge. In J. Nealon, &

J. Hunt (Eds.), Research and development in expert systems XIII (pp. 11�24).

Cambridge: SGES Publications.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward

neural networks. In AISTATS. vol. 9, pp. 249�256.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier networks. AISTATS, 15,

pp. 315�323.

Gluck, M., & Corter, J. (1985). Information, uncertainty and the utility of categories.

Proceedings of the annual conference of the cognitive science society, Irvine, CA

(pp. 283�287). Hillsdale, NJ: Lawrence Erlbaum.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning.

Reading, MA: Addison-Wesley.

Good, I. J. (1953). The population frequencies of species and the estimation of population

parameters. Biometrika, 40(3�4), 237�264.

Good, P. (1994). Permutation tests: A practical guide to resampling methods for testing

hypotheses. New York, NY: Springer-Verlag.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT

Press.

Graves, A. (2012). Supervised sequence labelling. Berlin: Springer Berlin Heidelberg.

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional

LSTM and other neural network architectures. Neural Networks, 18(5), 602�610.

Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., & Schmidhuber, J.

(2009). A novel connectionist system for unconstrained handwriting recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 31(5), 855�868.

Graves, A., Mohamed, A.R., & Hinton, G. (2013). Speech recognition with deep recurrent

neural networks. In IEEE international Conference on Acoustics, Speech and Signal

Processing (ICASSP) (pp. 6645�6649).

Green, P., & Yandell, B. (1985). Semi-parametric generalized linear models. In

Proceedings 2nd international GLIM conference, Lancaster, Lecture notes in Statistics

No. 32 44�55. New York, NY: Springer-Verlag.

Greff, K., Srivastava, R. K., Koutnı́k, J., Steunebrink, B. R., & Schmidhuber, J. (2015).

LSTM: A search space odyssey. arXiv preprint, arXiv:1503.04069.

Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the

National Academy of Sciences, 101(Suppl. 1), 5228�5235.

Grossman, D., & Domingos, P. (2004). Learning Bayesian network classifiers by maximiz-

ing conditional likelihood. In R. Greiner, & D. Schuurmans (Eds.), Proceedings of the

twenty-first international conference on machine learning, Banff, Alberta, Canada

(pp. 361�368). New York, NY: ACM Press.

Groth, R. (1998). Data mining: A hands-on approach for business professionals. Upper

Saddle River, NJ: Prentice Hall.

Guo, Y., & Greiner, R. (2004). Discriminative model selection for belief net structures.

Edmonton, AB: Department of Computing Science, TR04-22, University of Alberta.

583References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref175
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref175
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref175
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref175
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref175
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref176
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref177
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref177
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref177
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref177
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref178
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref178
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref178
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref179
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref179
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref179
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref179
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref180
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref180
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref181
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref181
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref181
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref181
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref182
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref182
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref183
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref183
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref184
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref185
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref185
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref185
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref186
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref186
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref186
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref186
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref187
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref187
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref188
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref188
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref188
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref189
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref189
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref189
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref189
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref189
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref190
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref190
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref191
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref191

Gütlein, M., Frank, E., Hall, M., & Karwath, A. (2009). Large-scale attribute selection

using wrappers. Proceedings of the IEEE symposium on computational intelligence and

data mining (pp. 332�339). Washington, DC: IEEE Computer Society.

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classifi-

cation using support vector machines. Machine Learning, 46(1�3), 389�422.

Hall, M. (2000). Correlation-based feature selection for discrete and numeric class machine

learning. In P. Langley (Ed.), Proceedings of the seventeenth international conference on

machine learning, Stanford, CA (pp. 359�366). San Francisco, CA: Morgan Kaufmann.

Hall, M., & Frank, E. (2008). Combining Naı̈ve Bayes and decision tables. Proceedings of

the 21st Florida artificial intelligence research society conference (pp. 318�319).

Miami, FL: AAAI Press.

Hall, M., Holmes, G., & Frank, E. (1999). Generating rule sets from model trees.

In N. Y. Foo (Ed.), Proceedings of the twelfth Australian joint conference on artifi-

cial intelligence, Sydney, Australia (pp. 1�12). Berlin: Springer-Verlag.

Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques (3rd ed.).

San Francisco, CA: Morgan Kaufmann.

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation.

In Proceedings of the ACM-SIGMOD International Conference on Management of

Data (pp. 1�12). Dallas, TX.

Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate

generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery,

8(1), 53�87.

Hand, D. J. (2006). Classifier technology and the illusion of progress. Statistical Science,

21(1), 1�14.

Hand, D. J., Manilla, H., & Smyth, P. (2001). Principles of data mining. Cambridge, MA:

MIT Press.

Hartigan, J. A. (1975). Clustering algorithms. New York, NY: John Wiley.

Hastie, T., & Tibshirani, R. (1998). Classification by pairwise coupling. Annals of

Statistics, 26(2), 451�471.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning

(2nd ed.). New York, NY: Springer-Verlag.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57(1), 97�109.

Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., . . .
Larochelle, H. (2016). Brain tumor segmentation with deep neural networks. Medical

Image Analysis.

Haykin, S. (1994). Neural networks: A comprehensive foundation. Upper Saddle River, NJ:

Prentice Hall.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 770�778.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The

combination of knowledge and statistical data. Machine Learning, 20(3), 197�243.

Hempstalk, K., & Frank, E. (2008). Discriminating against new classes: One-class versus

multi-class classification. Proceedings of the twenty-first Australasian joint conference

on artificial intelligence, Auckland, New Zealand (pp. 225�236). New York, NY:

Springer.

584 References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref192
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref192
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref192
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref192
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref193
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref193
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref193
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref193
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref194
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref194
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref194
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref194
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref195
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref195
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref195
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref195
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref196
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref196
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref196
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref196
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref197
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref197
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref198
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref198
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref198
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref198
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref199
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref199
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref199
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref200
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref200
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref201
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref202
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref202
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref202
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref203
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref203
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref204
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref204
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref204
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref460
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref460
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref460
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref205
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref205
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref207
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref207
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref207
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref208
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref208
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref208
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref208
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref208

Hempstalk, K., Frank, E., & Witten, I. H. (2008). One-class classification by combining

density and class probability estimation. Proceedings of the European Conference on

Machine Learning and Principles and Practice of Knowledge Discovery in Databases,

Antwerp, Belgium (pp. 505�519). Berlin: Springer-Verlag.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence.

Neural Computation, 14(8), 1771�1800.

Hinton, G. E., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with neu-

ral networks. Science, 313(5786), 504�507.

Hinton, G.E., & Sejnowski, T.J. (1983, June). Optimal perceptual inference. In

Proceedings of the IEEE conference on computer vision and pattern recognition

(pp. 448�453). Washington, DC.

Ho, T. K. (1998). The random subspace method for constructing decision forests.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832�844.

Hochbaum, D. S., & Shmoys, D. B. (1985). A best possible heuristic for the k-center prob-

lem. Mathematics of Operations Research, 10(2), 180�184.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis,

Institut f. Informatik, Technische Univ. Munich. Advisor: J. Schmidhuber.

Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in

recurrent nets: The difficulty of learning long-term dependencies. In S. C. Kremer, &

J. F. Kolen (Eds.), A field guide to dynamical recurrent neural networks

(pp. 179�206). Piscataway, NJ: IEEE Press.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,

9(8), 1735�1780.

Hofmann, T. (1999, August). Probabilistic latent semantic indexing. Proceedings of the

22nd annual international ACM SIGIR conference on Research and development in

information retrieval (pp. 50�57). New York, NY: ACM Press.

Holmes, G., & Nevill-Manning, C. G. (1995). Feature selection via the discovery of simple

classification rules. In G. E. Lasker, & X. Liu (Eds.), Proceedings of the international

symposium on intelligent data analysis (pp. 75�79). Baden-Baden: International

Institute for Advanced Studies in Systems Research and Cybernetics.

Holmes, G., Pfahringer, B., Kirkby, R., Frank, E., & Hall, M. (2002). Multiclass alternating

decision trees. In T. Elomaa, H. Mannila, & H. Toivonen (Eds.), Proceedings of the

thirteenth European conference on machine learning, Helsinki, Finland (pp. 161�172).

Berlin: Springer-Verlag.

Holte, R. C. (1993). Very simple classification rules perform well on most commonly used

datasets. Machine Learning, 11, 63�91.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural

Networks, 4(2), 251�257.

Hosmer, D. W., Jr, & Lemeshow, S. (2004). Applied logistic regression. New York, NY:

John Wiley and Sons.

Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classifi-

cation. Department of Computer Science, National Taiwan University.

Huang, C., & Darwiche, A. (1996). Inference in belief networks: A procedural guide.

International Journal of Approximate Reasoning, 15(3), 225�263.

Huffman, S. B. (1996). Learning information extraction patterns from examples. In S. Wertmer,

E. Riloff, & G. Scheler (Eds.), Connectionist, statistical, and symbolic approaches to

learning for natural language processing (pp. 246�260). Berlin: Springer Verlag.

585References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref209
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref209
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref209
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref209
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref209
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref210
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref210
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref210
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref211
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref211
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref211
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref212
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref212
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref212
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref213
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref213
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref213
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref214
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref214
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref214
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref214
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref214
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref215
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref215
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref215
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref216
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref216
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref216
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref216
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref217
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref217
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref217
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref217
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref217
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref218
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref218
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref218
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref218
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref218
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref219
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref219
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref219
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref220
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref220
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref220
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref221
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref221
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref222
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref222
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref461
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref461
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref461
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref223
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref223
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref223
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref223

Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applica-

tions. Neural Networks, 13(4), 411�430.

Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal

of Computational and Graphical Statistics, 5(3), 299�314.

Ilin, A., & Raiko, T. (2010). Practical approaches to principal component analysis in

the presence of missing values. The Journal of Machine Learning Research, 11,

1957�2000.

International Human Genome Sequencing Consortium (2001). Initial sequencing and

analysis of the human genome. Nature, 409(6822), 860�921.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training

by reducing internal covariate shift. arXiv preprint, arXiv:1502.03167.

Ivakhnenko, A. G., & Lapa, V. G. (1965). Cybernetic predicting devices. New York, NY:

CCM Information Corporation.

Jabbour, K., Riveros, J. F. V., Landsbergen, D., & Meyer, W. (1988). ALFA: Automated

load forecasting assistant. IEEE Transactions on Power Systems, 3(3), 908�914.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., . . . Darrell, T.
(2014). Caffe: Convolutional architecture for fast feature embedding. Proceedings

of the ACM international conference on multimedia (pp. 675�678). New York, NY:

ACM Press.

Jiang, L., & Zhang, H. (2006). Weightily averaged one-dependence estimators.

Proceedings of the 9th Biennial Pacific Rim international conference on artificial intel-

ligence (pp. 970�974). Berlin: Springer-Verlag.

John, G. H. (1995). Robust decision trees: Removing outliers from databases. In U. M.

Fayyad, & R. Uthurusamy (Eds.), Proceedings of the first international conference on

knowledge discovery and data mining, Montreal, Canada (pp. 174�179). Menlo Park,

CA: AAAI Press.

John, G. H. (1997). Enhancements to the data mining process. PhD Dissertation. Stanford,

CA: Computer Science Department, Stanford University.

John, G. H., Kohavi, R., & Pfleger, P. (1994). Irrelevant features and the subset selection

problem. In H. Hirsh, & W. Cohen (Eds.), Proceedings of the eleventh international

conference on machine learning, New Brunswick, NJ (pp. 121�129). San Francisco,

CA: Morgan Kaufmann.

John, G. H., & Langley, P. (1995). Estimating continuous distributions in Bayesian classi-

fiers. In P. Besnard, & S. Hanks (Eds.), Proceedings of the eleventh conference on

uncertainty in artificial intelligence, Montreal, Canada (pp. 338�345). San Francisco,

CA: Morgan Kaufmann.

Johns, M. V. (1961). An empirical Bayes approach to nonparametric two-way classifica-

tion. In H. Solomon (Ed.), Studies in item analysis and prediction (pp. 221�232). Palo

Alto, CA: Stanford University Press.

Jones, M. C., Marron, J. S., & Sheather, S. J. (1996). A brief survey of bandwidth selection

for density estimation. Journal of the American Statistical Association, 91(433),

401�407.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1998). An introduc-

tion to variational methods for graphical models (pp. 105�161). The Netherlands:

Springer.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to

variational methods for graphical models. Machine Learning, 37(2), 183�233.

586 References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref224
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref224
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref224
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref225
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref225
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref225
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref226
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref226
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref226
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref226
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref227
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref227
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref227
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref228
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref228
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref229
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref229
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref230
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref230
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref230
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref231
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref231
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref231
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref231
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref231
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref231
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref232
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref232
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref232
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref232
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref233
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref233
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref233
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref233
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref233
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref234
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref234
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref235
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref235
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref235
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref235
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref235
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref236
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref236
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref236
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref236
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref236
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref237
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref237
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref237
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref237
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref238
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref238
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref238
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref238
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref239
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref239
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref239
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref239
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref240
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref240
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref240

Kass, R., & Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its

relationship to the Schwarz criterion. Journal of the American Statistical Association,

90, 928�934.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (2001).

Improvements to Platt’s SMO algorithm for SVM classifier design. Neural

Computation, 13(3), 637�649.

Kerber, R. (1992). Chimerge: Discretization of numeric attributes. In W. Swartout (Ed.),

Proceedings of the tenth national conference on artificial intelligence, San Jose, CA

(pp. 123�128). Menlo Park, CA: AAAI Press.

Kibler, D., & Aha, D. W. (1987). Learning representative exemplars of concepts: An initial

case study. In P. Langley (Ed.), Proceedings of the fourth machine learning workshop,

Irvine, CA (pp. 24�30). San Francisco, CA: Morgan Kaufmann.

Kimball, R., & Ross, M. (2002). The data warehouse toolkit (2nd ed.). New York, NY:

John Wiley.

Kira, K., & Rendell, L. (1992). A practical approach to feature selection. In D.

Sleeman, & P. Edwards (Eds.), Proceedings of the ninth international workshop on

machine learning, Aberdeen, Scotland (pp. 249�258). San Francisco, CA: Morgan

Kaufmann.

Kirkby, R. (2007). Improving hoeffding trees. PhD Dissertation. New Zealand: Department

of Computer Science, University of Waikato.

Kittler, J. (1978). Feature set search algorithms. In C. H. Chen (Ed.), Pattern recognition

and signal processing. The Netherlands: Sijthoff an Noordhoff.

Kivinen, J., Smola, A. J., & Williamson, R. C. (2002). Online learning with kernels. IEEE

Transactions on Signal Processing, 52, 2165�2176.

Kleinberg, J. (1998) “Authoritative sources in a hyperlinked environment.” Proc ACM-

SIAM Symposium on Discrete Algorithms. Extended version published in Journal of the

ACM, Vol. 46 (1999), pp. 604�632.

Koestler, A. (1964). The act of creation. London: Hutchinson.

Kohavi, R. (1995a). A study of cross-validation and bootstrap for accuracy estimation and

model selection. Proceedings of the fourteenth international joint conference on artifi-

cial intelligence, Montreal, Canada (pp. 1137�1143). San Francisco, CA: Morgan

Kaufmann.

Kohavi, R. (1995b). The power of decision tables. In N. Lavrac, & S. Wrobel (Eds.),

Proceedings of the eighth European conference on machine learning, Iráklion, Crete,

Greece (pp. 174�189). Berlin: Springer-Verlag.

Kohavi, R. (1996). Scaling up the accuracy of Naı̈ve Bayes classifiers: A decision-tree

hybrid. In E. Simoudis, J. W. Han, & U. Fayyad (Eds.), Proceedings of the second

international conference on knowledge discovery and data mining, Portland, OR

(pp. 202�207). Menlo Park, CA: AAAI Press.

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial

Intelligence, 97(1�2), 273�324.

Kohavi, R., & Kunz, C. (1997). Option decision trees with majority votes. In D. Fisher

(Ed.), Proceedings of the fourteenth international conference on machine learning,

Nashville, TN (pp. 161�191). San Francisco, CA: Morgan Kaufmann.

Kohavi, R., & Provost, F. (Eds.), (1998). Machine learning: Special issue on applications

of machine learning and the knowledge discovery process. Machine Learning, 30(2/3),

127�274.

587References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref241
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref241
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref241
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref241
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref242
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref242
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref242
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref242
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref243
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref243
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref243
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref243
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref244
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref244
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref244
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref244
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref245
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref245
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref246
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref246
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref246
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref246
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref246
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref247
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref247
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref248
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref248
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref249
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref249
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref249
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref250
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref251
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref251
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref251
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref251
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref251
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref252
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref252
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref252
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref252
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref253
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref253
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref253
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref253
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref253
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref254
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref254
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref254
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref254
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref255
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref255
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref255
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref255
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref256
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref256
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref256
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref256

Kohavi, R., & Sahami, M. (1996). Error-based and entropy-based discretization of continu-

ous features. In E. Simoudis, J. W. Han, & U. Fayyad (Eds.), Proceedings of the sec-

ond international conference on knowledge discovery and data mining, Portland, OR

(pp. 114�119). Menlo Park, CA: AAAI Press.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and

techniques. Cambridge, MA: MIT Press.

Komarek, P., & Moore, A. (2000). A dynamic adaptation of AD-trees for efficient machine

learning on large data sets. In P. Langley (Ed.), Proceedings of the seventeenth interna-

tional conference on machine learning, Stanford, CA (pp. 495�502). San Francisco,

CA: Morgan Kaufmann.

Kononenko, I. (1995). On biases in estimating multi-valued attributes. Proceedings of the

fourteenth international joint conference on artificial intelligence, Montreal, Canada

(pp. 1034�1040). San Francisco, CA: Morgan Kaufmann.

Koppel, M., & Schler, J. (2004). Authorship verification as a one-class classification

problem. In R. Greiner, & D. Schuurmans (Eds.), Proceedings of the twenty-first

international conference on machine learning, Banff, Alberta, Canada (pp. 489�495).

New York, NY: ACM Press.

Kristjansson, T., Culotta, A., Viola, P., & McCallum, A. (2004, July). Interactive informa-

tion extraction with constrained conditional random fields. AAAI, 4, 412�418.

Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). ImageNet classification with deep

convolutional neural networks. In Advances in Neural Information Processing Systems

(NIPS 2012).

Krogel, M.-A., & Wrobel, S. (2002). Feature selection for propositionalization.

Proceedings of the international conference on discovery science, Lübeck, Germany

(pp. 430�434). Berlin: Springer-Verlag.

Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the sum-

product algorithm. Information Theory, IEEE Transactions on, 47(2), 498�519.

Kubat, M., Holte, R. C., & Matwin, S. (1998). Machine learning for the detection of oil

spills in satellite radar images. Machine Learning, 30, 195�215.

Kulp, D., Haussler, D., Rees, M.G., & Eeckman, F.H. (1996). A generalized hidden

Markov model for the recognition of human genes in DNA. In Proc. Int. Conf. on

Intelligent Systems for Molecular Biology (pp. 134�142). St. Louis.

Kuncheva, L. I., & Rodriguez, J. J. (2007). An experimental study on rotation forest

ensembles. Proceedings of the seventh international workshop on multiple classifier

systems, Prague, Czech Republic (pp. 459�468). Berlin/Heidelberg: Springer.

Kushmerick, N., Weld, D. S., & Doorenbos, R. (1997). Wrapper induction for

information extraction. Proceedings of the fifteenth international joint conference on

artificial intelligence, Nagoya, Japan (pp. 729�735). San Francisco, CA: Morgan

Kaufmann.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. In The proceedings of the interna-

tional conference on machine learning (ICML) (pp. 282�289).

Laguna, M., & Marti, R. (2003). Scatter search: Methodology and implementations in C.

Boston, MA: Kluwer Academic Press.

Landwehr, N., Hall, M., & Frank, E. (2005). Logistic model trees. Machine Learning, 59

(1�2), 161�205.

Langley, P. (1996). Elements of machine learning. San Francisco, CA: Morgan Kaufmann.

588 References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref257
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref257
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref257
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref257
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref257
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref258
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref258
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref259
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref259
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref259
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref259
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref259
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref260
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref260
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref260
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref260
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref261
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref261
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref261
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref261
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref261
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref262
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref262
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref262
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref263
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref263
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref263
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref263
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref264
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref264
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref264
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref265
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref265
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref265
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref266
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref266
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref266
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref266
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref267
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref267
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref267
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref267
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref267
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref268
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref268
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref269
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref269
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref269
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref269
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref270

Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classifiers. In

W. Swartout (Ed.), Proceedings of the tenth national conference on artificial intelli-

gence, San Jose, CA (pp. 223�228). Menlo Park, CA: AAAI Press.

Langley, P., & Sage, S. (1994). Induction of selective Bayesian classifiers. In R. L. de

Mantaras, & D. Poole (Eds.), Proceedings of the tenth conference on uncertainty in

artificial intelligence, Seattle, WA (pp. 399�406). San Francisco, CA: Morgan

Kaufmann.

Langley, P., & Sage, S. (1997). Scaling to domains with irrelevant features. In R. Greiner

(Ed.), Computational learning theory and natural learning systems (Vol. 4).

Cambridge, MA: MIT Press.

Langley, P., & Simon, H. A. (1995). Applications of machine learning and rule induction.

Communications of the ACM, 38(11), 55�64.

Larochelle, H., & Bengio, Y. (2008). Classification using discriminative restricted

Boltzmann machines. In Proceedings of the 25th International Conference on Machine

learning (ICML), pp. 536�543.

Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on

graphical structures and their application to expert systems. Journal of the Royal

Statistical Society Series B (Methodological), 50, 157�224.

Lavrac, N., Motoda, H., Fawcett, T., Holte, R., Langley, P., & Adriaans, P. (Eds.), (2004).

Special issue on lessons learned from data mining applications and collaborative prob-

lem solving. Machine Learning, 57(1/2), 83�113.

Lawrence, N., Seeger, M., & Herbrich, R. (2003). Fast sparse Gaussian process methods:

The informative vector machine. In Proceedings of the 16th Annual Conference on

Neural Information Processing Systems (No. EPFL-CONF-161319, pp. 609�616).

Lawson, C. L., & Hanson, R. J. (1995). Solving least squares problems. Philadelphia, PA:

SIAM Publications.

le Cessie, S., & van Houwelingen, J. C. (1992). Ridge estimators in logistic regression.

Applied Statistics, 41(1), 191�201.

Le, Q. V., Jaitly, N., & Hinton, G. E. (2015). A simple way to initialize recurrent networks

of rectified linear units. arXiv preprint, arXiv:1504.00941.

LeCun, Y., Bengio, Y., & Hinton, G. E. (2015). Deep learning. Nature, 521(7553), 436�444.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11), 2278�2324.

LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. R. (1998). Efficient BackProp. Neural

Networks: Tricks of the Trade (pp. 9�50). Berlin: Springer Berlin Heidelberg.

Li, M., & Vitanyi, P. M. B. (1992). Inductive reasoning and Kolmogorov complexity.

Journal Computer and System Sciences, 44, 343�384.

Lichman, M. (2013). UCI Machine Learning Repository. Irvine, CA: University of

California, School of Information and Computer Science.,http://archive.ics.uci.edu/ml..

Lieberman, H. (Ed.), (2001). Your wish is my command: Programming by example San

Francisco, CA: Morgan Kaufmann.

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new linear-

threshold algorithm. Machine Learning, 2(4), 285�318.

Littlestone, N. (1989). Mistake bounds and logarithmic linear-threshold learning algo-

rithms. PhD Dissertation. Santa Cruz, CA: University of California.

Liu, B. (2009). Web data mining: Exploring hyperlinks, contents, and usage data. New

York, NY: Springer Verlag.

589References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref271
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref271
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref271
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref271
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref272
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref272
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref272
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref272
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref272
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref273
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref273
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref273
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref274
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref274
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref274
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref275
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref275
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref275
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref275
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref276
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref276
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref276
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref276
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref277
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref277
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref278
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref278
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref278
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref279
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref279
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref280
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref280
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref281
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref281
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref281
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref282
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref282
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref282
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref283
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref283
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref283
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref285
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref285
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref286
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref286
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref286
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref287
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref287
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref288
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref288

Liu, B., Hsu, W., & Ma, Y. M. (1998). Integrating classification and association rule min-

ing. Proceedings of the fourth international conference on knowledge discovery and

data mining (KDD-98) (pp. 80�86). New York, NY: AAAI Press.

Liu, H., & Setiono, R. (1996). A probabilistic approach to feature selection: A filter solu-

tion. In L. Saitta (Ed.), Proceedings of the thirteenth international conference on

machine learning, Bari, Italy (pp. 319�327). San Francisco, CA: Morgan Kaufmann.

Liu, H., & Setiono, R. (1997). Feature selection via discretization. IEEE Transactions on

Knowledge and Data Engineering, 9(4), 642�645.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60(2), 91�110.

Luan, J. (2002). Data mining and its applications in higher education. New Directions for

Institutional Research, 2002(113), 17�36.

Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution,

critique and future directions (with discussion). Statistics in Medicine, 28, 3049�3082.

Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS—a Bayesian

modelling framework: Concepts, structure, and extensibility. Statistics and Computing,

10, 325�337.

Mann, T. (1993). Library research models: A guide to classification, cataloging, and com-

puters. New York, NY: Oxford University Press.

Marill, T., & Green, D. M. (1963). On the effectiveness of receptors in recognition sys-

tems. IEEE Transactions on Information Theory, 9(11), 11�17.

Maron, O. (1998). Learning from ambiguity. Ph.D. thesis. Massachusetts Institute of

Technology.

Maron, O., & Lozano-Peréz, T. (1997). A framework for multiple-instance learning.

Proceedings of the conference on neural information processing systems, Denver, CO

(pp. 570�576). Cambridge, MA: MIT Press.

Martin, B. (1995). Instance-based learning: Nearest neighbour with generalisation. MSc

Thesis. Department of Computer Science, University of Waikato, New Zealand.

McCallum, A.K. (2002). Mallet: A machine learning for language toolkit. http://mallet.cs.

umass.edu.

McCallum, A., & Nigam, K. (1998). A comparison of event models for Naı̈ve Bayes text

classification. Proceedings of the AAAI-98 workshop on learning for text categoriza-

tion, Madison, WI (pp. 41�48). Menlo Park, CA: AAAI Press.

McCallum, A., Pal, C., Druck, G., and Wang, X. (2006). Multi-conditional learning:

Generative/discriminative training for clustering and classification. In the proceedings

of AAAI (Vol. 21, No. 1, p. 433). Menlo Park, CA; Cambridge, MA; London; AAAI

Press; MIT Press; 1999.

McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statistical

Society. Series B (Methodological), 42, 109�142.

McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (Vol. 37). Boca Raton,

FL: CRC Press.

Medelyan, O., & Witten, I. H. (2008). Domain independent automatic keyphrase indexing

with small training sets. Journal American Society for Information Science and

Technology, 59, 1026�1040.

Mehta, M., Agrawal, R., & Rissanen, J. (1996). SLIQ: A fast scalable classifier for

data mining. In P. Apers, M. Bouzeghoub, & G. Gardarin (Eds.), Proceedings of

the fifth international conference on extending database technology, Avignon, France.

New York, NY: Springer-Verlag.

590 References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref289
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref289
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref289
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref289
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref290
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref290
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref290
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref290
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref291
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref291
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref291
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref292
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref292
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref292
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref293
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref293
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref293
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref294
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref294
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref294
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref295
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref295
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref295
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref295
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref296
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref296
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref297
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref297
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref297
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref298
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref298
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref299
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref299
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref299
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref299
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref300
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref300
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref301
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref301
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref301
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref301
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref302
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref302
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref302
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref303
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref303
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref304
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref304
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref304
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref304
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref305
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref305
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref305
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref305

Melville, P., & Mooney, R. J. (2005). Creating diversity in ensembles using artificial data.

Information Fusion, 6(1), 99�111.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).

Equations of state calculations by fast computing machines. Journal of Chemical

Physics, 21(6), 1087�1092.

Michalski, R. S., & Chilausky, R. L. (1980). Learning by being told and learning from

examples: An experimental comparison of the two methods of knowledge acquisition

in the context of developing an expert system for soybean disease diagnosis.

International Journal of Policy Analysis and Information Systems, 4(2), 125�161.

Michie, D. (1989). Problems of computer-aided concept formationIn J. R. Quinlan (Ed.),

Applications of expert systems (Vol. 2, pp. 310�333). Wokingham: Addison-Wesley.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word

representations in vector space. arXiv preprint, arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013b). Distributed repre-

sentations of words and phrases and their compositionality. Advances in Neural

Information Processing Systems, 26, 3111�3119.

Minka, T. (2000). Old and new matrix algebra useful for statistics. MIT Media Lab note.

Minka, T. P. (2001). Expectation propagation for approximate Bayesian inference.

Proceedings of the seventeenth conference on uncertainty in artificial intelligence

(pp. 362�369). San Francisco, CA: Morgan Kaufmann Publishers Inc.

Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.

Mitchell, T. M. (1997). Machine Learning. New York, NY: McGraw Hill.

Mitchell, T. M., Caruana, R., Freitag, D., McDermott, J., & Zabowski, D. (1994).

Experience with a learning personal assistant. Communications of the ACM, 37(7),

81�91.

Moore, A. W. (1991). Efficient memory-based learning for robot control. PhD Dissertation.

Computer Laboratory, University of Cambridge, UK.

Moore, A. W. (2000). The anchors hierarchy: Using the triangle inequality to survive high-

dimensional data. In C. Boutilier, & M. Goldszmidt (Eds.), Proceedings of the sixteenth

conference on uncertainty in artificial intelligence, Stanford, CA (pp. 397�405). San

Francisco, CA: Morgan Kaufmann.

Moore, A. W., & Lee, M. S. (1994). Efficient algorithms for minimizing cross validation

error. In W. W. Cohen, & H. Hirsh (Eds.), Proceedings of the eleventh international

conference on machine learning, New Brunswick, NJ (pp. 190�198). San Francisco,

CA: Morgan Kaufmann.

Moore, A. W., & Pelleg, D. (1998). Cached sufficient statistics for efficient machine learn-

ing with large datasets. Journal Artificial Intelligence Research, 8, 67�91.

Moore, A. W., & Pelleg, D. (2000). X-means: Extending k-means with efficient estimation

of the number of clusters. In P. Langley (Ed.), Proceedings of the seventeenth interna-

tional conference on machine learning, Stanford, CA (pp. 727�734). San Francisco,

CA: Morgan Kaufmann.

Morin, F., & Bengio, Y. (2005). Hierarchical probabilistic neural network language model.

In Proceedings of the international workshop on artificial intelligence and statistics

(pp. 246�252).

Murphy, K. P. (2002). Dynamic Bayesian networks: Representation, inference and learn-

ing. Doctoral dissertation. Berkeley, CA: University of California.

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge, MA:

MIT Press.

591References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref306
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref306
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref306
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref307
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref307
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref307
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref307
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref308
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref308
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref308
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref308
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref308
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref309
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref309
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref309
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref310
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref310
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref311
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref311
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref311
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref311
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref312
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref313
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref313
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref313
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref313
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref314
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref315
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref316
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref316
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref316
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref316
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref317
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref317
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref318
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref318
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref318
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref318
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref318
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref319
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref319
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref319
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref319
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref319
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref320
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref320
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref320
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref321
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref321
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref321
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref321
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref321
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref322
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref322
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref323
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref323

Mutter, S., Hall, M., & Frank, E. (2004). Using classification to evaluate the output

of confidence-based association rule mining. Proceedings of the seventeenth

Australian joint conference on artificial intelligence, Cairns, Australia (pp. 538�549).

Berlin: Springer.

Nadeau, C., & Bengio, Y. (2003). Inference for the generalization error. Machine

Learning, 52(3), 239�281.

Nahm, U.Y., & Mooney, R.J. (2000). Using information extraction to aid the discovery of pre-

diction rules from texts. Proceedings of the Workshop on Text Mining at the Sixth

International Conference on Knowledge Discovery and Data Mining (pp. 51�58). Boston,

MA. Workshop proceedings at: http://www.cs.cmu.edu/Bdunja/WshKDD2000.html.

Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56

(1), 71�113.

Neal, R. M., & Hinton, G. E. (1998). A view of the EM algorithm that justifies incremen-

tal, sparse, and other variants. Learning in graphical models (pp. 355�368).

Netherlands: Springer.

Nelder, J., & Wedderburn, R. (1972). Generalized linear models. Journal of the Royal

Statistical Society. Series A, 135(3), 370�384.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A.Y. (2011). Reading digits

in natural images with unsupervised feature learning. In NIPS workshop on deep learn-

ing and unsupervised feature learning (Vol. 2011, p. 4). Granada, Spain.

Niculescu-Mizil, A., & Caruana, R. (2005). Predicting good probabilities with supervised

learning. Proceedings of the 22nd international conference on machine learning, Bonn,

Germany (pp. 625�632). New York, NY: ACM Press.

Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K., & Bent, D. H. (1970). Statistical

package for the social sciences. New York, NY: McGraw Hill.

Nigam, K., & Ghani, R. (2000). Analyzing the effectiveness and applicability of

co-training. Proceedings of the ninth international conference on information and

knowledge management, McLean, VA (pp. 86�93). New York, NY: ACM Press.

Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. M. (2000). Text classifica-

tion from labeled and unlabeled documents using EM. Machine Learning, 39(2/3),

103�134.

Nilsson, N. J. (1965). Learning machines. New York, NY: McGraw Hill.

Nisbet, R., Elder, J., & Miner, G. (2009). Handbook of statistical analysis and data mining

applications. New York, NY: Academic Press.

Oates, T., & Jensen, D. (1997). The effects of training set size on decision tree complexity.

Proceedings of the fourteenth international conference on machine learning, Nashville,

TN (pp. 254�262). San Francisco, CA: Morgan Kaufmann.

Ohm, P. (2009). Broken promises of privacy: Responding to the surprising failure of anonymi-

zation. University of Colorado Law Legal Studies Research Paper No. 09-12, August.

Omohundro, S. M. (1987). Efficient algorithms with neural network behavior. Journal of

Complex Systems, 1(2), 273�347.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neu-

ral networks. In Proceedings of the 30th International Conference on Machine

Learning (ICML), pp. 1310�1318.

Paynter, G. W. (2000). Automating iterative tasks with programming by demonstration. PhD

Diessertation. Department of Computer Science, University of Waikato, New Zealand.

Pearson, R. (2005). Mining Imperfect Data. USA: Society for Industrial and Applied

Mechanics.

592 References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref324
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref324
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref324
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref324
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref324
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref325
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref325
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref325
http://www.cs.cmu.edu/∼dunja/WshKDD2000.html
http://www.cs.cmu.edu/∼dunja/WshKDD2000.html
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref326
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref326
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref326
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref327
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref327
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref327
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref327
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref328
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref328
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref328
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref329
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref329
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref329
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref329
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref330
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref330
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref331
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref331
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref331
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref331
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref332
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref332
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref332
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref332
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref333
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref334
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref334
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref335
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref335
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref335
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref335
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref336
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref336
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref336
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref338
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref338
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref339
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref339

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . .
Cournapeau, D. (2011). Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12, 2825�2830.

Pei, J., Han, J., Mortazavi-Asi, B., Wang, J., Pinto, H., Chen, Q., . . . Hsu, M. C. (2004).

Mining sequential patterns by pattern-growth: The PrefixSpan approach. IEEE Trans

Knowledge and Data Engineering, 16(11), 1424�1440.

Petersen, K. B., & Pedersen, M. S. (2012). The matrix cookbook. Technical University of

Denmark, Version Nov. 2012.

Piatetsky-Shapiro, G., & Frawley, W. J. (Eds.), (1991). Knowledge discovery in databases

Menlo Park, CA: AAAI Press/MIT Press.

Platt, J. (1998). Fast training of support vector machines using sequential minimal optimi-

zation. In B. Schölkopf, C. Burges, & A. Smola (Eds.), Advances in kernel methods:

Support vector learning. Cambridge, MA: MIT Press.

Platt, J. (1999). Probabilistic outputs for support vector machines and comparisons to regu-

larized likelihood methods. Advances in Large Margin Classifiers, 10(3), 61�74.

Power, D. J. (2002). What is the true story about data mining, beer and diapers? DSS

News, 3(23). ,http://www.dssresources.com/newsletters/66.php..

Provost, F., & Fawcett, T. (1997). Analysis and visualization of classifier performance:

Comparison under imprecise class and cost distributions. In D. Heckerman, H. Mannila,

D. Pregibon, & R. Uthurusamy (Eds.), Proceedings of the third international conference

on knowledge discovery and data mining, Huntington Beach, CA (pp. 43�48). Menlo

Park, CA: AAAI Press.

Pyle, D. (1999). Data preparation for data mining. San Francisco, CA: Morgan Kaufmann.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81�106.

Quinlan, J. R. (1992). Learning with continuous classes. In N. Adams, & L. Sterling

(Eds.), Proceedings of the fifth Australian joint conference on artificial intelligence,

Hobart, Tasmania (pp. 343�348). Singapore: World Scientific.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Francisco, CA: Morgan

Kaufmann.

Quinlan, J. R. (1996). Improved use of continuous attributes in C4.5. Journal of Artificial

Intelligence Research, 4, 77�90.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2), 257�286.

Rabiner, L. R., & Juang, B. H. (1986). An introduction to hidden Markov models. ASSP

Magazine, IEEE, 3(1), 4�16.

Ramon, J., & de Raedt, L. (2000). Multi instance neural networks. Proceedings of the

ICML workshop on attribute-value and relational learning (pp. 53�60). Stanford, CA.

Ray, S., & Craven, M. (2005). Supervised learning versus multiple instance learning: An

empirical comparison. Proceedings of the International Conference on Machine

Learning, Bonn, Germany (pp. 697�704). New York, NY: ACM Press.

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2009). Classifier chains for multi-label

classification. Proc 13th European conference on principles and practice of knowledge

discovery in databases and 20th European conference on machine learning, Bled,

Slovenia (pp. 254�269). Berlin: Springer Verlag.

Rennie, J. D. M., Shih, L., Teevan, J., & Karger, D. R. (2003). Tackling the poor assump-

tions of Naı̈ve Bayes text classifiers. In T. Fawcett, & N. Mishra (Eds.), Proceedings of

the twentieth international conference on machine learning, Washington, DC

(pp. 616�623). Menlo Park, CA: AAAI Press.

593References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref340
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref340
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref340
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref340
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref341
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref341
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref341
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref341
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref341
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref342
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref342
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref343
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref343
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref344
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref344
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref344
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref345
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref345
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref345
http://www.dssresources.com/newsletters/66.php
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref347
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref347
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref347
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref347
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref347
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref347
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref348
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref349
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref349
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref350
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref350
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref350
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref350
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref351
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref351
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref352
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref352
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref352
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref353
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref353
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref353
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref354
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref354
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref354
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref355
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref355
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref355
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref355
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref356
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref356
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref356
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref356
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref356
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref357
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref357
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref357
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref357
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref357

Ricci, F., & Aha, D. W. (1998). Error-correcting output codes for local learners. In

C. Nedellec, & C. Rouveird (Eds.), Proceedings of the European conference on

machine learning, Chemnitz, Germany (pp. 280�291). Berlin: Springer-Verlag.

Richards, D., & Compton, P. (1998). Taking up the situated cognition challenge with

ripple-down rules. International Journal of Human-Computer Studies, 49(6), 895�926.

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62

(1�2), 107�136.

Rifkin, R., & Klautau, A. (2004). In defense of one-vs-all classification. Journal of

Machine Learning Research, 5, 101�141.

Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge: Cambridge

University Press.

Rissanen, J. (1985). The minimum description length principleIn S. Kotz, & N. L. Johnson

(Eds.), Encylopedia of statistical sciences (Vol. 5, pp. 523�527). New York, NY: John

Wiley.

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of

Mathematical Statistics, 22, 400�407.

Rodriguez, J. J., Kuncheva, L. I., & Alonso, C. J. (2006). Rotation forest: A new classifier

ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence,

28(10), 1619�1630.

Rojas, R. (1996). Neural networks: A systematic introduction. Berlin: Springer.

Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. New

York, NY: John Wiley.

Roweis, S. (1998). EM algorithms for PCA and SPCA. Advances in Neural Information

Processing Systems, 10, 626�632.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning intemal representation

by error propagation. Parallel Distributed Processing, 1, 318�362.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., . . . Fei-Fei, L. (2015).
Imagenet large scale visual recognition challenge. International Journal of Computer

Vision, 115(3), 211�252.

Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.).

Upper Saddle River, NJ: Prentice Hall.

Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. (1998). A Bayesian approach to fil-

tering junk e-mail. Proceedings of the AAAI-98 Workshop on Learning for Text

Categorization, Madison, WI (pp. 55�62). Menlo Park, CA: AAAI Press.

Saitta, L., & Neri, F. (1998). Learning in the “real world.”.Machine Learning, 30(2/3), 133�163.

Salakhutdinov, R., & Hinton, G. E. (2009). Deep Boltzmann machines. International

Conference on Artificial Intelligence and Statistics, 9, 448�455.

Salakhutdinov, R., & Hinton, G. E. (2012). An efficient learning procedure for deep

Boltzmann machines. Neural Computation, 24(8), 1967�2006.

Salakhutdinov, R., Roweis, S., & Ghahramani, Z. (2003). Optimization with EM and

expectation-conjugate-gradient. ICML, 20, 672�679.

Salzberg, S. (1991). A nearest hyperrectangle learning method. Machine Learning, 6(3),

251�276.

Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1997). Boosting the margin: A new

explanation for the effectiveness of voting methods. In D. H. Fisher (Ed.), Proceedings

of the fourteenth international conference on machine learning, Nashville, TN

(pp. 322�330). San Francisco, CA: Morgan Kaufmann.

594 References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref358
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref358
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref358
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref358
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref359
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref359
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref359
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref360
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref360
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref360
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref360
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref361
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref361
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref361
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref362
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref362
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref363
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref363
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref363
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref363
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref364
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref364
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref364
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref365
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref365
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref365
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref365
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref366
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref367
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref367
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref368
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref368
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref368
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref369
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref369
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref369
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref370
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref370
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref370
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref370
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref370
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref371
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref371
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref372
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref372
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref372
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref372
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref373
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref373
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref374
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref374
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref374
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref375
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref375
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref375
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref376
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref376
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref376
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref377
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref377
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref377
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref378
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref378
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref378
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref378
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref378

Scheffer, T. (2001). Finding association rules that trade support optimally against confi-

dence. In L. de Raedt, & A. Siebes (Eds.), Proceedings of the fifth European confer-

ence on principles of data mining and knowledge discovery, Freiburg, Germany

(pp. 424�435). Berlin: Springer-Verlag.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks,

61, 85�117.

Schölkopf, B., Bartlett, P., Smola, A. J., & Williamson, R. (1999). Shrinking the tube: A

new support vector regression algorithm, Advances in Neural Information Processing

Systems (Vol. 11, pp. 330�336). Cambridge, MA: MIT Press.

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: Support vector machines,

regularization, optimization, and beyond. Cambridge, MA: MIT Press.

Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., & Platt, J. (2000). Support

vector method for novelty detection, Advances in Neural Information Processing

Systems (12, pp. 582�588). MIT Press.

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing, 45(11), 2673�2681.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing

Surveys, 34(1), 1�47.

Seewald, A. K. (2002). How to make stacking better and faster while also taking care of an

unknown weakness. Proceedings of the Nineteenth International Conference

on Machine Learning, Sydney, Australia (pp. 54�561). San Francisco, CA: Morgan

Kaufmann.

Seewald, A. K., & Fürnkranz, J. (2001). An evaluation of grading classifiers.

In F. Hoffmann, D. J. Hand, N. M. Adams, D. H. Fisher, & G. Guimarães (Eds.),

Proceedings of the fourth international conference on advances in intelligent data

analysis, Cascais, Portugal (pp. 115�124). Berlin: Springer-Verlag.

Sha, F., & Pereira, F. (2003). Shallow parsing with conditional random fields. In

Proceedings of the Conference of the North American Chapter of the Association for

Computational Linguistics on Human Language Technology Volume 1 (pp. 134�141).

Association for Computational Linguistics.

Shafer, R., Agrawal, R., & Metha, M. (1996). SPRINT: A scalable parallel classifier for

data mining. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, & N. L. Sarda (Eds.),

Proceedings of the second international conference on very large databases, Mumbai

(Bombay), India (pp. 544�555). San Francisco, CA: Morgan Kaufmann.

Shalev-Shwartz, S., Singer, Y., & Srebro, N. (2007). Pegasos: Primal estimated sub-

gradient solver for SVM. Proceedings of the 24th international conference on Machine

Learning (pp. 807�814). New York, NY: ACM Press.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis.

Cambridge: Cambridge University Press.

Shearer, C. (2000). The CRISP-DM model: The new blueprint for data mining. J Data

Warehousing, 5, 13�22.

Simard, P.Y., Steinkraus, D., & Platt, J.C. (2003). Best practices for convolutional neural

networks applied to visual document analysis. In Proceedings of 7th International

Conference on Document Analysis and Recognition (ICDAR), vol. 3, pp. 958�962.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-

scale image recognition. In the proceedings of ICLR 2015. arXiv preprint

arXiv:1409.1556.

595References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref379
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref379
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref379
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref379
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref379
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref380
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref380
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref380
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref381
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref381
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref381
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref381
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref382
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref382
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref383
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref383
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref383
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref383
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref384
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref384
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref384
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref385
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref385
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref385
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref386
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref386
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref386
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref386
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref386
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref387
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref387
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref387
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref387
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref387
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref388
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref388
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref388
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref388
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref388
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref389
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref389
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref389
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref389
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref390
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref390
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref391
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref391
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref391

Slonim, N., Friedman, N., & Tishby, N. (2002). Unsupervised document classification

using sequential information maximization. Proceedings of the 25th international ACM

SIGIR conference on research and development in information retrieval

(pp. 129�136). New York, NY: ACM Press.

Smola, A. J., & Scholköpf, B. (2004). A tutorial on support vector regression. Statistics

and Computing, 14(3), 199�222.

Smolensky, P. (1986). Information processing in dynamical systems: foundations of

harmony theory. In D. E. Rumelhart, & J. L. McClelland, and the PDP Research Group

(Eds.), Parallel distributed processing: explorations in the microstructure of cognition

(Vol. 1, pp. 194�281). Cambridge, MA: MIT Press.

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of

machine learning algorithms. Advances in neural Information Processing Systems, 464,

2951�2959.

Soderland, S., Fisher, D., Aseltine, J., & Lehnert, W. (1995). Crystal: Inducing a concep-

tual dictionary. Proceedings of the fourteenth international joint conference on artifi-

cial intelligence, Montreal, Canada (pp. 1314�1319). Menlo Park, CA: AAAI Press.

Spiegelhalter, D., Thomas, A., Best, N., & Lunn, D. (2003). WinBUGS user manual.

Srikant, R., & Agrawal, R. (1996). Mining sequential patters: Generalizations and perfor-

mance improvements. Proceedings of the Fifth International Conference on Extending

Database Technology. Avignon, France. P. M. Apers, M. Bouzeghoub, and G. Gardarin,

Eds. Lecture Notes In Computer Science, Vol. 1057. Springer-Verlag, London, 3�17.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

Dropout: a simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15(1), 1929�1958.

Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677�680.

Stone, P., & Veloso, M. (2000). Multiagent systems: A survey from a machine learning

perspective. Autonomous Robots, 8(3), 345�383.

Stout, Q. F. (2008). Unimodal regression via prefix isotonic regression. Computational

Statistics and Data Analysis, 53, 289�297.

Su, J., Zhang, H., Ling, C. X., & Matwin, S. (2008). Discriminative parameter learning for

Bayesian networks. Proceedings of the 25th International Conference on Machine

Learning (pp. 1016�1023). Helsinki: ACM Press.

Sugiyama, M. (2007). Dimensionality reduction of multimodal labeled data by local fisher

discriminant analysis. The Journal of Machine Learning Research, 8, 1027�1061.

Sun, Y., Chen, Y., Wang, X., & Tang, X. (2014). Deep learning face representation by

joint identification-verification. In Advances in Neural Information Processing Systems

(pp. 1988�1996).

Sutskever, I., Vinyals, O., & Le, Q.V. (2014). Sequence to sequence learning with neural

networks. In Advances in neural information processing systems (pp. 3104�3112).

Sutton, C., & McCallum, A. (2004). Collective segmentation and labeling of distant entities

in information extraction. University of Massachusetts Amherst, Dept. of Computer

Science Technical Report TR-04-49.

Sutton, C., & McCallum, A. (2006). An introduction to conditional random fields for rela-

tional learning. Introduction to statistical relational learning, 93�128.

Swets, J. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285�1293.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A.,
(2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 1�9.

596 References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref392
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref392
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref392
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref392
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref392
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref393
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref393
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref393
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref462
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref462
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref462
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref462
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref462
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref394
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref394
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref394
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref394
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref395
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref395
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref395
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref395
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref463
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref463
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref463
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref463
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref396
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref396
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref397
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref397
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref397
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref398
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref398
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref398
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref399
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref399
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref399
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref399
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref400
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref400
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref400
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref401
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref401

Taigman, Y., Yang, M., Ranzato, M.A., & Wolf, L. (2014). Deepface: Closing the gap to

human-level performance in face verification. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 1701�1708.

Teh, Y.W., Newman, D., & Welling, M. (2006). A collapsed variational Bayesian infer-

ence algorithm for latent Dirichlet allocation. In Advances in neural information pro-

cessing systems, pp. 1353�1360.

Theano Development Team, Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C.,

Bahdanau, D.,Belopolsky, A. (2016). Theano: A Python framework for fast computa-

tion of mathematical expressions. arXiv preprint arXiv:1605.02688.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological), 267�288.

Ting, K. M. (2002). An instance-weighting method to induce cost-sensitive trees. IEEE

Transactions on Knowledge and Data Engineering, 14(3), 659�665.

Ting, K. M., & Witten, I. H. (1997a). Stacked generalization: When does it work?.

Proceedings of the fifteenth international joint conference on artificial intelligence,

Nagoya, Japan (pp. 866�871). San Francisco, CA: Morgan Kaufmann.

Ting, K. M., & Witten, I. H. (1997b). Stacking bagged and dagged models. In D. H. Fisher

(Ed.), Proceedings of the fourteenth international conference on machine learning,

Nashville, TN (pp. 367�375). . San Francisco, CA: Morgan Kaufmann.

Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. The

Journal of Machine Learning Research, 1, 211�244.

Tipping, M. E., & Bishop, C. M. (1999a). Mixtures of probabilistic principal component

analyzers. Neural Computation, 11(2), 443�482.

Tipping, M. E., & Bishop, C. M. (1999b). Probabilistic principal component analysis.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3),

611�622.

Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive

Neuroscience, 3(1), 71�86.

Turney, P. D. (1999). Learning to extract key phrases from text. Technical Report

ERB-1057. Ottawa, Canada: Institute for Information Technology, National Research

Council of Canada.

U.S. House of Representatives Subcommittee on Aviation. (2002). Hearing on aviation

security with a focus on passenger profiling, February 27, 2002. ,http://www.house.

gov/transportation/aviation/02-27-02/02-27-02memo.html..

Utgoff, P. E. (1989). Incremental induction of decision trees. Machine Learning, 4(2),

161�186.

Utgoff, P. E., Berkman, N. C., & Clouse, J. A. (1997). Decision tree induction based on

efficient tree restructuring. Machine Learning, 29(1), 5�44.

Vafaie, H., & DeJong, K. (1992). Genetic algorithms as a tool for feature selection in

machine learning. Proceedings of the international conference on tools with artificial

intelligence (pp. 200�203). Arlington, VA: IEEE Computer Society Press.

van Rijsbergen, C. A. (1979). Information retrieval.. London: Butterworths.

Vapnik, V. (1999). The nature of statistical learning theory (2nd ed.). New York, NY:

Springer-Verlag.

Venables, W. N., & Ripley, B. D. (2000). S Programming. Springer.

Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S (4th ed.). New

York, NY: Springer.

597References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref464
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref464
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref464
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref402
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref402
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref402
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref403
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref403
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref403
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref403
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref404
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref404
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref404
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref404
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref405
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref405
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref405
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref406
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref406
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref406
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref407
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref407
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref407
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref407
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref408
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref408
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref408
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref409
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref409
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref409
http://www.house.gov/transportation/aviation/02-27-02/02-27-02memo.html
http://www.house.gov/transportation/aviation/02-27-02/02-27-02memo.html
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref410
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref410
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref410
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref411
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref411
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref411
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref412
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref412
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref412
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref412
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref413
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref414
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref414
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref465
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref415
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref415

Venter, J. C., et al. (2001). The sequence of the human genome. Science, 291(5507),

1304�1351.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. A. (2010). Stacked

denoising autoencoders: Learning useful representations in a deep network with a

local denoising criterion. The Journal of Machine Learning Research, 11,

3371�3408.

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Transactions on Mathematical

Software, 1(11), 37�57.

Wang, J., Han, J., & Pei, J. (2003). CLOSET1 : Searching for the best strategies for min-

ing frequent closed itemsets. Proceedings of the International Conference on

Knowledge Discovery and Data Mining (KDD’03), Washington, DC.

Wang, J., & Zucker, J.-D. (2000). Solving the multiple-instance problem: A lazy learning

approach. Proceedings of the international conference on machine learning, Stanford,

CA (pp. 1119�1125). San Francisco, CA: Morgan Kaufmann.

Wang, Y., & Witten, I. H. (1997). Induction of model trees for predicting continuous clas-

ses. In M. van Someren, & G. Widmer (Eds.), Proceedings of the of the poster papers

of the european conference on machine learning (pp. 128�137). Prague: University of

Economics, Faculty of Informatics and Statistics.

Wang, Y., & Witten, I. H. (2002). Modeling for optimal probability prediction. In

C. Sammut, & A. Hoffmann (Eds.), Proceedings of the nineteenth international confer-

ence on machine learning, Sydney, Australia (pp. 650�657). San Francisco, CA:

Morgan Kaufmann.

Webb, G. I. (1999). Decision tree grafting from the all-tests-but-one partition. Proceedings

of the sixteenth international joint conference on artificial intelligence (pp. 702�707).

San Francisco, CA: Morgan Kaufmann.

Webb, G. I. (2000). MultiBoosting: A technique for combining boosting and wagging.

Machine Learning, 40(2), 159�196.

Webb, G. I., Boughton, J., & Wang, Z. (2005). Not so naı̈ve Bayes: Aggregating one-

dependence estimators. Machine Learning, 58(1), 5�24.

Webb, G. I., Boughton, J. R., Zheng, F., Ting, K. M., & Salem, H. (2012). Learning by

extrapolation from marginal to full-multivariate probability distributions: decreasingly

naive Bayesian classification. Machine Learning, 86(2), 233�272.

Wegener, I. (1987). The complexity of Boolean functions. New York, NY: John Wiley

and Sons.

Weidmann, N., Frank, E., & Pfahringer, B. (2003). A two-level learning method for gener-

alized multi-instance problems. Proceedings of the European conference on machine

learning, Cavtat, Croatia (pp. 468�479). Berlin: Springer-Verlag.

Weiser, M. (1996). Open house. Review, the web magazine of the Interactive

Telecommunications Program of New York University.

Weiser, M., & Brown, J. S. (1997). The coming age of calm technology. In P. J. Denning,

& R. M. Metcalfe (Eds.), Beyond calculation: The next fifty years (pp. 75�86).

New York, NY: Copernicus.

Weiss, S. M., & Indurkhya, N. (1998). Predictive data mining: A practical guide. San

Francisco, CA: Morgan Kaufmann.

Welling, M., Rosen-Zvi, M., & Hinton, G.E. (2004). Exponential family harmoniums with

an application to information retrieval. In Advances in neural information processing

systems (pp. 1481�1488).

598 References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref416
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref416
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref416
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref417
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref417
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref417
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref417
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref417
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref418
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref418
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref418
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref419
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref419
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref419
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref419
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref420
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref420
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref420
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref420
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref420
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref421
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref421
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref421
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref421
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref421
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref422
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref422
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref422
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref422
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref423
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref423
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref423
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref424
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref424
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref424
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref466
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref466
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref466
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref466
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref425
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref425
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref426
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref426
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref426
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref426
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref427
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref427
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref427
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref427
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref428
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref428

Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences. PhD thesis. Harvard University.

Wettschereck, D., & Dietterich, T. G. (1995). An experimental comparison of the nearest-

neighbor and nearest-hyperrectangle algorithms. Machine Learning, 19(1), 5�28.

Wild, C. J., & Seber, G. A. F. (1995). Introduction to probability and statistics.

New Zealand: Department of Statistics, University of Auckland.

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning.

MIT Press, 2(3), 4.

Winn, J. M., & Bishop, C. M. (2005). Variational message passing. Journal of Machine

Learning Research, 6, 661�694.

Winston, P. H. (1992). Artificial intelligence. Reading, MA: Addison-Wesley.

Witten, I. H. (2004). Text mining. In M. P. Singh (Ed.), Practical handbook of internet

computing. Boca Raton, FL: CRC Press, 14-1�14-22.

Witten, I. H., & Bell, T. C. (1991). The zero-frequency problem: Estimating the probabili-

ties of novel events in adaptive text compression. IEEE Transactions on Information

Theory, 37(4), 1085�1094.

Witten, I. H., Bray, Z., Mahoui, M., & Teahan, W. (1999a). Text mining: A new frontier

for lossless compression. In J. A. Storer, & M. Cohn (Eds.), Proceedings of the data

compression conference, Snowbird, UT (pp. 198�207). Los Alamitos, CA: IEEE Press.

Witten, I. H., Moffat, A., & Bell, T. C. (1999b). Managing gigabytes: Compressing and index-

ing documents and images (second edition). San Francisco, CA: Morgan Kaufmann.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5, 241�259.

Wu, X., & Kumar, V. (Eds.), (2009). The top ten algorithms in data mining London:

Chapman and Hall.

Wu, X. V., Kumar, J. R., Quinlan, J., Ghosh, Q., Yang, H., Motoda, G. J., . . . Steinberg, D.
(2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1),

1�37.

Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical Evaluation of Rectified

Activations in Convolutional Network. arXiv preprint, arXiv:1505.00853.

Xu, X., & Frank, E. (2004). Logistic regression and boosting for labeled bags of instances.

Proceedings of the 8th Pacific-Asia conference on knowledge discovery and data min-

ing, Sydney, Australia (pp. 272�281). Berlin: Springer-Verlag.

Yan, X., & Han, J. (2002). gSpan: Graph-based substructure pattern mining. Proceedings

of the IEEE international conference on data mining (ICDM ’02). Washington, DC:

IEEE Computer Society.

Yan, X., & Han, J. (2003). CloseGraph: Mining closed frequent graph patterns.

Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining.

Yan, X., Han, J., & Afshar, R. (2003). CloSpan: Mining closed sequential patterns in

large datasets. Proceedings of the SIAM International Conference on Data Mining

(SDM’03), San Francisco, CA.

Yang, Y., Guan, X., & You, J. (2002). CLOPE: A fast and effective clustering algorithm

for transactional data. Proceedings of the Eighth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 682�687.

Yang, Y., & Webb, G. I. (2001). Proportional k-interval discretization for Naı̈ve Bayes classi-

fiers. In L. de Raedt, & P. Flach (Eds.), Proceedings of the Twelfth European Conference

on Machine Learning, Freiburg, Germany (pp. 564�575). Berlin: Springer-Verlag.

599References

http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref467
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref467
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref429
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref429
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref429
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref430
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref430
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref431
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref431
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref432
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref432
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref432
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref433
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref434
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref434
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref434
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref435
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref435
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref435
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref435
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref436
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref436
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref436
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref436
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref437
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref437
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref438
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref438
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref439
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref439
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref440
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref440
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref440
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref440
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref440
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref441
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref441
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref442
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref442
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref442
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref442
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref443
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref443
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref443
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref444
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref444
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref444
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref444

Yu, D., Eversole, A., Seltzer, M., Yao, K., Huang, Z., Guenter, B., Droppo, J. (2014). An

introduction to computational networks and the computational network toolkit. Tech.

Rep. MSR-TR-2014-112, Microsoft Research, Code: http://codebox/cntk.

Yurcik, W., Barlow, J., Zhou, Y., Raje, H., Li, Y., Yin, X., . . . Searsmith, D. (2003).

Scalable data management alternatives to support data mining heterogeneous logs for

computer network security. Proceedings of the workshop on data mining for counter

terrorism and security, San Francisco, CA. Philadelphia, PA: Society for International

and Applied Mathematics.

Zadrozny, B., & Elkan, C. (2002). Transforming classifier scores into accurate multiclass

probability estimates. Proceedings of the eighth ACM international conference on

knowledge discovery and data mining, Edmonton, Alberta, Canada (pp. 694�699).

New York, NY: ACM Press.

Zaki, M.J., Parthasarathy, S., Ogihara, M., & Li, W. (1997). New algorithms for fast dis-

covery of association rules. Proceedings Knowledge Discovery in Databases (pp.

283�286).

Zbontar, J., & LeCun, Y. (2015). Computing the stereo matching cost with a convolutional

neural network. Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 1592�1599).

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks.

Proceeding of ECCV 2014 (pp. 818�833). New York, NY: Springer International

Publishing.

Zhang, H., Jiang, L., & Su, J. (2005). Hidden Naı̈ve Bayes. Proceedings of the 20th national

conference on artificial intelligence (pp. 919�924). Menlo Park, CA: AAAI Press.

Zhang, T. (2004). Solving large scale linear prediction problems using stochastic gradient

descent algorithms. Proceedings of the 21st international conference on machine learn-

ing (pp. 919�926). Omni Press.

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: An efficient data clustering

method for very large databases. Proceedings of the ACM SIGMOD international

conference on management of data, Montreal, Quebec, Canada (pp. 103�114).

New York, NY: ACM Press.

Zheng, F., & Webb, G. (2006). Efficient lazy elimination for averaged one-dependence

estimators. Proceedings of the 23rd international conference on machine learning

(pp. 1113�1120). New York, NY: ACM Press.

Zheng, Z., & Webb, G. (2000). Lazy learning of Bayesian rules. Machine Learning, 41(1),

53�84.

Zhou, Z.-H., & Zhang, M.-L. (2007). Solving multi-instance problems with classifier

ensemble based on constructive clustering. Knowledge and Information Systems, 11(2),

155�170.

Zhu, J., & Hastie, T. (2005). Kernel logistic regression and the import vector machine.

Journal of Computational and Graphical Statistics, 14(1), 185�205.

Zou, H., & Hastie, T. (2005). Regularization and Variable Selection via the Elastic Net.

Journal of the Royal Statistical Society, Series B, 67, 301�320.

600 References

http://codebox/cntk
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref445
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref445
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref445
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref445
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref445
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref445
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref446
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref446
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref446
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref446
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref446
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref447
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref447
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref447
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref447
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref448
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref448
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref448
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref449
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref449
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref449
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref449
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref450
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref450
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref450
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref450
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref450
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref451
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref451
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref451
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref451
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref452
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref452
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref452
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref453
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref453
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref453
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref453
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref454
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref454
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref454
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref455
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref455
http://refhub.elsevier.com/B978-0-12-804291-5.00025-8/sbref455

Index
Note: Page numbers followed by “f ” and “t” refer to figures and tables, respectively.

0-9, and Symbols
0 2 1 loss function, 176

0.632 bootstrap, 170

1R (1-rule), 93

discretization, 296

example use, 94t

missing values and numeric data, 94�96

overfitting for, 95

pseudocode, 93f

11-point average recall, 191

A
Accuracy, of association rules, 79, 120

minimum, 79, 122, 124

Accuracy, of classification rules, 102, 115

Activation functions, 270, 424�426, 425t

Acuity parameter, 152

AD trees. See All-dimensions (AD) trees

AdaBoost, 487�489

AdaBoost.M1 algorithm, 487

Additive logistic regression, 492�493

Additive regression, 490�493

ADTree algorithm, 501

Adversarial data mining, 524�527

Agglomerative clustering, 142, 147

Aggregation, 438

Akaike Information Criterion (AIC), 346

AlexNet model, 435

All-dimensions (AD) trees, 350�351

generation, 351

illustrated examples, 350f

Alternating decision trees, 495

example, 495f, 496

prediction nodes, 495

splitter nodes, 495

Analysis of variance (ANOVA), 393

Analyze panel, 568, 570�571

Ancestor-of relation, 51

AND, 262

Anomalies, detecting, 318�319

Antecedent, of rule, 75

AODE. See Averaged one-dependence estimator

(AODE)

Applications, 503

automation, 28

challenge of, 503

data stream learning, 509�512

diagnosis, 25�26

fielded, 21�28

incorporating domain knowledge, 512�515

massive datasets, 506�509

text mining, 515�519

Apriori algorithm, 234�235

Area under the curve (AUC), 191�192

Area under the precision-recall curve (AUPRC),

192

ARFF files, 57

attribute specifications in, 58

attribute types in, 58

defined, 57

illustrated, 58f

Arithmetic underflow, 344�345

Aspect model, 378�379

Assignment of key phrases, 516

Association learning, 44

Association rules, 11�12, 79�80. See also Rules

accuracy (confidence), 79, 120

characteristics, 79

computation requirement, 127

converting item sets to, 122

coverage (support), 79, 120

double-consequent, 125�126

examples, 11�12

finding, 120

finding large item sets, 240�241

frequent-pattern tree, 235�239

mining, 120�127

predicting multiple consequences, 79

relationships between, 80

single-consequent, 126

in Weka, 561

Attribute evaluation methods, 562

attribute subset evaluators, 564

single-attribute evaluators, 564

Attribute filters, 563

supervised, 563

unsupervised, 563

Attribute selection, 287�295. See also Data

transformations

backward elimination, 292�293

beam search, 293

best-first search, 293

filter method, 289�290

forward selection, 292�293

instance-based learning methods, 291

Attribute selection (Continued)

race search, 294

recursive feature elimination, 290�291

schemata search, 294

scheme-independent, 289�292

scheme-specific, 293�295

searching the attribute space and, 292�293

selective Naı̈ve Bayes, 295

symmetric uncertainty, 291�292

in Weka, 562

Weka evaluation methods for, 562

wrapper method, 289�290

Attribute subset evaluators, 564

Attribute-efficient learners, 135

Attributes, 43, 53�54, 95

ARFF format, 58

Boolean, 55�56

causal relations, 513

combination of, 120

conversions, 94

date, 58

difference, 135�136

discrete, 55�56

evaluating, 94t

highly branching, 110�113

identification code, 95

interval, 55

irrelevant, 289

nominal, 54, 357

normalized, 61

numeric, 54, 210�212

ordinal, 55

ratio, 55

relations between, 83

relation-valued, 58

relevant, 289

semantic relation between, 513

string, 58, 313

string, conversion, 313

types of, 44, 61�62

values of, 53�54

weighting, 246�247

AUC. See Area under the curve (AUC)

AUPRC. See Area under the precision-recall curve

(AUPRC)

Authorship ascription, 516

AutoClass, 156, 359

Bayesian clustering scheme, 359�360

Autoencoders, 445�449

combining reconstructive and discriminative

learning, 449

denoising autoencoders, 448

layerwise training, 448

pretraining deep autoencoders with RBMs, 448

Automation applications, 28

Averaged one-dependence estimator (AODE),

348�349

Average-linkage method, 147�148

B
Background knowledge, 508

Backpropagation, 263, 426�429

checking implementations, 430�431

stochastic, 268�269

Backward elimination, 292�293

Backward pruning, 213

Bagging, 480

algorithm for, 483f

bias-variance decomposition, 482�483

with costs, 483�484

idealized procedure versus, 483

instability neutralization, 482�483

for numeric prediction, 483

as parallel, 508

randomization versus, 485�486

Bagging algorithm, 480�484

Bags, 156�157

class labels, 157

instances, joining, 474

positive, 475�476

positive probability, 476

Balanced iterative reducing and clustering using

hierarchies (BIRCH), 160

Balanced Winnow, 134�135

Ball trees, 139

in finding nearest neighbors, 140

illustrated, 139f

nodes, 139�140

splitting method, 140�141

two cluster centers, 145f

Batch learning, 268�269

Batch normalization, 436

Bayes Information Criterion, 159�160

Bayes’ rule, 337, 339, 362�363

Bayesian clustering, 358�359

AutoClass, 359

DensiTree, 359, 360f

hierarchical, 359

Bayesian estimation and prediction, 367�370

probabilistic inference methods, 368�370

Bayesian Latent Dirichlet allocation (LDAb),

379�380

Bayesian multinet, 349

Bayesian networks, 158, 339�352, 382�385

AD tree, 350�351, 350f

algorithms, 347�349

conditional independence, 343�344

602 Index

data structures for fast learning, 349�352

EM algorithm to, 366�367

example illustrations, 341f, 342f

for weather data, 341f, 342f

K2 algorithm, 411

learning, 344�347

making predictions, 340�344

Markov blanket, 347�348

predictions, 340�344

prior distribution over network structures, 346�347

specific algorithms, 347�349

structure learning by conditional independence

tests, 349

TAN, 348

BayesNet algorithm, 416

Beam search, 293

Belief propagation. See Probability propagation

Bernoulli process, 165

BestFirst method, 334

Best-first search, 295

Bias, 33�35

language, 33�34

multilayer perceptron, 263

overfitting-avoidance, 35

search, 34�35

Bias-variance decomposition, 482�483

Binary classification problems, 69

Binary events, 337

BIRCH. See Balanced iterative reducing and

clustering using hierarchies (BIRCH)

Bits, 106�107

Block Gibbs sampling, 454

Boltzmann machines, 449�451

Boolean attributes, 55�56

Boolean classes, 78

Boosting, 486�490

AdaBoost, 487�489

algorithm for, 487, 488f

classifiers, 490

in computational learning theory, 489

decision stumps, 490

forward stagewise additive modeling, 491

power of, 489�490

Bootstrap, 169�171

Bootstrap aggregating. See Bagging

Box kernel, 361

“Burn-in” process, 369

“Business understanding” phase, 28�29

C
C4.5, 113, 216, 219�220, 288�289

functioning of, 219

MDL-based adjustment, 220

C5.0, 221

Caffe, 465

Calibration, class probability, 330

discretization-based, 331

logistic regression, 330

PAV-based, 331

Capabilities class, 561

CAPPS. See Computer-Assisted Passenger

Prescreening System (CAPPS)

CART system, 210, 283

cost-complexity pruning, 220�221

Categorical and continuous variables, 452�453

Categorical attributes. See Nominal attributes

Category utility, 142, 154�156

calculation, 154

incremental clustering, 150�154

Causal relations, 513

CBA technique, 241

CfsSubsetEval method, 334

Chain rule, 327, 343�344

Chain-structured conditional random fields, 410

Circular ordering, 56

CitationKNN algorithm, 478

Class boundaries

non-axis parallel, 251

rectangular, 248�249, 249f

Class labels

bags, 157

reliability, 506

Class noise, 317

Class probability estimation, 321

dataset with two classes, 329, 329f

difficulty, 328�329

overoptimistic, 329

ClassAssigner component, 564�565

ClassAssigner filter, 564�565, 567

Classes, 45

Boolean, 78

membership functions for, 129

rectangular, 248�249, 249f

Classical machine learning techniques, 418

Classification, 44

clustering for, 468�470

cost-sensitive, 182�183, 484

document, 516

k-nearest-neighbor, 85

Naı̈ve Bayes for, 103�104

nearest-neighbor, 85

one-class, 319

pairwise, 323

Classification learning, 44

Classification rules, 11�12, 75�78. See also

Rules

accuracy, 224

603Index

Classification rules (Continued)

antecedent of, 75

criteria for choosing tests, 221�222

disjunctive normal form, 78

with exceptions, 80�82

exclusive-or, 76, 77f

global optimization, 226�227

good rule generation, 224�226

missing values, 223�224

multiple, 78

numeric attributes, 224

from partial decision trees, 227�231

producing with covering algorithms, 223

pruning, 224

replicated subtree, 76, 77f

RIPPER rule learner, 227, 228f, 234

ClassifierPerformanceEvaluator, 565, 567

ClassifierSubsetEval method, 334

Classify panel, 558�559, 563

classification error visualization, 559

Cleansing

artificial data generation, 321�322

detecting anomalies, 318�319

improving decision trees, 316�317

one-class learning, 319�320

outlier detection, 320�321

robust regression, 317�318

“Cliques”, 385

Closed-world assumptions, 47, 78

CLOSET1 algorithm, 241

Clustering, 44, 141�156, 352�363, 473

agglomerative, 142, 147

algorithms, 87�88

category utility, 142

comparing parametric, semiparametric and

nonparametric density models, 362�363

with correlated attributes, 359�361

document, 516

EM algorithm, 353�356

evaluation, 200

expectation maximization algorithm, 353�356

extending mixture model, 356�358

for classification, 468�470

group-average, 148

hierarchical, 147�148

in grouping items, 45

incremental, 150�154

iterative distance-based, 142�144

k-means, 144

MDL principle application to, 200�201

number of clusters, 146�147

using prior distributions, 358�359

and probability density estimation, 352�363

representation, 88f

statistical, 296

two-class mixture model, 354f

in Weka, 561

Cobweb algorithm, 142, 160, 561�562

Co-EM, 471

“Collapsed Gibbs sampling”, 380�381

Column separation, 325

Comma-separated value (CSV)

data files, 558

format, 558

Complete-linkage method, 147

Computation graphs and complex network

structures, 429�430

Computational learning theory, 489

Computational Network Toolkit (CNTK), 465

Computer-Assisted Passenger Prescreening System

(CAPPS), 526

Concept descriptions, 43

Concepts, 44�46. See also Input

defined, 43

“Condensed” representation, 473

Conditional independence, 343�344

Conditional probability models, 392�403

generalized linear models, 400�401

gradient descent and second-order methods, 400

using kernels, 402�403

linear and polynomial regression, 392�393

multiclass logistic regression, 396�400

predictions for ordered classes, 402

using priors on parameters, 393�395

matrix vector formulations of linear and

polynomial regression, 394�395

Conditional random fields, 406�410

chain-structured conditional random fields, 410

linear chain conditional random fields, 408�409

from Markov random fields to, 407�408

for text mining, 410

Confidence

of association rules, 79, 120

intervals, 173�174

upper/lower bounds, 246

Confidence limits

in error rate estimation, 215�217

for normal distribution, 166t

for Student’s distribution, 174t

on success probability, 246

Confusion matrix, 181

Consequent, of rule, 75

ConsistencySubsetEval method, 334

Constrained quadratic optimization, 254

Contact lens problem, 12�14

covering algorithm, 115�119

rules, 13f

structural description, 14, 14f

604 Index

Continuous attributes. See Numeric attributes

Contrastive divergence, 452

Convex hulls, 253

Convolution, 440�441

Convolutional neural networks (CNNs), 419,

437�438

convolutional layers and gradients, 443�444

deep convolutional networks, 438�439

from image filtering to learnable convolutional

layers, 439�443

ImageNet evaluation, 438�439

implementation, 445

pooling and subsampling layers and gradients, 444

Corrected resampled t-test, 175�176

Cost curves, 192�194

cost in, 193

cost matrixes, 182, 182t, 186

Cost of errors, 179�180

cost curves, 192�194

cost-sensitive classification, 182�183

cost-sensitive learning, 183

examples, 180

lift charts, 183�186

problem misidentification, 180

recall-precision curves, 190

ROC curves, 186�190

Cost�benefit analyzer, 186

Cost-complexity pruning, 220�221

Cost-sensitive classification, 182�183, 484

Cost-sensitive learning, 183

two-class, 183

Co-training, 470

EM and, 471

Counting the cost, 179�194

Covariance matrix, 356�357

Coverage, of association rules, 79, 120

minimum, 124

specifying, 127

Covering algorithms, 113�119

example, 115

illustrated, 113f

instance space during operation of, 115f

operation, 115

in producing rules, 223

in two-dimensional space, 113�114

CPU performance, 16

dataset, 16t

Cross-correlation, 440�441

Cross-validation, 167�168, 432�433

estimates, 173

folds, 168

leave-one-out, 169

repeated, 175�176

for ROC curve generation, 189

stratified threefold, 168

tenfold, 168, 286�287

threefold, 168

CrossValidationFoldMaker, 565, 567

CSV. See Comma-separated value (CSV)

CuDNN, 465�466

Customer support/service applications, 28

Cutoff parameter, 154

D
Data, 38

augmentation, 437

evaluation phase, 29�30

linearly separable, 131�132

noise, 7

overlay, 57

scarcity of, 529

sparse, 60�61

structures for fast learning, 349�352

Data cleansing, 65, 288, 316�322. See also Data

transformations

anomaly detection, 318�319

decision tree improvement, 316�317

methods, 288

one-class learning, 319�320

robust regression, 317�318

Data mining, 5�6, 9, 28�30

adversarial, 524�527

applying, 504�506

as data analysis, 5

ethics and, 35�38

learning machine and, 4�9

life cycle, 29f

scheme comparison, 172�176

ubiquitous, 527�529

Data preparation. See also Input

ARFF files, 57�60

attribute types, 61�62

data gathering in, 56�57

data knowledge and, 65

inaccurate values in, 63�64

missing values in, 62�63

sparse data, 60�61

Data projections, 287, 304�314

partial least-squares regression, 307�309

principal components analysis, 305�307

random, 307

text to attribute vectors, 313�314

time series, 314

Data stream learning, 509�512

algorithm adaptation for, 510

Hoeffding bound, 510

memory usage, 511�512

605Index

Data stream learning (Continued)

Naı̈ve Bayes for, 510

tie-breaking strategy, 511

Data transformations, 285

attribute selection, 288�295

data cleansing, 288, 316�322

data projection, 287, 304�314

discretization of numeric attributes, 287, 296�303

input types and, 305

methods for, 287

multiple classes to binary ones, 288�289,

315�316

sampling, 288, 315�316

“Data understanding” phase, 28�29

Data warehousing, 56�57

Data-dependent expectation, 451

DataSet connections, 566�567

Date attributes, 58

Decimation, 438

Decision boundaries, 69

Decision lists, 11

rules versus, 119

Decision stumps, 490

Decision tree induction, 30, 316

complexity, 217�218

top-down, 221

Decision trees, 6, 70�71, 109f

alternating, 495�496, 495f

C4.5 algorithm and, 219�220

constructing, 105�113

cost-complexity pruning, 220�221

for disjunction, 76f

error rate estimation, 215�217

examples, 14f, 18f

highly branching attributes, 110�113

improving, 316�317

information calculation, 108�110

missing values, 71, 212�213

nodes, 70�71

numeric attributes, 210�212

partial, obtaining rules from, 227�231

pruning, 213�215

with replicated subtree, 77f

rules, 219

in Weka, 558�559

DecisionStump algorithm, 490

DecisionTable algorithm, 334

Dedicated multi-instance methods, 475�476

Deep belief networks, 455�456

Deep Boltzmann machines, 453�454

Deep feedforward networks, 420�431

activation functions, 424�426, 425t

backpropagation, 426�429

checking implementations, 430�431

computation graphs and complex network

structures, 429�430

deep layered network architecture, 423�424

feedforward neural network, 424f

losses and regularization, 422�423

MNIST evaluation, 421�422, 421t

Deep layered network architecture, 423�424

Deep learning, 418

autoencoders, 445�449

deep feedforward networks, 420�431

recurrent neural networks, 456�460

software and network implementations, 464�466

stochastic deep networks, 449�456

techniques, 418

three-layer perceptron, 419

training and evaluating deep networks, 431�437

batch normalization, 436

cross-validation, 432�433

data augmentation and synthetic

transformations, 437

dropout, 436

early stopping model, 431�432

hyperparameter tuning, 432�433

learning rates and schedules, 434�435

mini-batch-based stochastic gradient descent,

433�434

parameter initialization, 436�437

pseudocode for mini-batch based stochastic

gradient descent, 434, 435f

regularization with priors on parameters, 435

unsupervised pretraining, 437

validation, 432�433

Deeplearning4j, 465

Delta, 314

Dendrograms, 87�88, 147

Denoising autoencoders, 448

Denormalization, 50

problems with, 51

DensiTree, 359, 360f

visualization, 359, 360f

Diagnosis applications, 25�26

faults, 25�26

machine language in, 25

performance tests, 26

Difference attributes, 135�136

Dimensionality reduction, PCA for, 377�378

Direct marketing, 27

Directed acyclic graphs, 340

Discrete attributes, 55�56

1R (1-rule), 296

converting to numeric attributes, 303

discretization, 287, 296�303. See also Data

transformations

decision tree learners, 296

606 Index

entropy-based, 298�301

error-based, 301

global, 296

partitioning, 94�95

proportional k-interval, 297�298

supervised, 297

unsupervised, 297

Discrete events, 337

Discretization-based calibration, 330

Discriminative learning, 449

Disjunctive normal form, 78

Distance functions, 135�136

difference attributes, 135�136

generalized, 250

for generalized exemplars, 248�250

missing values, 136

Diverse-density method, 475�476

Divide-and-conquer, 105�113, 289

Document classification, 516. See also

Classification

in assignment of key phrases, 516

in authorship ascription, 516

in language identification, 516

as supervised learning, 516

Document clustering, 516

Domain knowledge, 19

Double-consequent rules, 126

Dropout, 436

Dynamic Bayesian network, 405

E
Early stopping, 266�268

model, 431�432

Eigenvalues, 306

Eigenvectors, 306

“Elastic net” approach, 394

EM algorithm, 416

EM for PPCA, 375�376

END algorithm, 334

“Empirical Bayesian” methods, 368

Empirical risk, 422�423

Ensemble learning, 479

additive regression, 490�493

bagging, 481�484

boosting, 486�490

interpretable ensembles, 493�497

multiple models, 480�481

randomization, 484�486

stacking, 497�499

Entity extraction, in text mining, 517

Entropy, 110

Entropy-based discretization, 298�301

error-based discretization versus, 301

illustrated, 299f

with MDL stopping criterion,

301

results, 299f

stopping criteria, 293, 300

Enumerated, 55�56

Enumerating concept space, 32�33

Equal-frequency binning, 297

Equal-interval binning, 297

Error rate, 163

decision tree, 215�217

repeated holdout, 167

success rate and, 215�216

training set, 163

Error-based discretization, 301

Errors

estimation, 172

inaccurate values and, 63�64

mean-absolute, 195

mean-squared, 195

propagation, 266�268

relative-absolute, 195

relative-squared, 195�196

resubstitution, 163

squared, 177

training set, 163

Estimation error, 172

Ethics, 35�38

issues, 35

personal information and, 37�38

reidentification and, 36�37

Euclidean distance, 135

between instances, 149

function, 246�247

Evaluation

clustering, 200�201

as data mining key, 161�162

numeric prediction, 194�197

performance, 162

Examples, 46�53. See also Instances;

specific examples

class of, 45

relations, 47�51

structured, 51

types of, 46�53

Exceptions, rules with, 80�82, 231�233

Exclusive-or problem, 77f

Exclusive-OR (XOR), 262

Exemplars, 245

generalizing, 247�248

noisy, pruning, 245�246

reducing number of, 245

Exhaustive error-correcting codes,

326

ExhaustiveSearch method, 496

607Index

Expectation, 357

Expectation maximization (EM) algorithm,

353�356, 365�366, 468

and cotraining, 471

maximization step, 469

with Naı̈ve Bayes, 469

to train Bayesian networks, 366�367

Expected gradients, 364�365

for PPCA, 375

Expected log-likelihoods, 364�365

for PPCA, 374

Experimenter, 554, 568�571. See also Weka

workbench

advanced setup, 570

Analyze panel, 568�571

results analysis, 569�570

Run panel, 568

running experiments, 568�569

Setup panel, 568, 571

simple setup, 570

starting up, 568�570

Expert models, 480

Explorer, 554, 557�564. See also Weka

workbench

ARFF format, 560

Associate panel, 561�562

association-rule learning, 234�241

attribute selection, 564

automatic parameter tuning, 171�172

Classify panel, 558

Cluster panel, 561

clustering algorithms, 141�156

CSV data files, 558

decision tree building, 558�559

filters, 560�561, 563

introduction to, 557�564

J48, 558�559

learning algorithms, 563

loading datasets, 557�558, 560�561

metalearning algorithms, 558

models, 559

Preprocess panel, 559�560

search methods, 564

Select Attributes panel, 562, 564

Visualize panel, 553, 562

EXtensible Markup Language (XML), 57, 568

F
Factor analysis, 373

Factor graphs, 382�385

Bayesian networks, 382�385

logistic regression model, 382�385

Markov blanket, 383f

False negatives (FN), 180�182, 191t

False positive rate, 180�181

False positives (FP), 180�182, 191t

Familiar system, 528

Feature map, 439�440

Feature selection, 331�333

Feedforward networks, 269�270

feedforward neural network, 424f

Fielded applications, 21�28

automation, 28

customer service/support, 28

decisions involving judgments, 22�23

diagnosis, 22�23

image screening, 23�24

load forecasting, 24�25

manufacturing processes, 27�28

marketing and sales, 26�27

scientific, 28

web mining, 21�22

File mining, 53

Files

ARFF, 58�60

filtering, 560�561

loading, 560�561

opening, 560

Filter method, 289�290

FilteredClassifier algorithm, 563

FilteredClassifier metalearning scheme, 563

Filtering approaches, 319

Filters, 554, 563

applying, 561

attribute, 562�564

information on, 561

instance, 563

supervised, 563, 567

unsupervised, 563, 567

in Weka, 559

Finite mixtures, 353

Fisher’s linear discriminant analysis, 311�312

Fixed set, 54, 510

Flat files, 46�47

F-measure, 191, 202�203

Forward pruning, 213

Forward selection, 292�293

Forward stagewise additive modeling, 491

implementation, 492

numeric prediction, 491�492

overfitting and, 491�492

residuals, 491

Forwards-backwards algorithms, 386

FP-growth algorithm, 235, 241

Frequent-pattern trees, 242

building, 235�239

compact structure, 235

608 Index

data preparation example, 236t

header tables, 237

implementation, 241

structure illustration, 239f

support threshold, 240

Functional dependencies, 513

Functional trees, 71�72

Fundamental rule of probability. See Product rule

G
Gain ratio, 111�112

Gaussian distributions, 373, 394

Gaussian kernel, 361

Gaussian process regression,

272

Generalization

exemplar, 247�248, 251�252

instance-based learning and, 251

stacked, 497�499

Generalization as search, 31�35

bias, 33�35

enumerating the concept space, 32�33

Generalized distance functions, 250

Generalized linear models, 400�401

link functions, mean functions, and

distributions, 401t

Generalized Sequential Patterns (GSP),

241

Generalizing exemplars, 247�248

distance functions for, 248�250

nested, 248

Generative models, 371

Gibbs sampling, 368�369

Global optimization, classification rules for,

226�227

Gradient ascent, 476

Gradient clipping, 457�458

Gradient descent, 266�268

illustrated, 265f

and second-order methods, 400

stochastic, 270�272

subgradients, 270�271

Graphical models, 352, 370�391

computing using sum-product and max-product

algorithms, 386�391

factor graphs, 382�385

LDA, 379�381

LSA, 376�377

Markov random fields, 385�386

PCA for dimensionality reduction, 377�378

and plate notation, 371

PPCA, 372�376

probabilistic LSA, 378�379

Graphics processing units (GPUs), 392

GraphViewer, 565

Greedy method, for rule pruning,

219

GreedyStepwise method, 334

Group-average clustering, 148

Growing sets, 224

GSP. See Generalized Sequential Patterns (GSP)

H
Hamming distance, 325

Hausdorff distance, 475, 477

Hidden attributes, 340

Hidden layer, multilayer perceptrons, 263,

266�268, 267f

Hidden Markov models, 404�405

Hidden variable models, 363�367

EM algorithm, 365�366

to train Bayesian networks, 366�367

expected gradients, 364�365

expected log-likelihoods, 364�365

Hidden variables, 355�356, 363

Hierarchical clustering, 147�148, 359. See also

Clustering

agglomerative, 147

average-linkage method, 147�148

centroid-linkage method, 147�148

dendrograms, 147

displays, 149f

example, 148�150

example illustration, 153f

group-average, 148

single-linkage algorithm, 147, 150

HierarchicalClusterer algorithm, 160

Highly branching attributes, 110�113

Hinge loss, 271, 271f

Histogram equalization, 297

Hoeffding bound, 510

Hoeffding trees, 510

HTML. See HyperText Markup

Language (HTML)

Hyperparameter

selection, 171�172

tuning, 432�433

Hyperplanes, 252�253

maximum-margin, 253�254

separating classes, 253f

Hyperrectangles, 247�248

boundaries, 247�248

exception, 248

measuring distance to, 250

in multi-instance learning, 477

overlapping, 248

609Index

Hyperspheres, 139

HyperText Markup Language (HTML)

delimiters, 519�520

formatting commands, 519

I
IB1 algorithm, 160

IB3. See Instance-Based Learner version 3 (IB3)

IBk algorithm, 284

Id3 algorithm, 160

ID3 decision tree learner, 113

Identification code attributes, 95

example, 111t

Image screening, 23�24

hazard detection system, 23

input, 23�24

problems, 24

ImageNet evaluation, 438�439

ImageNet Large Scale Visual Recognition

Challenge (ILSVRC), 438�439

Inaccurate values, 63�64

Incremental clustering, 150�154

acuity parameter, 152�154

category utility, 150�151

cutoff parameter, 154

example illustrations, 151f, 153f

merging, 151�152

splitting, 152

Incremental learning, 567

Incremental reduced-error pruning, 225, 226f

IncrementalClassifierEvaluator, 567

Independent and identically distributed (i.i.d.), 338

Independent component analysis, 309�310

Inductive logic programming, 84

Information, 37�38, 106�107

calculating, 108�110

extraction, 517�518

gain calculation, 222

measure, 108�110

value, 110

Informational loss function, 178�179

Information-based heuristics, 223

Input, 43

aggregating, 157

ARFF format, 57�60

attribute types, 61�62

attributes, 53�56

concepts, 44�46

data assembly, 56�57

data transformations and, 304

examples, 46�53

flat files, 46�47

forms, 43

inaccurate values, 63�64

instances, 46�53

missing values, 62�63

preparing, 56�65

sparse data, 60�61

tabular format, 127

Input layer, multilayer perceptrons, 263

Instance connections, 566�567

Instance filters, 563

Instance space

in covering algorithm operation, 115f

partitioning methods, 130f

rectangular generalizations in, 86�87

Instance-Based Learner version 3 (IB3),

246

Instance-based learning, 84�85, 135�141

in attribute selection, 291

characteristics, 84�85

distance functions, 135�136

for generalized exemplars, 248�250

explicit knowledge representation

and, 251

generalization and, 244�252

generalizing exemplars, 247�248

nearest-neighbor, 136�141

performance, 245�246

pruning noise exemplars, 245�246

reducing number of exemplars, 245

visualizing, 87

weighting attributes, 246�247

Instance-based representation, 84�87

Instances, 43, 46�47

centroid, 142�143

misclassified, 132�133

with missing values, 212�213

multilabeled, 45

order, 59�60

sparse, 61

subset sort order, 212

training, 198

Interpretable ensembles, 493�497

logistic model trees, 496�497

option trees, 494�496

Interval quantities, 55

Iris example, 14�15

data as clustering problem, 46t

dataset, 15t

decision boundary, 69, 70f

decision tree, 72, 73f

hierarchical clusterings, 153f

incremental clustering, 150�154

rules, 15

rules with exceptions, 80�82, 81f, 231�233,

232f

610 Index

Isotonic regression, 330

Item sets, 120�121

checking, of two consecutive sizes,

126

converting to rules, 122

in efficient rule generation, 124�127

example, 121t

large, finding with association rules, 240�241

minimum coverage, 124

subsets of, 124�125

Items, 120

Iterated conditional modes procedure, 369�370

Iterative distance-based clustering, 142�144

J
J48 algorithm, 558, 565, 567�568

cross-validation with, 565

Java virtual machine, 508�509

Joint distribution, 367, 452�453

Judgment decisions, 22�23

K
K2 algorithm, 411

K2 learning algorithm, 347

Kappa statistic, 181

KD-trees, 136

building, 137

in finding nearest-neighbor, 137�138, 137f

for training instances, 137f

updating, 138�139

Keras, 465�466

Kernel density estimation, 361�362

Kernel logistic regression, 261

Kernel perceptron, 260�261

Kernel regression, 403

Kernel ridge regression, 258�259

computational expense, 259

computational simplicity,

259

drawback, 259

Kernels, conditional probability models using,

402�403

Kernel trick, 258

K-means algorithm, 355

K-means clustering, 142�143

iterations, 144

k-means1 1 , 144

seeds, 144

K-nearest-neighbor method, 85

Knowledge, 37

background, 508

metadata, 513

prior domain, 513

Knowledge Flow interface, 554�555, 564�567.

See also Weka workbench

Associations panel, 566

Classifiers folder, 566

Clusters folder, 566

components, 566

components configuration and connection,

566�567

dataSet connections, 566�567

evaluation components, 566

Evaluation folder, 564�565

Filters folder, 566

incremental learning, 567

starting up, 564�565

Knowledge representation, 91

clusters, 87

instance-based, 84�87

linear models, 68�70

rules, 75�84

tables, 68

trees, 70�75

KStar algorithm, 284

L
L2 regularization, 399

Labor negotiations example, 16�18

dataset, 17t

decision trees, 18f

training dataset, 18

LADTree algorithm, 501

Language bias, 33�34

Language identification, 516

Laplace distribution, 393�394

Laplace estimator, 99, 358�359

Large item sets, finding with association rules,

240�241

Lasagne, 465�466

LatentSemanticAnalysis method, 376�377

Latent Dirichlet allocation (LDA), 379�381

Latent semantic analysis (LSA), 376�377

Latent variables. See Hidden variables

LaTeX typesetting system, 571

Lattice-structured models, 408

Law of diminishing returns, 507

Layerwise training, 448

Lazy classifiers, in Weka, 563

Learning

association, 44

batch, 268�269

classification, 44

concept, 54

cost-sensitive, 65�66

data stream, 509�512

611Index

Learning (Continued)

deep. See Deep learning

ensemble, 479

incremental, 567

instance-based, 84�85, 135�141, 244�252

locally weighted, 281�283

machine, 7�9

multi-instance, 53, 156�158, 472�476

one-class, 288, 319�320

in performance situations, 21

rote, 84�85

semisupervised, 468�472

statistics versus, 30�31

testing, 8

Learning algorithms, 563

Bayes, 563

functions, 563

lazy, 563

miscellaneous, 563

rules, 563

trees, 563

Learning Bayesian networks, 344�347

Learning paradigms, 508

Learning rate, 267�268

and schedules, 434�435

Least-squares linear regression, 70, 129

Least Absolute Shrinkage and Selection Operator

(LASSO), 394

Leave-one-out cross-validation, 169

Level-0 models, 497�498

Level-1 model, 497�498

LibLINEAR algorithm, 284

LibSVM algorithm, 284

Lift charts, 183�186

data for, 184t

illustrated, 185f

points on, 194

Lift factor, 183�184

Likelihood, 337

Linear chain conditional random fields, 408�409

Linear classification

logistic regression, 129�131

using the perceptron, 131�133

using Winnow, 133�135

Linear discriminant analysis, 310

Linear machines, 159

Linear models, 68�70, 128�135

in binary classification problems, 69

boundary decision, 69

extending, 252�273

generating, 252

illustrated, 69f, 70f

kernel ridge regression, 258�259

linear classification, 129�131

linear regression, 128�129

local, numeric prediction with, 273�284

logistic regression, 129�131

maximum-margin hyperplane, 253�254

in model tree, 280t

multilayer perceptrons, 261�269

nonlinear class boundaries, 254�256

numeric prediction, 128�129

perceptron, 131�133

stochastic gradient descent, 270�272

support vector machine use, 252

support vector regression, 256�258

in two dimensions, 68

Linear regression, 128�129, 392�393

least-squares, 70, 129

locally weighted, 281�283

matrix vector formulations, 394�395

multiple, 491

multiresponse, 129

Linear threshold unit, 159

LinearForwardSelection method, 334

LinearRegression algorithm, 160

LMT algorithm, 160

Load forecasting, 24�25

Loading files, 560�561

Locally weighted linear regression, 281�283

distance-based weighting schemes, 282

in nonlinear function approximation, 282

Logic programs, 84

Logistic model trees, 496�497

Logistic regression, 129�131, 398�399

additive, 492�493

calibration, 330

generalizing, 131

illustrated, 130f

model, 382�385

two-class, 131

LogitBoost algorithm, 492�493

Log-likelihood, 338

Log-normal distribution, 357�358

Log-odds distribution, 357�358

Long short-term memory (LSTM), 457�458

Loss functions

0 2 1, 176

informational, 178�179

quadratic, 177�178

LWL algorithm, 284

M
M5P algorithm, 284

M5Rules algorithm, 284

Machine learning, 7�9

applications, 9

612 Index

in diagnosis applications, 25

expert models, 480

modern, 467

schemes, 209�210

statistics and, 30�31

Manufacturing process applications, 27�28

Market basket analysis, 26�27, 120

Marketing and sales, 26�27

churn, 26

direct marketing, 27

historical analysis, 27

market basket analysis, 26�27

Markov blanket, 347�348

Marginal likelihood, 355, 363

Marginal log-likelihood for PPCA, 374

Marginal probabilities, 387

Markov blanket, 347�348, 348f, 369

Markov chain Monte Carlo methods, 368�369

Markov models, 403�404

Markov networks, 352

Markov random fields, 385�386, 407�408

Massive datasets, 506�509

Massive Online Analysis (MOA), 512

Max-product algorithms, 391

Max-sum algorithm. See Max-product algorithms

Maximization, 357

Maximum-margin hyperplane, 253�254

illustrated, 253f

support vectors, 253�254

Maximum likelihood estimation, 338�339

Maximum posteriori parameter estimation, 339

MDL. See Minimum description length (MDL)

principle

Mean-absolute errors, 195

Mean-squared errors, 195

Mean function, 401

Memory usage, 511�512

MetaCost algorithm, 484

Metadata, 56, 512

application examples, 512�513

knowledge, 513

relations among attributes, 513

Metalearners, 563

Metalearning algorithms, in Weka, 563

Metric trees, 141

Metropolis�Hastings algorithm, 368�369

MIDD algorithm, 478

MILR algorithm, 478

Mini-batch-based stochastic gradient descent,

433�434

pseudocode for, 434, 435f

Minimum description length (MDL) principle,

179, 197�200

applying to clustering, 200�201

metric, 346

probability theory and, 199

training instances, 198

MIOptimalBall algorithm, 478

MISMO algorithm, 478

Missing values, 62�63

1R, 94�96

classification rules, 223�224

decision trees, 70�71, 212�213

distance function, 136

instances with, 212

machine learning schemes and, 63

mixture models, 358

Naı̈ve Bayes, 100

partial decision trees, 230�231

reasons for, 63

MISVM algorithm, 478

MIWrapper algorithm, 160

Mixed-attribute problems, 11

Mixed National Institute of Standards and

Technology (MNIST), 421�422, 421t

Mixture models, 353, 370

extending, 356�358

finite mixtures, 353

missing values, 357

nominal attributes, 357

two-class, 354f

Mixture of Gaussians

expectation maximization algorithm, 353�356

Mixtures, 353

of factor analyzers, 360�361

of principal component analyzers, 360�361

MOA. See Massive Online Analysis (MOA)

Model’s expectation, 451

Model trees, 75, 273�275

building, 275

illustrated, 74f

induction pseudocode, 277�281, 278f

linear models in, 280t

logistic, 496�497

with nominal attributes, 279f

pruning, 275�276

rules from, 281

smoothing calculation, 274

Multiclass prediction, 181

MultiClassClassifier algorithm, 334

Multiclass classification problem, 396

Multiclass logistic regression, 396�400

matrix vector formulation, 397�398

priors on parameters, 398�400

Multi-instance learning, 53, 156�158, 472.

See also Semisupervised learning

aggregating the input, 157

aggregating the output, 157�158

613Index

Multi-instance learning (Continued)

bags, 156�157, 474

converting to single-instance learning, 472�474

dedicated methods, 475�476

hyperrectangles for, 476

nearest-neighbor learning adaptation to, 475

supervised, 156�157

upgrading learning algorithms, 475

Multi-instance problems, 53

ARFF file, 60f

converting to single-instance problem, 157

Multilabeled instances, 45

Multilayer perceptrons, 261�269

backpropagation, 264�269

bias, 263

datasets corresponding to, 262f

as feed-forward networks, 269

hidden layer, 263, 266�267, 267f

input layer, 263

units, 263

MultilayerPerceptron algorithm, 284

Multinomial logistic regression, 396

Multinominal Naı̈ve Bayes, 103

Multiple classes to binary transformation,

322�328, 324t. See also Data

transformations

error-correcting output codes, 324�326

nested dichotomies, 326�328

one-vs.-rest method, 323

pairwise classification, 323

pairwise coupling, 323

simple methods, 323�324

Multiple linear regression, 491

Multiresponse linear regression, 129

drawbacks, 129

membership function, 129

Multistage decision property, 110

N
Naı̈ve Bayes, 99, 289

classifier, 347

for document classification, 103�104

with EM, 469

independent attributes assumption, 469

locally weighted, 283

missing values, 100�103

multinominal, 103

numeric attributes, 100�103

selective, 295

semantics, 105

NaiveBayes algorithm, 160

NaiveBayesMultinomial algorithm, 160

NaiveBayesUpdateable algorithm, 566�567

NAND, 263

Nearest-neighbor classification, 85

speed, 141

Nearest-neighbor learning, 475

attribute selection, 290

Hausdorff distance variants

and, 477

instance-based, 136

multi-instance data adaptation, 475

Nested dichotomies, 326�328

code matrix, 327t

defined, 327

ensemble of, 328

Neural networks, 445

approaches, 471�472

Neuron’s receptive field, 440

N-fold cross-validation, 169

N-grams, 403�404, 516

Nnge algorithm, 284

Noise, 7

“Noisy-OR” function, 476

Nominal attributes, 54

mixture model, 356�358

numeric prediction, 276

symbols, 54

Nonlinear class boundaries, 254�256

Nonparametric density models for classification,

362�363

Normal distribution

assumption, 103, 105

confidence limits, 166t

Normalization, 184, 408

Norm clipping. See Gradient clipping

NOT, 262

Novelty detection. See Outlier—detection of

Nuclear family, 50

Null hypothesis, 59

Numeric attributes, 54, 296�303

1R, 94

classification rules, 224

converting discrete attributes to, 303

decision tree, 210�212

discretization of, 287

Naı̈ve Bayes, 100

normal-distribution assumption for, 105

Numeric prediction, 16, 44

additive regression, 490�493

bagging for, 483

evaluating, 194�197

linear models, 128�135

outcome as numeric value, 46

performance measures, 195t, 197t

support vector machine algorithms

for, 256

614 Index

Numeric prediction (local linear models),

273�284

building trees, 275

locally weighted linear regression, 281�283

model tree induction, 277�281

model trees, 274�275

nominal attributes, 276

pruning trees, 275�276

rules from model trees, 281

Numeric thresholds, 211

Numeric-attribute problems, 11

O
Obfuscate filter, 304�305, 525

Object editors, 553�554

Occam’s Razor, 197, 200, 489�490

One-class classification. See Outlier—detection of

One-class learning, 288, 319�320

multiclass classifiers, 320�321

outlier detection, 320�321

One-dependence estimator, 348�349

“One-hot” method, 393

OneR algorithm, 568

One-tailed probability, 166

One-vs.-rest method, 323

Option trees, 494�496

as alternating decision trees, 495, 495f

decision trees versus, 494

example, 494f

generation, 494�495

OR, 262

Order-independent rules, 119

Ordered classes, predictions for, 402

“Ordered logit” models, 402

Orderings, 54

circular, 56

partial, 56

Ordinal attributes, 55�56

coding of, 55�56

Orthogonal coordinate systems, 305

Outliers, 320

detection of, 320�321

Output

aggregating, 157

clusters, 87�88

instance-based representation, 84�87

knowledge representation, 91

linear models, 68�70

rules, 75�84

tables, 68

trees, 70�75

Overfitting, 95

for 1R, 95

backpropagation and, 268

forward stagewise additive regression and,

491�492

support vectors and, 255

Overfitting-avoidance bias, 35

Overlay data, 57

P
PageRank, 21, 504, 520�522

recomputation, 521

sink, 522

in Web mining, 521

Pair-adjacent violators (PAV) algorithm, 330

Paired t-test, 173

Pairwise classification, 323

Pairwise coupling, 323

Parabolas, 249

Parallelization, 507�508

Parameter initialization, 436�437

Parametric density models for classification,

362�363

Partial decision trees

best leaf, 230

building example, 230f

expansion algorithm, 229f

missing values, 230�231

obtaining rules from, 227�231

Partial least squares regression, 307�309

Partial ordering, 56

Partitioning

for 1R, 95

discretization, 94

instance space, 86f

training set, 213

Partition function, 385

Parzen window density estimation, 361

PAV. See Pair-adjacent violators (PAV) algorithm

Perceptron learning rule, 132

illustrated, 132f

updating of weights, 134

Perceptrons, 133

instance presentation to, 133

kernel, 260�261

linear classification using, 131�133

multilayer, 261�269

voted, 261

Performance

classifier, predicting, 165

comparison, 162

error rate and, 163

evaluation, 162

instance-based learning, 246

for numeric prediction, 195t, 197t

615Index

Performance (Continued)

predicting, 165

text mining, 515

Personal information use, 37�38

PKIDiscretize filter, 334

“Plate notation”, 370�371

PLSFilter filter, 334

Poisson distribution, 357�358

Polynomial regression, 392�393

matrix vector formulations, 394�395

Posterior distribution, 337

Posterior predictive distribution, 367�368

Postpruning, 213

subtree raising, 214

subtree replacement, 214

Prediction

with Bayesian networks, 340�344

multiclass, 181

nodes, 495

outcomes, 180�181, 180t

three-class, 181t

two-class, 180t

Prepruning, 213

Pretraining deep autoencoders with RBMs, 448

Principal component analysis (PCA), 305�307, 372

of dataset, 306f

for dimensionality reduction, 377�378

principal components, 306

recursive, 307

Principal components regression, 307

PrincipalComponents filter, 334

Principle of multiple explanations, 200

Prior distribution, 337

clustering using, 358�359

Prior knowledge, 514

Prior probability, 98�99

PRISM rule-learning algorithm, 39, 110, 118�119

Probabilistic inference methods, 368�370

probability propagation, 368

sampling, simulated annealing, and iterated

conditional modes, 368�370

variational inference, 370

Probabilistic LSA (pLSA), 376, 378�379

Probabilistic methods, 336

Bayesian estimation and prediction, 367�370

Bayesian networks, 339�352

clustering and probability density estimation,

352�363

conditional probability models, 392�403

factor graphs, 382�385

foundations, 336�339

graphical models, 370�391

hidden variable models, 363�367

maximum likelihood estimation, 338�339

maximum posteriori parameter estimation, 339

sequential and temporal models, 403�410

software packages and implementations, 414�415

Probabilistic principal component analysis

(PPCA), 360�361, 372�376

EM for, 375�376

expected gradient for, 375

expected log-likelihood for, 374

inference with, 373�374

marginal log-likelihood for, 374

Probabilities

class, calibrating, 328�331

maximizing, 199

one-tailed, 166

predicting, 176�179

probability density function relationship, 177

with rules, 13

Probability density estimation, 352�363

clustering and, 352�363

comparing parametric, semiparametric and

nonparametric density models, 362�363

expectation maximization algorithm, 353�356

extending mixture model, 356�358

Kernel density estimation, 361�362

two-class mixture model, 354f

Probability density functions, 102

Probability estimates, 340

Probability propagation, 368

Probability theory, 336�337

Product rule, 337, 343�344

Programming by demonstration, 528

Projection. See Data projections

Projections

Fisher’s linear discriminant analysis, 311�312

independent component analysis, 309�310

linear discriminant analysis, 310

quadratic discriminant analysis, 310�311

random, 307

“Proportional odds” models, 402

Proportional k-interval discretization, 297�298

Pruning

cost-complexity, 220�221

decision trees, 213�215

example illustration, 216f

incremental reduced-error, 225, 226f

model trees, 275�276

noisy exemplars, 245�246

postpruning, 213

prepruning, 213

reduced-error, 215, 225

rules, 219

subtree lifting, 218

subtree raising, 214

subtree replacement, 213

616 Index

Pruning sets, 224

Pseudoinverse, 394

Q
Quadratic discriminant analysis, 310�311

Quadratic loss function, 177�178

R
Race search, 294

RaceSearch method, 334

Radial basis function (RBF), 270

kernels, 256

networks, 256

output layer, 270

Random projections, 307

Random subspaces, 485

RandomCommittee algorithm, 501

RandomForest algorithm, 501

Randomization, 484�486

bagging versus, 485�486

rotation forests, 486

RandomSubSpace algorithm, 501

Ranker method, 564

Ratio quantities, 55

RBF. See Radial basis function (RBF)

RBFNetwork algorithm, 284

RBMs, pretraining deep autoencoders with, 448

Recall-precision curves, 190

area under the precision-recall curve, 192

points on, 194

Reconstructive learning, 449

Rectangular generalizations, 86�87

Rectified linear units (ReLUs), 424�425

Rectify() function, 424�425

Recurrent neural networks, 269, 456�460

deep encoder-decoder recurrent network, 460f

exploding and vanishing gradients, 457�459

recurrent network architectures, 459�460

Recursive feature elimination, 290�291

Reduced-error pruning, 225, 269

incremental, 225, 226f

Reference density, 322

Reference distribution, 321

Regression, 68

additive, 490�493

isotonic, 330

kernel ridge, 258�259

linear, 16, 128�129

locally weighted, 281�283

logistic, 129�131

partial least-squares, 307�309

principal components, 307

robust, 317�318

support vector, 256�258

Regression equations, 75

Linear regression, 16

Linear regression equation, 16

Regression tables, 68

Regression trees, 72, 273�274

illustrated, 74f

Regularization, 273

Reidentification, 36�37

RELAGGS system, 477

Relations, 47�51

ancestor-of, 51

sister-of, 48f, 49t

superrelations, 50

Relation-valued attributes, 59

instances, 61

specification, 59

Relative absolute errors, 196

Relative squared errors, 195�196

RELIEF (Recursive Elimination of Features), 331

Repeated holdout, 167

Replicated subtree problem, 76

decision tree illustration, 77f

Representation learning techniques, 418

Reservoir sampling, 315�316

Residuals, 308

Restricted Boltzmann machines (RBMs), 451�452

Resubstitution errors, 163

RIPPER algorithm, 227, 228f, 234

Ripple-down rules, 234

Robo-soccer, 526

Robust regression, 317�318

ROC curves, 186�190

area under the curve, 191�192

from different learning schemes, 189

generating with cross-validation, 189

jagged, 188�189

points on, 194

sample, 188f

for two learning schemes, 189f

Rotation forests, 486

RotationForest algorithm, 501

Rote learning, 84�85

Row separation, 325

Rule sets

model trees for generating, 281

for noisy data, 222

Rules, 10, 75�84

antecedent of, 75

association, 11�12, 79�80, 234�241

classification, 11�12, 75�78

computer-generated, 19�21

consequent of, 75

617Index

Rules (Continued)

constructing, 113�119

decision lists versus, 119

decision tree, 219

efficient generation of, 124�127

with exceptions, 80�82, 231�233

expert-derived, 19�21

expressive, 82�84

inferring, 93�96

from model trees, 281

order-independent, 119

perceptron learning, 132

popularity, 78

PRISM method for constructing, 118�119

probabilities, 13

pruning, 218�219

ripple-down, 234

trees versus, 114

S
Sampling, 288, 315�316. See also Data

transformations

with replacement, 315

reservoir, 315�316

procedure, 366, 368�370

without replacement, 315�316

“Scaled” kernel function, 361

Schemata search, 294

Scheme-independent attribute selection, 289�292

filter method, 289�290

instance-based learning methods,

291

recursive feature elimination, 290�291

symmetric uncertainty, 291�292

wrapper method, 289�290

Scheme-specific attribute selection, 293�295

accelerating, 294�295

paired t-test, 294

race search, 294

results, 294

schemata search, 294

selective Naı̈ve Bayes, 295

Scientific applications, 28

Screening images, 23�24

SDR. See Standard deviation reduction (SDR)

Search, generalization as, 31�35

Search bias, 34�35

Search engines, in web mining, 21�22

Search methods (Weka), 413, 564

Second-order analysis, 435

Seeds, 144

Selective Naı̈ve Bayes, 295

Semantic relationship, 513

Semiparametric density models for classification,

362�363

Semisupervised learning, 467�472. See also

Multi-instance learning

clustering for classification, 468�470

co-EM, 471

cotraining, 470�471

EM and, 471

neural network approaches, 471�472

Separate-and-conquer algorithms, 119, 289

Sequential and temporal models, 403�410

conditional random fields, 406�410

hidden Markov models, 404�405

Markov models, 403�404

N-gram methods, 403�404

Set kernel, 475

Shapes problem, 82

illustrated, 82f

training data, 83t

Sigmoid function, 264f

Sigmoid kernel, 256

SimpleCart algorithm, 242

SimpleKMeans algorithm, 160

SimpleLinearRegression algorithm,

160

SimpleMI algorithm, 160

Simple probabilistic modeling, 96�105

Simulated annealing, 369

Single-attribute evaluators, 564

Single-consequent rules, 126

Single-linkage clustering algorithm, 147, 149

Skewed datasets, 139

Sliding dot product, 440

Smoothing calculation, 274

“Sobel” filters, 441

Soft maximum, 475

Softmax function, 397

Soybean classification example, 19�21

dataset, 20t

examples rules, 19

Sparse data, 60�61

Splitter nodes, 495

Splitting, 152

clusters, 146

criterion, 275

model tree nodes, 277�278

Squared error, 178

Stacking, 319, 497�499

defined, 159, 497

level-0 model, 497�498

level-1 model, 497�498

model input, 497�498

output combination, 497

as parallel, 507�508

618 Index

Standard deviation from the mean, 166

Standard deviation reduction (SDR), 275�277

Standardizing statistical variables, 61

Statistical clustering, 296

Statistical modeling, 406

Statistics, machine learning and, 30�31

Step function, 264f

Stochastic backpropagation, 268�269

Stochastic deep networks, 449�456. See also

Convolutional neural networks (CNNs)

Boltzmann machines, 449�451

categorical and continuous variables, 452�453

contrastive divergence, 452

deep belief networks, 455�456

deep Boltzmann machines, 453�454

restricted Boltzmann machines, 451�452

Stochastic gradient descent, 270�272

Stopwords, 313, 516

Stratification, 167

variation reduction, 168

Stratified holdout, 167

Stratified threefold cross-validation, 168

String attributes, 58

specification, 58

values, 59

StringToWordVector filter, 290, 563

Structural descriptions, 6�7

decision trees, 6

learning techniques, 9

Structure learning, 349

by conditional independence tests,

349

“Structured prediction” techniques, 407�408

Student’s distribution with k-1 degrees of freedom,

173�174

Student’s t-test, 173

Subgradients, 270�271

Subsampling, 444

Subtree lifting, 218

Subtree raising, 214

Subtree replacement, 213

Success rate, error rate and, 215�216

Sum rule, 337

Sum-product algorithms, 386�391

example, 389�390

marginal probabilities, 387

probable explanation example, 390

Super-parent one-dependence estimator, 348�349

Superrelations, 50

Supervised discretization, 297, 332

Supervised filters, 563

attribute, 563

instance, 563

using, 563

Supervised learning, 45

multi-instance learning, 472�476

Support, of association rules, 79, 120

Support vector machines (SVMs), 252, 403, 471

co-EM with, 471

hinge loss, 271

linear model usage, 252

term usage, 252

training, 253�254

weight update, 272

Support vector regression, 256�258

flatness maximization, 256�257

illustrated, 257f

for linear case, 257

linear regression differences, 256�257

for nonlinear case, 257

Support vectors, 253�254

finding, 254

overfitting and, 255

Survival functions, 402

Symmetric uncertainty, 291�292

Synthetic transformations, 437

T
Tables

as knowledge representation, 68

regression, 68

Tabular input format, 127

TAN. See Tree-augmented Naı̈ve Bayes (TAN)

Teleportation, 522

Tenfold cross-validation, 169

Tensor flow, 464�465

Tensors, 420, 464�465

Testing, 163�164

test data, 163

test sets, 163

TestSetMaker, 566�567

Text mining, 515�519

conditional random fields for,

410

data mining versus, 515

document classification, 516

entity extraction, 517

information extraction, 517�518

metadata extraction, 517

performance, 515

stopwords, 516

Text summarization, 515

Text to attribute vectors, 313�314

Theano, 464

Theory, 197

exceptions to, 197

MDL principle and, 198

619Index

Threefold cross-validation, 168

3-point average recall, 191

“Time-homogeneous” models, 405

Time series, 314

Delta, 314

timestamp attribute, 314

Timestamp attribute, 314

Tokenization, 313

Top-down induction, of decision trees, 221

Torch, 465

Training, 163�164

data, 164

instances, 198

support vector machines, 261

Training sets, 162

error, 215

error rate, 163

partitioning, 213

TrainingSetMaker, 566�567

Tree diagrams. See Dendrograms

Tree-augmented Naı̈ve Bayes (TAN), 348

Trees, 70�75. See also Decision trees

AD, 350�351, 350f

ball, 139, 139f

frequent-pattern, 235�239

functional, 71�72

Hoeffding, 511

kD, 136�137, 137f

logistic model, 496�497

metric, 141

model, 74f, 75, 273

option, 494�496

regression, 72, 74f, 273

rules versus, 114

True negatives (TN), 180�181, 190�191

True positive rate, 186�188

True positives (TP), 180�181, 190�191

T-statistic, 174�176

T-test, 173

corrected resampled, 175�176

paired, 173

Two-class mixture model, 354f

Two-class problem, 82

Typographic errors, 63�64

U
Ubiquitous computing, 527

Ubiquitous data mining, 527�529

Unbalanced data, 64�65

Unmasking, 526�527

Unsupervised attribute filters, 563. See also Filters

Unsupervised discretization, 297�298

Unsupervised pretraining, 437

User Classifier (Weka), 72

V
Validation, 432�433

Validation data, 164

Validation sets, 508

for model selection, 201�202

Variables, standardizing, 61

Variance, 482

Variational bound, 370

Variational inference, 370

Variational parameters, 370

Venn diagrams, in cluster representation,

87�88

Visualization, in Weka, 562

Visualize panel, 562

Viterbi algorithms, 386

Voted perceptron, 261

W
Weather problem example, 10�12

alternating decision tree, 495f

ARFF file for, 58f

association rules, 11�12, 123t

attribute space, 292f

attributes evaluation, 94t

attributes, 10

Bayesian networks, 341f, 342f

clustering, 151f

counts and probabilities, 97t

data with numeric class, 47t

dataset, 11t

decision tree, 109f

expanded tree stumps, 108f

FP-tree insertion, 236t

identification codes, 111t

item sets, 121t

multi-instance ARFF file, 60f

numeric data with summary statistics,

101t

option tree, 494f

tree stumps, 106f

Web mining, 21�22, 519�522

PageRank algorithm, 520�522

search engines, 22

teleportation, 522

wrapper induction, 519�520

Weight decay, 269, 393, 399, 435

Weighting attributes

instance-based learning, 246�247

test, 247

updating, 246�247

Weights

determination process, 16

with rules, 13

620 Index

Weka workbench, 504, 553�555

advanced setup, 570

association rules, 561�562

attribute selection, 562

clustering, 561�562

components configuration and connection,

566�567

development of, 553

evaluation components, 566

Experimenter, 554, 568�571

Explorer, 554, 557�564

filters, 554, 563

GUI Chooser panel, 556

how to use, 554�555

incremental learning, 567

interfaces, 554

ISO-8601 date/time format, 59

J48 algorithm, 558�559

Knowledge Flow, 554, 564�567

learning algorithms, 563

metalearning algorithms, 563

User Classifier facility, 72

visualization, 562

visualization components, 565, 567

Winnow, 133�135

Balanced, 134�135

linear classification with, 133�135

updating of weights, 134

versions illustration, 134f

Wisdom, 38

Wrapper induction, 519�520

Wrapper method, 289�290

Wrappers, 519

X
XML (eXtensible Markup Language), 57, 568

XOR (exclusive-OR), 262�263

XRFF format, 57

Z
Zero-frequency problem, 178�179

ZeroR algorithm, 568�569

621Index

	Contents
	Figures
	Tables
	Preface
	--- Intro to Data Mining
	What’s it all about?
	DATA MINING AND MACHINE LEARNING
	SIMPLE EXAMPLES: THE WEATHER PROBLEM AND OTHERS
	FIELDED APPLICATIONS
	THE DATA MINING PROCESS
	MACHINE LEARNING AND STATISTICS
	GENERALIZATION AS SEARCH
	DATA MINING AND ETHICS
	FURTHER READING AND BIBLIOGRAPHIC NOTES

	Input - Concepts Instances Attributes
	WHAT’S A CONCEPT?
	WHAT’S IN AN EXAMPLE?
	WHAT’S IN AN ATTRIBUTE?
	PREPARING THE INPUT
	FURTHER READING AND BIBLIOGRAPHIC NOTES

	Output - Knowledge Representation
	TABLES
	LINEAR MODELS
	TREES
	RULES
	INSTANCE-BASED REPRESENTATION
	CLUSTERS
	FURTHER READING AND BIBLIOGRAPHIC NOTES

	Algorithms - basic Methods
	INFERRING RUDIMENTARY RULES
	SIMPLE PROBABILISTIC MODELING
	DIVIDE-AND-CONQUER: CONSTRUCTING DECISION TREES
	COVERING ALGORITHMS: CONSTRUCTING RULES
	MINING ASSOCIATION RULES
	LINEAR MODELS
	INSTANCE-BASED LEARNING
	CLUSTERING
	MULTI-INSTANCE LEARNING
	FURTHER READING AND BIBLIOGRAPHIC NOTES
	WEKA IMPLEMENTATIONS

	Credibility
	TRAINING AND TESTING
	PREDICTING PERFORMANCE
	CROSS-VALIDATION
	OTHER ESTIMATES
	HYPERPARAMETER SELECTION
	COMPARING DATA MINING SCHEMES
	PREDICTING PROBABILITIES
	COUNTING THE COST
	EVALUATING NUMERIC PREDICTION
	THE MDL PRINCIPLE
	APPLYING THE MDL PRINCIPLE TO CLUSTERING
	USING A VALIDATION SET FOR MODEL SELECTION
	FURTHER READING AND BIBLIOGRAPHIC NOTES

	--- More advanced ML Schemes
	Trees & Rules
	DECISION TREES
	CLASSIFICATION RULES
	ASSOCIATION RULES
	WEKA IMPLEMENTATIONS

	Extending Instance-based & Linear Models
	INSTANCE-BASED LEARNING
	EXTENDING LINEAR MODELS
	NUMERIC PREDICTION WITH LOCAL LINEAR MODELS
	WEKA IMPLEMENTATIONS

	Data Transformations
	ATTRIBUTE SELECTION
	DISCRETIZING NUMERIC ATTRIBUTES
	PROJECTIONS
	SAMPLING
	CLEANSING
	TRANSFORMING MULTIPLE CLASSES TO BINARY ONES
	CALIBRATING CLASS PROBABILITIES
	FURTHER READING AND BIBLIOGRAPHIC NOTES
	WEKA IMPLEMENTATIONS

	Probabilistic Methods
	FOUNDATIONS
	BAYESIAN NETWORKS
	CLUSTERING AND PROBABILITY DENSITY ESTIMATION
	HIDDEN VARIABLE MODELS
	BAYESIAN ESTIMATION AND PREDICTION
	GRAPHICAL MODELS AND FACTOR GRAPHS
	CONDITIONAL PROBABILITY MODELS
	SEQUENTIAL AND TEMPORAL MODELS
	FURTHER READING AND BIBLIOGRAPHIC NOTES
	WEKA IMPLEMENTATIONS

	Deep Learning
	DEEP FEEDFORWARD NETWORKS
	TRAINING AND EVALUATING DEEP NETWORKS
	CONVOLUTIONAL NEURAL NETWORKS
	AUTOENCODERS
	STOCHASTIC DEEP NETWORKS
	RECURRENT NEURAL NETWORKS
	FURTHER READING AND BIBLIOGRAPHIC NOTES
	DEEP LEARNING SOFTWARE AND NETWORK IMPLEMENTATIONS
	WEKA IMPLEMENTATIONS

	Beyond Supervised & Unsupervised Learning
	SEMISUPERVISED LEARNING
	MULTI-INSTANCE LEARNING
	FURTHER READING AND BIBLIOGRAPHIC NOTES
	WEKA IMPLEMENTATIONS

	Ensemble Learning
	COMBINING MULTIPLE MODELS
	BAGGING
	RANDOMIZATION
	BOOSTING
	ADDITIVE REGRESSION
	INTERPRETABLE ENSEMBLES
	STACKING
	FURTHER READING AND BIBLIOGRAPHIC NOTES
	WEKA IMPLEMENTATIONS

	Applications & beyond
	APPLYING MACHINE LEARNING
	LEARNING FROM MASSIVE DATASETS
	DATA STREAM LEARNING
	INCORPORATING DOMAIN KNOWLEDGE
	TEXT MINING
	WEB MINING
	IMAGES AND SPEECH
	ADVERSARIAL SITUATIONS
	UBIQUITOUS DATA MINING
	FURTHER READING AND BIBLIOGRAPHIC NOTES
	WEKA IMPLEMENTATIONS

	Theoretical Foundations
	A.1 MATRIX ALGEBRA
	A.2 FUNDAMENTAL ELEMENTS OF PROBABILISTIC METHODS

	WEKA workbench
	B.1 WHAT’S IN WEKA?
	B.2 THE PACKAGE MANAGEMENT SYSTEM
	B.3 THE EXPLORER
	B.4 THE KNOWLEDGE FLOW INTERFACE
	B.5 THE EXPERIMENTER

	Refs
	Index

